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Simple Summary: Cancer is a complex disease caused by a slew of genetic mutations discovered
through advances in sequencing technologies such as next-generation sequencing. While this technol-
ogy has been useful, it can only retrieve genomic information through short reads or sequences, which
is a limitation. A new sequencing technology known as third-generation sequencing overcomes this
limitation by using much longer reads. This is a game changer for cancer research, diagnosis and treat-
ment. Third-generation sequencing enables the decipherment of complex genomic rearrangements,
resulting in a better understanding of how cancer develops, as well as the examination of the entire
transcriptome, revealing isoforms that could be used in diagnostics or treatment. Third-generation
sequencing enhances cancer genome assembly, detects epigenetic changes, and can provide a com-
prehensive picture of a patient’s specific cancer aberrations. This has the potential to lead to more
effective treatments with fewer adverse effects. This review provides a rigorous scientific analysis
of the advantages and limitations of third-generation sequencing, emphasizing its potential for the
future of cancer research and personalized medicine. Although this is still a developing technology, it
has enormous potential for research and clinical applications, ultimately leading to improved cancer
diagnosis and treatment.

Abstract: Cancer is a multifaceted disease arising from numerous genomic aberrations that have
been identified as a result of advancements in sequencing technologies. While next-generation
sequencing (NGS), which uses short reads, has transformed cancer research and diagnostics, it
is limited by read length. Third-generation sequencing (TGS), led by the Pacific Biosciences and
Oxford Nanopore Technologies platforms, employs long-read sequences, which have marked a
paradigm shift in cancer research. Cancer genomes often harbour complex events, and TGS, with
its ability to span large genomic regions, has facilitated their characterisation, providing a better
understanding of how complex rearrangements affect cancer initiation and progression. TGS has also
characterised the entire transcriptome of various cancers, revealing cancer-associated isoforms that
could serve as biomarkers or therapeutic targets. Furthermore, TGS has advanced cancer research by
improving genome assemblies, detecting complex variants, and providing a more complete picture
of transcriptomes and epigenomes. This review focuses on TGS and its growing role in cancer
research. We investigate its advantages and limitations, providing a rigorous scientific analysis of its
use in detecting previously hidden aberrations missed by NGS. This promising technology holds
immense potential for both research and clinical applications, with far-reaching implications for
cancer diagnosis and treatment.

Keywords: third-generation sequencing; short reads; long reads; cancer; precision oncology

1. Introduction

Cancer is a complex disease characterised by the uncontrolled proliferation of tu-
morigenic transformed cells subject to evolution by natural selection [1]. Cancer cells can
rapidly proliferate within a tissue, spread outside of normal regulatory boundaries, invade
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neighbouring tissues, and even colonise distant sites [2]. This progression is modelled
by an evolutionary process in which single cells grow as a result of interactions between
single cells and the local microenvironment. Cancer cells undergo genotypic and pheno-
typic changes, the majority of which are driven by a wide range of genetic alterations,
allowing them to improve cellular fitness and overcome environmental and treatment
constraints. Cancer genomes are shaped by a variety of somatic alterations, including
single nucleotide variants (SNV), short insertion/deletion (indels), structural (SV) and copy
number variants, and very complex rearrangements, like chromoanagenesis (chromoplexy,
chromoanasynthesis, and chromothripsis) and breakage–fusion–bridge cycles [3]. The
identification of those somatic variants is a critical issue in cancer, and significant resources
and effort have been made to report the genomic statuses specific to each cancer subtype
and to compile a comprehensive catalogue of cancer somatic mutations [4,5]. Over the past
decade, somatic mutations have been successfully identified using a short-read sequencing
technology called next-generation sequencing (NGS), but due to inherent technological
limitations, our understanding of somatic mutations in cancer is far from complete. NGS
studies have mostly found point mutations, like SNVs and indels because short reads are
best suited for mutations of a single base or short fragment length. With reads that are
only a few hundred bases long, it is challenging to detect and accurately identify complex
genomic alterations, like structural and copy-number variants, or mutations in repetitive
regions. The development of new sequencing technologies based on long-read sequencing
has ushered in the era of third-generation sequencing (TGS), also known as long-read
sequencing (LRS), [6] which produces sequencing reads that are longer than NGS systems
(Table 1). Reads lengths in excess of 10,000 bp are typical in TGS but ultra-long reads can
also be achieved; a sequence read of 1.04 Mb was generated for a human chromosome [7],
and the longest read ever reported in scientific literature is close to 2.3 Mb [8]. This tech-
nological advancement has made it possible to detect complex rearrangements, directly
explore epigenetic modifications, characterise the entire transcriptome, and gain a better
understanding of cancer genomics, all of which have the potential to significantly impact
clinical and therapeutic approaches to cancer.

Table 1. Summary of advantages and disadvantages of long and short reads technologies.

Feature TGS NGS
Throughput Lower throughput (fewer reads but more runs) Higher throughput (billions of reads per run)

Advantage More flexibility, enables rapid sequencing of many
runs Cost-effective for sequencing many samples in a run

Disadvantage Higher cost per gigabase sequenced Fewer runs compared to TGS platforms
Read Length Longer reads (10 kb–1 Mb+) Shorter reads (150 bp–300 bp)

Advantage Enables sequencing of entire transcripts and
long-range variant detection

Suitable for most applications requiring moderate
read lengths

Disadvantage Lower accuracy as longer stretches can be more
prone to errors.

Read lengths limit applications requiring
long-range information

Error Rate Higher error rate compared to NGS Lower error rate compared to TGS

Advantage Error rate is rapidly improving and approaching the
NGS rate. Provides high-accuracy data for most applications

Disadvantage Lower accuracy compared to NGS May require higher sequencing depth for
some applications

Cost Generally higher cost per gigabase Generally lower cost per gigabase
Advantage The cost has been steadily decreasing Cost-effective for large-scale sequencing

Disadvantage Costs can still be significant depending on project
requirements

Costs can still be significant depending on
project requirements

Data Analysis Real-time analysis, portability and appropriate for
whole genome assembly

Established analysis pipelines and bioinformatics tools
readily available

Advantage Reduced bias due to minimal amplification Streamlined data analysis with well-established tools
Disadvantage Can be computationally demanding Data analysis can be complex for some applications
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Table 1. Cont.

Feature TGS NGS

Applications

Ideal for large genome sequencing, de novo
assembly, long-range variant detection, full-length
transcriptomics, direct detection of DNA/RNA
modifications, metagenomics

Wide range of applications including targeted sequencing,
variant analysis, gene expression studies, and microbiome
analysis

Advantage Full-length transcript sequencing and accurate
assembly Versatile platform for various research areas

Disadvantage Less suitable for targeted sequencing and high-depth
variant analysis

May not be suitable for complex variant detection or de novo
assembly

Sample requirements More stringent quality and quantity requirements
than NGS Established lab workflows and less stringent requirements

Advantage More stringent requirements produce long-read data
Standardised workflow and less stringent sample
requirements. Degraded (FFPE) or low-input (surgical
biopsy) samples can be sequenced.

Disadvantage Many sample types cannot be easily sequenced due
to reduced quality or small quantity.

Although more samples can be sequenced data suffers from
disadvantages inherent in short-read data

In this review, we describe third-generation technologies as they currently stand and
introduce long-reads for cancer research and diagnosis, which could completely transform
the fields of cancer biology and medicine.

2. The Promise and Limits of NGS in Cancer Research

Short-read next-generation sequencing refers to the next advancement of sequencing
technologies after traditional first-generation Sanger sequencing. This technology was
first introduced in the mid-2000s, ushering in a new era of scientific research. A key
feature of short-read technologies is the parallel sequencing of short clonally amplified
DNA molecules. Read lengths, while still shorter than Sanger sequencing, are a few
hundred bases. But, the number of reads can be in the billions, and the single base
accuracy is approximately 99.9% [9]. Since its introduction, the use of NGS in cancer
research has grown rapidly due to the massive generation of highly accurate reads, which
allows for the profiling of cancer genomes, identification of new mutations, prediction of
neoantigens, detection of epigenetic modifications, and tracking cancer evolution [3,10,11].
Furthermore, NGS has been used to characterise the cancer transcriptome using RNA-seq,
providing information on gene expression as well as detecting alternative splicing and
fusion events [12]. NGS is also used in liquid biopsies, which identify circulating cancer
cells, cell-free DNA (cfDNA), and circulating non-coding RNAs in blood or other bodily
fluids [13], whereas single-cell sequencing via NGS is used to evaluate cancer heterogeneity
and identify different cell types [14].

Despite the numerous scientific cancer breakthroughs using NGS, this sequencing
technology seems to have reached its limit and new approaches are required. For example,
the short-read length is one of the most evident limitations of NGS. Despite the generation
of billions of short reads, reads of a few hundred bases in length are not optimal for genome
assembly in the context of a complex genome, such as that of cancer. Short reads struggle
with structural variations or even low-complexity regions when reassembling data over
long stretches of DNA; large complex genomic rearrangements (>5 Mb) are even more
challenging. However, for cancer SV detection, recent algorithm improvements show
promise for NGS pipelines [15].

To boost the signal, NGS platforms use clonal amplification of DNA templates, and
unlike TGS, cannot directly detect nucleotide changes at the single-molecule level. This
is a significant limitation because the template amplification process can cause spurious
mutations, or other technical artefacts, that can masquerade as sequence variants. In
addition, template amplification introduces biases that under-represent AT-rich and GC-
rich regions in target sequences [16]. Transcriptomes based on NGS are an excellent example
of this limitation. Typically, RNA samples are first fragmented, then reverse transcribed,
and then PCR amplified before the complementary DNA (cDNA) fragments are sequenced
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in a high throughput manner. This complex process introduces biases in the sequences by
increasing base incorporation errors in individual molecules and by underrepresenting
bases in regions with high or low GC contents [17].

Another limitation of NGS is its inability to directly sequence RNA or DNA, and
NGS platforms are often blind to nucleotide modifications. To detect transcriptome-wide
RNA modifications and epigenetic methylations, NGS must use indirect methods, which
frequently fall short in identifying the underlying causes of the modification at a given site
and in providing quantitative estimates of those changes [18].

What is the future of NGS then, given those flaws? Fortunately, we already have other
sequencing technologies at our disposal, such as long-read third-generation sequencing,
which offers a variety of approaches for analysing genomes and transcriptomes. A summary
of long-read and short-read methods, as well as the advantages of each technology, is
presented in Figure 1. Third-generation sequencing has enormous potential, which is
only now becoming clear, and will improve our understanding of cancer biology. These
state-of-the-art long-read sequencing techniques will be outlined in the following section.
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Figure 1. An overview of long-read and short-read methods, as well as the advantages of each
technology. (A) PacBio HiFi sequencing technology. A DNA fragment is ligated to hairpin adapters
to create a topologically circular molecule called SMRTbell. It is loaded onto an SMRT Cell for
sequencing. The same DNA molecule is sequenced multiple times or passes. Every iteration produces
a “read,” which may contain errors in specific bases. Circular consensus algorithms analyse and
merge reads from multiple iterations to remove errors and produce a highly accurate consensus read.
(B) ONT sequencing. DNA is tagged with sequencing adapters preloaded with a motor protein on
one or both ends. A single DNA molecule is passed through a protein pore. As the molecule passes
the pore, it changes the electrical current in a distinct manner, determined by each nucleotide. The
disruption is measured and utilised to establish the genetic sequence. (C) Illumina technology. DNA
is fragmented down into smaller pieces and then linked to adapters. Following library preparation,
individual DNA molecules are sequenced to generate short reads.

3. Long Read Sequencing
3.1. Technology Background

Third-generation sequencing is the latest iteration of sequencing technology. Unlike
NGS, TGS allows the sequencing of single molecules at lengths of up to tens of thousands
of nucleotide bases, and even as long as megabases. The major TGS platforms are Oxford
Nanopore Technologies (ONT) and Pacific Biosciences (PacBio).

ONT nucleotide basecalling is achieved when a single strand of a DNA or an RNA
molecule is pulled through a protein nanopore, embedded in a synthetic membrane, by
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an electric potential. As the nucleic acid strand passes through the nanopore there is a
change in current, or signal, that has a different profile for each of the nucleotide bases,
enabling basecalling of the fragment. There is no limit to the length of nucleic acids that
can be sequenced and megabase reads are common; the longest read of 4.2 Mb was reached
in an internal test [19]. In addition, some modifications to native RNA and DNA bases
cause a specific current change when pulled through the nanopore, allowing for direct
detection. The number of modified bases that can be potentially detected in DNA and RNA
is only limited by the training of the basecalling algorithm and having a distinct electrical
signal associated with the modified base. Currently, different base modifications, such as
5-methylcytosine (5mC), 5-Hydroxymethylcytosine (5hmC), 6-methyladenosine (6mA) and
Bromodeoxyuridine (BrdU), are detectable in DNA and N6-methyladenosine (m6A) in
RNA [20].

PacBio uses sequencing-by-synthesis technology to measure the polymerase base
incorporation in individual DNA molecules, between 1000 and 20,000 nucleotides in length,
held in microwells (zero mode waveguides, ZMW). As the bound polymerase incorporates
a fluorescently tagged nucleotide, the event is optically detected within each ZMW. The
double-stranded DNA fragment has hairpin adapters at the ends that enable multiple passes
over the same template using rolling circle amplification. Each pass, called a subread, can
be compared and used to create a highly accurate consensus read of the fragment [21].
Methylation in DNA can cause a slight detectable delay during base extension (interpulse
duration, IPD) in sequencing, specifically the 5-methyl-cytosine in CpG motifs are part of
the standard PacBio basecalling pipeline [22,23].

A significant early limitation of long-read sequencing was the much lower base ac-
curacy compared to NGS [24]. Early iterations of nanopore sequencing had an error rate
as high as 30–40% [25], with subsequent improvements in accuracy [26]. The latest ONT
chemistry, flow cells and basecalling algorithms have improved the base accuracy to >99%
(quality score: Q20) and even up to 99.9% (Q30) [27], approaching the accuracy of NGS.
Similarly, PacBio sequencing suffered from a significant error rate when it was first in-
troduced. Approximately one in every ten bases was incorrectly identified, resulting in
an error rate of 8–15% in continuous long reads, an earlier PacBio sequencing technology
capable of sequencing long DNA fragments (typically >30 kb). The introduction of a new
PacBio sequencing technology known as high fidelity (HiFi), which sequences a shortened
DNA template (10–20 kb in length) multiple times, has significantly improved sequencing
accuracy. A template sequenced four times is estimated to have 99% accuracy (Q20), while
ten passes result in 99.9% accuracy (Q30) [28].

3.2. Advantages of TGS

One of the major advantages of TGS is that, unlike NGS, there is no amplification
step during sequencing. As a result, both PacBio and ONT sequence individual native
DNA fragments without potential amplification biases, and, moreover, base modifications
are directly read. A notable aspect in the field of cancer research is that TGS platforms
have the capability to identify 5-methylcytosine in DNA without the requirements of
cumbersome bisulfite conversion protocols. In addition, ONT is able to detect 5mC and
6mA in DNA directly; however, ONT and the research community are independently
developing methods to detect other DNA modifications [29]. Using long-read sequencing,
primarily ONT ultralong reads, a complete and gapless (telomere-to-telomere) epigenome
has been created, further enabling the study of epigenetic changes in cancer, including in
previously unreachable parts of the genome [30]. Furthermore, via direct RNA sequencing,
ONT is able to detect modifications in RNA molecules [31].

Nanopore platforms are highly scalable with real-time sequencing information, en-
abling portability and rapid on-site analysis of long DNA or RNA fragments. This is a
distinct and significant advantage that can be leveraged in clinical settings where diagnosis
can be of critical importance [32]. Using a high throughput ONT sequencer and parallel
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sequencing across multiple flow cells, it was possible to diagnose disease-causing genetic
variants in less than 8 h for two critically ill patients [33].

An important advantage of TGS is the capacity to generate full-length mRNA tran-
scripts, thereby providing complete information about alternative splicing events, isoforms,
alternative polyadenylation, and gene fusions [34–36]. Despite the very high accuracy of
PacBio mRNA sequencing (long-read isoform sequencing, or Iso-seq), on par with NGS,
one limitation has been the lower number of reads per sequencing cell compared to NGS
and ONT platforms. To overcome this, PacBio has implemented a new library protocol
that concatenates multiple full-length transcripts on one sequencing molecule. This has
increased the number of reads per sequencing cell for single cell Iso-Seq to 80–100 mil-
lion and bulk Iso-Seq to 30–40 million, enabling full-length mRNA sequencing data to be
used for applications that were previously restricted to NGS data, such as cell population
clustering and differential analysis [37,38].

4. The Long-Read Approach in Cancer

The human genome contains many regions of varying complexity, some of which are
relevant to cancer. Low-complexity tandem repeats, pseudogenes, regions with a high GC
content, and regions with a high copy number variation are some examples [39]. Various
consortia [5,40] have used short-read sequencing technology to sequence, analyse, and
report genomic profiles for different types of cancer. Most of their studies were able to
confidently detect point mutations, such as single-nucleotide variants and short indels.
Some more complex genetic changes, like structural variants, can be harder to find with
short-read technology. This issue is addressed by third-generation sequencing, which uses
long reads to span over the complicated parts of the genome, including cancer genomes.
Figure 2 provides an overview of how TGS is used to study cancer-related topics.
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4.1. Cancer Genomes with Long Reads
4.1.1. Identify and Phase Single Nucleotide Variants

Single nucleotide variants are the most common type of somatic variants and have
gained increased interest due to their involvement in cancer progression [4]. These variants
can arise in the DNA of a single cell and, through subsequent clonal expansion, lead
to somatic clonal heterogeneity fuelling clonal evolution and cancer progression. The
widespread use of high throughput short-read sequencing has characterised many SNVs.
However, this technology necessitates PCR, which restricts SNV detection to regions that
can be amplified, and short-read lengths pose challenges in resolving phasing. Phasing
mutations in cancer provide valuable insights into patients’ specific genetic backgrounds,
allowing for the development of personalised treatment strategies based on their unique
genomic profiles. By utilising the specific genetic profiles of individual cancer patients,
clinicians can make informed treatment decisions to optimise therapy and minimise drug
side effects, thereby enhancing patient care. An example of how mutation phasing can
be used in cancer treatment is in the case of epidermal growth factor receptor (EGFR)
mutations in lung cancer. The EGFR gene is susceptible to two missense mutations: T790M
and L858R. Lung cancer cells with only the L858R mutation are usually responsive to
tyrosine kinase inhibitor drugs (TKIs), but when T790M is present, most often in the cis
position, it confers acquired resistance. The presence of another mutation C797S in trans
with T790M causes resistance to third-generation TKIs, but combination therapy with both
first- and third-generation inhibitors showed sensitivity [41].

One of the advantages of long-read sequencing is the ability to phase genomic muta-
tions with single-allele resolution. Phased sequencing, or genome phasing, addresses the
limitation of distinguishing between variants on homologous chromosomes. Since phasing
allelic compositions is crucial to understanding cancer evolution and gene expression pat-
terns, long-read sequencing may become the standard for genotyping genes for anti-cancer
drug development and patient-specific treatment.

The MinION portable long-read sequencer directly phased EGFR primary and sec-
ondary mutations in the lung adenocarcinoma cell line. This was a groundbreaking study,
as it revealed the mutational allelic backgrounds that make tumours sensitive or resistant
to anti-cancer drugs, providing useful information for determining the most effective thera-
peutic approaches [42]. A phasing analysis of lung cancer genomes that combined short-
and long-read sequencing data produced long-phased blocks of 834 kb. The phased data
revealed that cancer genomes contain regions where mutations are unequally distributed
between the two haplotypes, emphasising the need for haplotype-resolved cancer genomes
to track allele-specific tumour events [43]. Recently, long-read sequencing of paediatric
cancer genomes using Pacbio HiFi technology identified multiple mutation changes as well
as information on copy number variants, structural variants, and methylation status, all
fully phased [44]. Mutations in promoters and enhancers, common in cancer cells, can cause
a change in the rate of transcription, altering the level of gene expression. TERT transcrip-
tion is often upregulated by TERT-promoter mutations; promoter and downstream exonic
regions are usually hundreds of bases apart [45], and due to this distance, both regions
cannot be captured with a single short read. Long reads provided by PacBio sequencing
were used to compare TERT-promoter methylation patterns and gene-expression effects
between wild-type and mutant cancers. This analysis revealed differences in methylation
profiles and responses to demethylating agents [46]. The PIK3CA oncogene is one of the
most frequently mutated oncogenes in all human cancers [47], and it is a typical target
for cancer therapy. Somatic SNVs in PIK3CA are common in human breast cancer, with
the majority resulting in kinase gain of function and oncogenicity. PacBio sequencing was
used to phase the allelic configuration of PIK3CA mutations in breast cancer patients with
double mutations in PIK3CA. Double mutations enhance PI3K signalling and promote
tumour growth, yet they have a greater susceptibility to PIK3CA targeted therapy com-
pared to single mutations. Long-read sequencing uncovered the mutational and phase
status of PIK3CA, enabling the identification of breast cancer patients who are most likely
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to derive benefits from PI3K signalling targeted drugs, paving the way for personalised
medicine [48].

There are not yet any FDA-approved cancer treatments that specifically target phased
mutations. However, this is an area of active research, and it is possible that in the future,
mutation phasing will be used to develop more personalised and effective cancer treat-
ments.

4.1.2. Characterization of Structural Variants

SVs are defined as large genomic changes of more than 1 kb [49] length, such as large
indels, duplications, and inversions, or chromosomal rearrangements like translocations.
However, this definition has been revised to encompass structural variants within smaller
genomic regions, and SVs may be broadly defined as variations in the human genome
longer than 50 base pairs [50]. Across cancers, SVs account for 55% of driver mutations
(genetic mutations that drive the onset and progression of cancer), outnumbering point-
driver mutations [51]. Structural variations alter the copy number of proto-oncogenes and
delete or disrupt tumour suppressor genes, leading to a change in gene dosage [39]. SVs
disorganise the 3D genome structure and lead to enhancer-hijacking, which is an oncogenic
rearrangement of enhancers caused by the translocation or inversion of noncoding DNA
regulatory regions. This ultimately results in abnormal expression patterns [52–54]. SVs
create extrachromosomal DNA with different chromatin compaction patterns, promoting a
genomic environment for oncogenic expression [55].

In 2016, a groundbreaking study demonstrated the capability of long-read technology
to detect structural variants associated with cancer. The study used MinION sequencing to
identify SVs in the CDKN2A and SMAD4 tumour-suppressor genes of pancreatic cancer
cell lines [56]. A few years later, oncogene amplifications and complex rearrangements
in a breast cancer cell line were observed using PacBio sequencing. The study produced
detailed maps of structural variations in a cancer genome and discovered nearly 20,000 SVs,
most of which short-read sequencing had missed [57]. Similarly, Aganezov et al. applied
long-read sequencing (ONT and PacBio) to breast cancer genomes and discovered hundreds
of SV that were missed by NGS sequencing, emphasising the importance of LRS in cancer
diagnosis and treatment [58] The development of a sensitive open-source method for SV
identification enabled a benchmarking comparison between long and short reads. The
results showed that long reads outperformed short reads in finding SVs [59]. Whole genome
sequencing of liver cancer samples with ONT previously sequenced using short-read
technology allowed the cataloguing of a comprehensive list of polymorphic and somatic
SVs, as well as their potential aetiologies [60]. In a recent study, the ONT PromethION
high-throughput platform was used to sequence the whole cancer genomes of 21 patients
affected by colorectal cancer (CRC). The study accurately found somatic SVs in the cancer
genomes. It revealed the presence of large-scale inversions of key tumour suppressor genes
like APC and CFTR, which altered their expression or structure. The study also identified a
new gene fusion, RNF38–RAD51B, that may facilitate the movement, invasion, and spread
of CRC cells [61]. A new form of SV, heterocateny, was discovered in human papilloma
virus (HPV)-positive tumors using ONT and PacBio sequencing. Heterocateny is caused
by HPV integration into the host genome resulting in dysregulated recombination events
of repetitive sequence and increased oncogenicity [62].

Despite the fact that long reads are more effective than short reads at identifying SVs,
it has recently been proposed that multiple technologies should be combined to improve
the accuracy and sensitivity of SV identification [63].

4.1.3. Identification of Fusion Genes

Gene fusion in cancer cells is a category of molecular aberrations primarily caused
by genomic translocations, insertions, deletions, or inversions. A substantial proportion
of fusion genes drive tumorigenesis and represent target molecules with diagnostic and
therapeutic potential [64]. Fusion of RET, ALK, and ROS1, drives tumorigenesis in lung
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cancers [65], while ETV6–RUNX1 triggers clonal evolution and cancer progression in acute
lymphoblastic leukaemia [66]. Similarly, TMPRSS2–ERG gene fusion is the most prevalent
genomic alteration in prostate cancer [67] due to chromoplexy, a genetic rearrangement
that is one of the key drivers of tumour evolution [3]. Gene fusions have thus served as
highly specific diagnostic markers, prognostic indicators, and therapeutic targets [68].

Current clinical laboratory methods detect recurrent and novel oncogenic gene fusions
using various methods and turnaround times. Fluorescence in situ hybridization (FISH)
is one of the fastest methods, able to identify a single gene target in as little as 24 to 48 h
for urgent clinical needs. FISH, however, can only detect one gene target per test and
is insensitive to gene fusions caused by small inversions, insertions, or deletions. When
multiple genes need to be investigated multiple independent tests are required. All of
the limitations listed above can be overcome using newly developed clinical assays based
on ONT sequencing. These assays leverage the long-read length, low cost and real-time
data-acquisition capabilities of the ONT Flonge sequencing system to identify oncogenic
gene fusions within a 24 h timeframe [69,70]. The fusion genes linked to leukaemia were
recently identified using amplification-free CRISPR–Cas9 targeted enrichment and ONT
sequencing of cell lines and patient samples. The portable MinION and Flongle ONT
devices were used to bridge bedside and rapid molecular diagnostics [71].

4.1.4. Whole Genome of Single Cells

Emerging roughly a decade ago, single-cell whole-genome sequencing is now an
active field of research with the potential to answer fundamental questions in several areas
of cell biology, including somatic mutations within individual cells, tumour evolution,
and de novo mutation rates. Single-cell whole-genome sequencing approaches have
been relying on Illumina short-read sequencing. No long-read applications for single-cell
genomics existed until recently when a long-read protocol was introduced [72]. The method
used PacBio HiFi sequencing to analyse individual human single T-cells, showcasing the
feasibility of sequencing complete genomes at the single-cell level with long reads. The
method still has some limitations, most of which stem from the amplification of single-
cell genomes. However, advances in sequencing technologies and methods may enable
the reconstruction of entire genomes of individual cells using long sequencing reads in
cancer research.

4.1.5. A Personalised Cancer Genome

A personalised genome assembly has long been proposed as a means of detecting all
cancer somatic events. A recent study used multiple-sequencing technologies, including
short reads, linked reads, and long reads (PacBio and ONT), to build the first de novo
assemblies of a tumour–normal pair from the same breast cancer patient. The personalised
genome assembly was compared to the standard reference GRCh38 genome assembly,
revealing significant improvements in detecting somatic genetic variants [73]. The use of a
personalised genome as a reference for somatic mutation calling in tumour–normal paired
samples is promising, and further developments, such as reduced cost and simplified
workflow, are needed for application in precision oncology.

4.2. Transcriptome Variation in Cancer Tissues
4.2.1. Full-Length Transcriptome of Cancer Cells

Next-generation sequencing generates short RNA sequences (RNA-seq) that cover
only a portion of the full-length mRNA transcript. This creates ambiguity in the alignment
of short reads to isoforms and complicates full transcript analyses. In contrast to short-read
sequencing, long reads can encompass the entirety of the transcript sequences and the full
isoforms can be accurately determined.

PacBio Iso-seq and ONT platforms can be used for full-length complementary DNA
sequencing to detect splicing isoforms and fusion transcripts. A recent study used a
combination of PacBio Iso-Seq and Illumina short-read RNA sequencing to study the whole
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transcriptome of gastric cancer. The findings revealed numerous previously unknown
transcript isoforms as a result of significant level splicing events. Those novel isoforms
then could be used to provide prognostic information [74]. Another study examined
the complexity of the colorectal cancer transcriptome using the same long/short reads
approach and identified over 62% novel transcripts. These novel transcripts had more
exons but a shorter coding sequence, were expressed at lower levels, and were probably
sample-specific. In addition, oncogenes showed a substantial number of novel transcripts
that may play a crucial role in carcinogenesis and tumour progression [75]. The utilisation
of full-length transcriptome profiling is not yet widespread, but it holds the potential to
unveil novel biological insights, biomarkers, and drug targets.

Long-read transcriptome sequencing has the ability to detect fusion transcripts, which
are implicated in the development of several types of cancer due to a trans-splicing event
that merges two pre-RNAs into one transcript [76]. At present, few studies have used a long-
read RNA sequencing approach to detect fusion transcripts in cancers. Early studies used
hybrid sequencing to correct with short-reads the high error rates of long-read sequenc-
ing [77], a method that is still used today. PacBio sequencing and Illumina RNA-seq were
used in a recent study to investigate oesophageal squamous cell transcriptomics. PacBio
sequencing detected five to ten times more fusion transcripts than Illumina, the majority of
which were novel [78]. More recently, structural variants and fusion genes were detected
in breast cancer samples through long-read genomic and transcriptomic sequencing via
the ONT and PacBio platforms [79]. The utilisation of Pacbio full-length transcriptome
sequencing in breast cancer cell lines revealed the presence of various new gene fusions
within nested genomic variants [57]. Additionally, the analysis of transcriptome profiles
in four rare cancer types using shallow ONT cDNA sequencing successfully identified
distinct fusion genes [80]. This last study is particularly important because it showcases
the effectiveness of ONT in profiling tumour transcriptomes with limited coverage while
remaining efficient and cost-effective.

The current trend is to use only long-read sequencing and target sequencing tech-
nologies with low error rates, such as PacBio HiFi. Recently, a new fusion detection tool
(pbfusion) designed specifically for Iso-Seq HiFi data was proposed and applied to sarcoma
patients. The identification of known and novel fusions, as well as validated driver events,
demonstrates the capability of Iso-Seq HiFi sequencing to identify fusion transcripts with
absolute reliability [81].

Currently, the detection of gene fusions using conventional short-reads technology
remains prevalent due to its well-established nature. Nonetheless, TGS is very promising,
and while it is still being developed, it is frequently used in conjunction with short-read
sequencing to achieve a more thorough analysis. Short reads are useful for detecting
and validating fusions early on, whereas TGS provides critical information about the
precise fusion structure and isoform involved [82]. Long-read sequencing is emerging as
an efficient technique for detecting novel isoforms, fusions, and splicing events that would
not otherwise be detected by short-read sequencing.

4.2.2. Post-Transcriptional RNA Modifications

Post-transcriptional RNA modifications play a big role in many important cellular
processes, including controlling gene expression and fine-tuning the functions of RNA
molecules. To decipher what these post-transcriptional modifications do in different cir-
cumstances, it is necessary to precisely determine their transcriptomic locations and modifi-
cation levels under some specific cellular conditions. It is possible to identify multiple RNA
modifications with single-molecule resolution by using ONT direct RNA sequencing [18,83]
which preserves modification information at the single-read level without requiring reverse
transcription or PCR amplification.

Direct RNA sequencing can detect m6A patterns, a kind of post-transcriptional mod-
ification that influences the development of specific cancer types, such as glioblastoma.
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The capability of this sequencing protocol was recently demonstrated by detecting m6A
patterns in glioblastoma cell lines [84].

4.2.3. Single-Cell Transcriptomics

Full-length RNA sequencing is currently being applied at the single-cell level, offering
insights into allelic and isoform variations in the transcriptome of each cell. Single-cell
transcriptomics provides a thorough understanding of cancer heterogeneity and identi-
fies key drivers of cancer progression. Single-cell transcriptomics can detect genes and
pathways that are only expressed in subpopulations of cancer cells, as well as identify rare
or distinct subpopulations with varying aggressiveness, metastasis ability, and treatment
response [85]. This knowledge is essential for precision medicine and developing targeted
treatments for various types of cancer. Several studies have used single-cell transcriptomics
to identify key markers associated with drug response, enabling targeted approaches and
drug-sensitivity prediction at the cellular level [86].

Currently, long-read single-cell sequencing employs droplet barcoding systems
(e.g., 10× Genomics Chromium system) to barcode full-length cDNAs and sequence
them on third-generation sequencing platforms [87,88]. The power of this approach is
exemplified in a study of patients with metastatic ovarian cancer using PacBio single-cell
sequencing. The study identified more than 150,000 isoforms, with one-third being novel.
It also revealed gene fusions and alternative polyadenylation sites, providing insights into
the metastatic pathway and epithelial-to-mesenchymal transition [36].

Long-read single-cell transcriptomics can be extraordinarily effective, and further
cancer-related applications are anticipated.

4.2.4. Cancer Epigenomics in Long-Read Sequencing

DNA methylation is an essential epigenetic modification that plays a crucial role in
the regulation of numerous biological processes. Aberrant DNA methylation has been
implicated in many types of cancer, affecting the cell type, state, transcriptional regulation,
and genomic stability. Cancer cells can bear abnormal DNA methylation, such as genome-
wide hypomethylation and site-specific hypermethylation, mainly targeting CpG islands
in gene expression regulatory elements [89]. TGS technologies provide direct detection
of DNA methylation with high reproducibility and low bias. One of the most common
genomic modifications is 5mC, which is often found at CpG dinucleotides in the human
genome. Both PacBio and ONT offer a way to detect 5mC without relying on short-read
bisulfite sequencing, the traditional method of 5mC detection [23,90].

Oxford nanopore sequencing was used to simultaneously profile CpG methylation
and detect somatic transposable element mobilisation in paired tumour and normal liver
samples [91]. The ONT MinION platform was used to sequence the genome and epigenome
of brain tumours in real time on the same day. This produced copy numbers and methyla-
tion profiles [92] showcasing a highly promising approach for categorising cancer, based
on molecular markers. This has the potential to enhance clinical diagnosis and prognosis.
A further example of the power of real-time ONT sequencing in a cancer setting was the
accurate classification within two hours of DNA methylation profiles from surgical tumour
biopsy samples assisting decision-making during live brain surgery [32].

Although nanopore sequencing is the most common long-read method for methylation
analysis, the usage of PacBio is steadily increasing. One factor contributing to this is the
integration of artificial intelligence with Pacbio applications. A novel deep-learning-based
approach utilised PacBio sequencing to detect and determine the presence of DNA 5mC
in specific genomic regions [23]. The plasma DNAs of hepatocellular carcinoma (HCC)
patients were sequenced with the Illumina and PacBio platforms and the methylation at
CpG sites were compared with controls. Compared to controls, HCC patients had lower
overall methylation and distinctive methylation motifs. Methylation patterns on longer
PacBio reads had a higher diagnostic power, compared to short reads and, in the future,
could potentially be used for clinical applications [93].
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TGS platforms provide genomic coverage with less GC bias, identify CpG islands
at lower read depths, and enable greater experimental reproducibility in comparison to
short-read methylation studies [94]. In addition, epigenetic modifications can be examined
directly on native DNA without the need for PCR amplification [95].

4.3. Liquid Biopsy

One powerful and non-invasive method to determine the genomic status of a tumour
is to use liquid biopsy techniques, such as analysing cfDNA in plasma and/or urine. Next-
generation sequencers have been extensively utilised for conducting sequencing-based
analyses of cell-free DNA, which offer high throughput but lack scalability and accessibility
due to instrumentation costs. These challenges can be resolved by employing scalable
sequencing and cost-efficient platforms, such as ONT sequencers.

Initial efforts to sequence cfDNA for non-invasive prenatal diagnosis with ONT re-
turned unsatisfactory throughput [96]. However, due to recent technological advancements,
it is now feasible to develop a protocol for efficiently sequencing cfDNA with ONT. The
protocol employs low-coverage nanopore sequencing to detect copy numbers in the plasma
of cancer patients. This method’s performance is similar to NGS techniques, but it is faster
as it provides real-time delivery of copy number profile results [97]. A different study used
ONT sequencing to specifically analyse cfDNA, providing additional proof that found that
long-read sequencing can generate genomic data from liquid biopsies with a sensitivity
comparable to short-read sequencing. The study used nanopore consensus sequencing
on cfDNA and accurately detected TP53 mutations at such extremely low frequencies as
0.02% [98].

The methylation level in circulating tumour DNA can be profiled using ONT sequenc-
ing, as revealed by a recent study showing methylation pattern changes specific to cancer
cells as well as cancer-associated fragmentation signatures [99]. Similarly, a PacBio sequenc-
ing method for cfDNA detection and direct methylation analysis in cancer patients was
recently proposed [93]. A more recent study used Oxford nanopore sequencing on cfDNA
from plasma and urine to detect somatic copy-number aberrations in less than twenty-four
hours, as well as sequence cfDNA fragments of various lengths. The study revealed the
presence of lengthy cfDNA fragments (>300 to 8055 bp) that contained tumour-derived
molecules. This finding challenged the notion that cell-free DNA solely consisted of short
DNA fragments [100].

4.4. Data Analysis of Cancer Genomes with Long Reads

Long-read sequencing is a powerful tool for analysing cancer genomes, but it also
presents unique data-analysis challenges. The challenges encompass various aspects,
such as accuracy, complex base calling, computational demands, and storage capacity
requirements (Table 2).

Basecalling, the computational process of translating light intensity or a raw electrical
signal to a nucleotide sequence, is the initial stage of data analysis, and it is of critical
importance, as almost all downstream applications depend on it. Basecalling is more
complex for long reads than for short reads, with nanopore basecalling being particularly
difficult due to the electric nature of the signal. In nanopore technology, the current
signal level does not correspond to a single base but is most dominantly influenced by
the several nucleotides that reside inside the pore at any given time, making for noisy
and stochastic data [101]. PacBio detects light intensity signals, as DNA polymerase
incorporates nucleotides, and the complexity comes from segmenting the fluorescence trace
into pulses, converting these pulses into bases and generating a continuous long read. This
process may result in noise and spurious signals. Basecalling is a thriving field in ONT,
PacBio, and the research community. In order to tackle the aforementioned challenges,
there has been a continuous improvement in basecalling algorithms [27,102,103] with the
aim of enhancing the quality and reliability of long-read sequencing data analysis.
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Table 2. Summary of data complexity in TGS and NGS.

Feature TGS NGS

Basecalling Complexity More complex due to indirect signal
interpretation and longer reads

Less complex due to direct imaging and
shorter reads

Computational Analysis More powerful computing resources are
required for assembly and variant calling Generally less computationally demanding

Data-File Size Larger files per gigabase sequenced due to
longer reads

Smaller files per gigabase sequenced due to
shorter reads

Data-Analysis Challenges Requires specialised algorithms to handle
longer reads and higher error rates

Requires robust algorithms for high-throughput
data processing

Genome Assembly

Easier for complex or repetitive genomes due
to long reads
More challenging due to higher error rates
and potential for chimeric reads (merged
from different fragments)

More challenging for complex genomes due to
shorter reads
Easier due to lower error rates and shorter reads
providing more overlap

Variant Detection More powerful for detecting large
insertions/deletions and structural variants

Well-suited for detecting single
nucleotide variants

Long reads produce much larger datasets than short reads, and analysing these
datasets is computationally demanding and requires significantly more processing power
than traditional short-read methods. Existing analysis pipelines may not be capable of han-
dling this data volume, so developing new algorithms specifically designed for long-read
data analysis is critical. These algorithms should efficiently align reads, identify variants,
and account for potential sequencing errors in order to improve variant-calling accuracy.
Mapping long reads to a reference genome is an excellent example of this concept, as it
presents unique challenges when compared to traditional short-read sequencing. Long
reads, which can span thousands of bases, are more likely to contain errors, variations,
and structural variants, making precise matching difficult. New algorithms have been
developed specifically for long reads, such as minimap2 [104], Winnowmap2 [105] and
Mapquik [106]. Furthermore, the amount of information contained in long reads can be
overwhelming. Distinguishing driver mutations (critical for cancer development) from
passenger mutations (with no functional impact) necessitates robust filtering and prioriti-
sation methods. Machine-learning approaches [107,108] can provide promising solutions
by allowing researchers and clinicians to filter and prioritise variants based on the pre-
dicted functional impact, as well as identify the key drivers of cancer in each patient’s
unique case. Long reads, therefore, require significant computational capacity, and using
high-performance computing (HPC) resources capable of providing increased processing
power and memory efficiency can be an efficient solution for addressing the computational
requirements associated with analysing large datasets. Cloud-based HPC solutions can
also provide scalability and accessibility.

The storage of the substantial volume of data generated by long-read platforms poses
a significant challenge that is difficult to resolve, as the necessity for extensive storage
infrastructure may cause research institutions and healthcare providers to incur substantial
expenses. This can cause a storage bottleneck which may prevent widespread adoption of
long-read technology. Advanced compression algorithms specifically designed for long-
read data are required to reduce the amount of data to be stored without compromising
data integrity [109]. Furthermore, patient genomic data is highly sensitive, and strong
security measures, such as encryption and access control protocols, are required to protect
long-read data from unauthorised access or breaches.

The future of cancer genomics with long reads looks very promising, but proper clinical
integration remains a bridge to build, as there are additional challenges to overcome,
including error rates and sample requirements. This will be discussed further in the
following section.
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5. The Challenge of Long Read Sequencing

Long-read sequencing is a promising technology for obtaining information about
the entire cancer genome, including complex genomic aberrations, transcript isoforms,
epigenetic base modifications, and phase statuses. For many years, the sequencing accuracy
of long-read platforms, as low as 90%, has been the primary limitation of the technolo-
gies, making the detection of point mutations extremely difficult. In recent years rapid
improvements in ONT and PacBio technologies have drastically reduced the error rate
and increased the base accuracy. The latest ONT Q20+ and PacBio HiFi protocols have
transformed the sequencing design by producing long reads with base accuracies exceeding
99.9% [110]. The ONT Duplex protocol, a high-accuracy technique that involves sequencing
both strands of DNA, was recently used to assemble a human genome with a base accuracy
greater than 99.999% (Q50) and near-perfect continuity [111]. Both TGS technologies have
their advantages. PacBio HiFi technology generates more accurate sequences than ONT,
while ONT can produce ultra-long reads and is scalable with small portable-to-larger
benchtop sequencers. The primary requirement of both technologies is the integrity of
DNA/RNA molecules, a potential limitation when dealing with cancer samples. High-
molecular-weight DNA and full-length RNA molecules are not always available from
clinical tissues, and sometimes, it is not possible to obtain sufficient quantities. Surgical
specimens and biopsies for long-term storage are generally preserved as formalin-fixed
paraffin-embedded tissues, which are usually highly fragmented and damaged, limiting
their use for TGS-based experiments. Biobanking of fresh frozen tissues has the potential
to overcome this limitation.

Long-read data have distinct characteristics in comparison to short-reads (Table 1),
necessitating tailored bioinformatic tools for quality control and downstream processing.
One of the most significant challenges in bioinformatics is the development of computa-
tional tools that can effectively exploit the characteristics of long-read data. There have
been numerous existing tools for long-read data, but none of them were robust enough
to deal with the initial low accuracy rate of long reads. This situation, however, has im-
proved with the introduction of new tools, such as those developed specifically for HiFi
sequencing [112]. Furthermore, improved error correction methods [113,114] are constantly
introduced, improving the quality and reliability of long-read-sequencing data analysis.
There are also efforts to enhance the sequencing method itself through improved chem-
istry [27,28]. LongQC is a quality control framework specifically designed for long-read
data to identify quality issues and enhance data quality for downstream analysis [115].
A new catalogue of bioinformatic tools for analysing long reads has been introduced to
help researchers choose the best tool for their needs [116]. Future bioinformatics tools
are user-friendly, memory efficient, and tailored to real-time analysis, which will boost
long-read sequencing applications and make the technology more commonplace.

Although TGS data’s main strength is its long-read length, increasing it would benefit
genome assembly and sequencing of difficult genomic regions like centromeres, telomeres,
or very long complex rearrangements. When read lengths reach a certain range or cover
whole chromosomes, genome assembly will be smoother, with better accuracy and com-
pleteness, and may need less computing power. Personalised cancer genomics may then be
feasible and accessible, but having megabase-scale or longer reads will require developing
suitable high molecular weight DNA extraction protocols and size selection methods, as
well as protocols to preserve intact ultra-long DNA fragments.

Despite the diverse applications of long-read sequencing technologies, their routine
application in a clinical setting faces unique challenges. Translating long-read findings
into actionable insights for cancer diagnosis, prognosis, and treatment is an ongoing effort.
Further research is needed to develop methods for incorporating long-read data into clinical
decision-making. This will enable clinicians to tap into the potential of long-read data to
develop more personalised treatment approaches. The majority of the applications men-
tioned in this review involved research studies. Integration of long-read sequencing into
routine clinical practice is highly dependent on the stability and reliability of sequencing
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platforms. The flexibility presented by the portability of ONT’s MinION device in terms
of working space is undeniable but integrating it into a diagnostic laboratory presents
increased IT infrastructure challenges in terms of data storage, security, and protection of
confidential data.

6. Conclusions and Future Perspectives

To summarise, long sequencing technologies hold immense potential in the field
of cancer research. Despite the direct competition between the two dominant long-read
technologies, the complementary use of both sequencing platforms can yield excellent
results. PacBio HiFi sequencing is highly accurate, making it perfect for tasks where
accuracy is essential, like SNV detection and haplotype phasing. ONT generates the longest
contiguous sequence reads and allows for faster read production in real time. This enables
quick characterization of SNVs during the sequencing process. The portability of ONT
long-read sequencing makes it suitable in clinic-based or point-of-care settings. Over time,
these technologies will become more commonplace in laboratories and clinics, as their costs
continue to reduce, their accuracy improves, and their throughput increases.

The implementation of long-read technology will significantly alter the methods by
which we identify and categorise mutations in cancer. Instead of aligning reads to a
reference genome and inferring genetic variations, long reads will be used to assemble
complete haplotypes that fully resolve complex genetic variations, either with or without a
reference genome. New graph-based reference genomes representing genetic variations
across a population, including large-scale structural variations like inversions and duplica-
tions, are likely to be developed [117]. Complete cancer genomes generated by long-read
technologies will likely include functional information such as cellular epigenetics and
transcriptomics changes. We are currently in the early phases of a revolution in the field of
cancer sequencing, which is expected to have a significant and far-reaching effect.
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