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Simple Summary: Recently, a new type of cancer treatment called immune checkpoint inhibitors
(ICIs) has become an option for many cancer patients, including children. While these treatments
are effective against different types of cancer, they can lead to immune-related side effects impacting
different organs. However, knowledge about the effect of ICIs on testicular function and male fertility
is limited. There is a possibility that ICI treatment directly or indirectly affects testicular function and
sperm production. This review looks at the available evidence on how ICIs, especially those targeting
cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), programmed death protein 1 (PD-1) and
programmed death-ligand 1 (PD-L1), may disrupt sperm production. It also emphasizes the need for
further investigations and encourages discussions about associated risks and fertility-preservation
options between clinicians and patients.

Abstract: In recent years, immune checkpoint inhibitors (ICIs) have become a viable option for
many cancer patients, including specific subgroups of pediatric patients. Despite their efficiency in
treating different types of cancer, ICIs are responsible for a number of immune-related adverse events,
including inflammatory toxicities, that can affect several organs. However, our knowledge of the
impact of ICIs on the testis and male fertility is limited. It is possible that ICI treatment affects testicular
function and spermatogenesis either directly or indirectly (or both). Treatment with ICIs may cause
increased inflammation and immune cell infiltration within the seminiferous tubules of the testis,
disturbing spermatogenesis or testosterone deficiency (primary hypogonadism). Additionally, the
interference of ICIs with the hypothalamic–pituitary–gonadal axis may alter testosterone production,
affecting testicular function (secondary hypogonadism) and spermatogenesis. This review provides
an overview of the available evidence on the potential association between ICIs and the disruption of
spermatogenesis, with special focus on ICIs targeting cytotoxic T-lymphocyte-associated protein 4
(CTLA-4), programmed death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1). Moreover,
it highlights the need for further investigations and encourages the discussion of associated risks and
fertility-preservation considerations between clinicians and patients.

Keywords: immune checkpoint inhibitors; CTLA-4; PD-1; PD-L1; spermatogenesis; testis; male fertility

1. Introduction

Over the last decade, a transformative shift in the landscape of cancer treatment
has been witnessed, moving away from traditional cytotoxic therapies to more specific
and targeted treatments. Immune checkpoint inhibitors (ICIs) represent a novel class of
immunotherapeutic agents, designed to enhance the patient’s immune response against
cancer cells by targeting immune checkpoint pathways. Most clinically approved ICIs
are designed to target the specific immune checkpoint molecules cytotoxic T-lymphocyte-
associated protein 1 (CTLA-4), programmed death protein 1 (PD-1), and programmed
death-ligand 1 (PD-L1), which typically act to suppress immune responses [1]. The impact
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of the discovery of cancer therapy that inhibits negative immune regulation was highlighted
when the 2018 Nobel Prize in Physiology or Medicine was awarded to James Allison and
Tasuku Honjo for their pioneering contribution to the field [2].

While the medical community celebrates the successes of ICIs in achieving durable
responses and improved survival rates for various cancers, there is a growing concern about
their side effects. ICIs have been associated with a spectrum of inflammatory toxicities,
known as immune-related adverse effects (irAEs). These irAEs can affect various organ
systems such as the gastrointestinal tract, liver, lungs, pituitary and thyroid glands, skin,
heart, and nervous system [3]. Despite these observations, the understanding of the poten-
tial impact of ICIs on testicular function and male fertility remains limited. Importantly,
this concern not only worries adult men but also pediatric patients for whom ICI therapy is
used. Unlike conventional cancer treatments, such as chemotherapy and radiation, which
are known to directly affect the testicular cells and often prompt recommendations for
fertility preservation [4], the unique mechanisms of action of ICIs introduce a new layer of
complexity in understanding their effects on the male reproductive system.

This comprehensive review aims to summarize the existing knowledge and highlight
the areas that require further investigation regarding the potential male reproductive risks
associated with ICI therapy. Special attention will be given to the immunoregulation of the
testis and its unique immune-privileged status, along with the physiological and hormonal
changes observed during different developmental stages. The overarching goal of this
overview is to address the potential need for fertility preservation before ICI treatment and
encourage discussions on this matter between clinicians and patients, thereby enhancing
the comprehensive care provided to male individuals undergoing ICI therapy.

2. Immune Checkpoint Inhibitors
2.1. Mechanism of Action

The intricate regulation of T-cell activation and functionality in cell-mediated tumor
immunity requires a balance between stimulatory and inhibitory signals. A major step
in this process involves the presentation of tumor-associated antigens to T-cell receptors,
giving specificity to the immune response [5]. Co-regulatory signals, mediated by ligand–
receptor interactions with both agonistic and antagonistic effects, contribute to the dynamics
of T-cell activation and differentiation.

Immune checkpoints negatively regulate T-cell outcomes. CTLA-4 is a surface receptor
prominently expressed by activated T-cells, and its role is to suppress further activation.
Additionally, CTLA-4 is involved in the activation of regulatory T-cells, whose function is
to suppress immune responses and maintain immune homeostasis [6]. PD-1 is a surface
receptor expressed by various immune cells, including B cells and tumor-infiltrating lym-
phocytes, natural killer cells, and some myeloid cell populations, but it is mainly expressed
by all activated T-cells upon their entry into the periphery and initiation of the effector
phase [7]. Its role is to regulate effector T-cell function in peripheral tissues during various
physiological responses, including acute and chronic infection, cancer, and autoimmunity,
and in immune homeostasis [8]. PD-L1 is commonly expressed in many tumor cells [9]. The
binding of PD-1 to its ligand PD-L1 suppresses further activation, diminishes inflammation,
and prevents autoimmunity [10]. Notably, this interaction between PD-1 and PD-L1 is
used advantageously by tumor cells, which upregulate PD-L1 expression to avoid immune
responses [11].

ICIs act by targeting specific molecules and pathways and regulate the immune system
by activating and enhancing the body’s tumor-specific immune response. In addition, they
contribute to the formation of memory T-cells for prolonged protection against cancer
recurrence. More specifically, CTLA-4 inhibitors enhance T-cell activation and promote an
immune response against cancer cells by blocking the downregulation of immune responses,
while PD-1/PD-L1 inhibitors allow T-cells to effectively attack cancer cells by blocking
inhibitory interactions [12]. Notably, the blockade of immune checkpoints may exert
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an influence on T-regulatory cells, potentially initiating autoimmune and inflammatory
irAEs [13].

2.2. Available Therapies

The application of ICI therapy took a significant step when the FDA approved ipili-
mumab (anti-CTLA-4) in 2011. This approval set the stage for a series of others, including
pembrolizumab (anti-PD-1) and atezolizumab (anti-PD-L1), in the following years [14]. As
of 23 January 2024, the US clinical trials database [15] reports a substantial 739 ongoing
clinical trials for anti-PD-1, 361 for anti-PD-L1, and 199 for anti-CTLA-4. Beyond these
established targets, the landscape of ICI therapy is evolving, with investigations into other
novel targets such as BTLA, VISTA, TIM-3, LAG-3, and CD47, emphasizing the continued
exploration and investment in this field [16]. The initial scope of ICI therapy in specific
recurrent or advanced malignancies has evolved significantly. Their success stimulated
exploration in neoadjuvant (pre-surgery) and adjuvant (post-surgery) settings, underlining
their growing relevance in the management of early-stage diseases [17]. ICIs are already
used to treat a wide range of cancer types, as they have been effectively deployed against
multiple solid tumors, with approvals for several cancer indications and tumors with mis-
match repair mutations. Their usage is anticipated to continue growing in the future [18].
A comprehensive overview of FDA-approved ICIs for adult cancer patients, along with
their indications, is presented in Table 1 [19].

Table 1. FDA-approved immune checkpoint inhibitors and their indications for adult patients.

Drug
(Brand Name) First Approval Date Drug Target Indications

Ipilimumab (Yervoy) 25 March 2011 CTLA-4 Melanoma, renal cell carcinoma, colorectal cancer, hepatocellular
carcinoma, and non-small cell lung cancer

Pembrolizumab
(Keytruda) 4 September 2014 PD-1

Melanoma, non-small cell lung cancer, head and neck squamous cell
cancer, classical Hodgkin lymphoma, primary mediastinal large B-cell

lymphoma, urothelial carcinoma, microsatellite instability-high or
mismatch repair deficient cancer, microsatellite instability-high or

mismatch repair deficient colorectal cancer, gastric cancer, esophageal
cancer, cervical cancer, hepatocellular carcinoma, Merkel cell carcinoma,

renal cell carcinoma, endometrial carcinoma, tumor mutational
burden-high cancer, cutaneous squamous cell carcinoma, and

triple-negative breast cancer

Nivolumab (Opdivo) 22 December 2014 PD-1

Melanoma, non-small cell lung cancer, malignant pleural mesothelioma,
renal cell carcinoma, classical Hodgkin lymphoma, squamous cell

carcinoma of the head and neck, urothelial carcinoma, colorectal cancer,
hepatocellular carcinoma, esophageal cancer, gastric cancer,

gastroesophageal junction cancer, and esophageal adenocarcinoma

Atezolizumab (Tecentriq) 18 May 2016 PD-L1 Urothelial carcinoma, non-small cell lung cancer, small cell lung cancer,
hepatocellular carcinoma, and melanoma

Avelumab (Bavencio) 23 March 2017 PD-L1 Merkel cell carcinoma, urothelial carcinoma, and renal cell carcinoma

Durvalumab (Imfinzi) 1 May 2017 PD-L1 Non-small cell lung cancer, small cell lung cancer, biliary tract cancer,
and hepatocellular carcinoma

Cemiplimab (Libtayo) 28 September 2018 PD-1 Cutaneous squamous cell carcinoma, basal cell carcinoma, and
non-small cell lung cancer

Dostarlimab (Jemperli) 22 April 2021 PD-1 Endometrial cancer

Nivolumab and
Relatlimab (Opdualag) 18 March 2022 PD-1, LAG-3 Melanoma

Tremelimumab (Imjudo) 21 October 2022 CTLA-4 Hepatocellular carcinoma

Retifanlimab (Zynyz) 22 March 2023 PD-1 Merkel cell carcinoma

Toripalimab (Loqtorzi) 27 October 2023 PD-1 Nasopharyngeal carcinoma

PD-1: programmed death protein 1, PD-L1: programmed death-ligand 1, LAG-3: lymphocyte activation gene-3,
CTLA-4: cytotoxic T-lymphocyte-associated protein 4.
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Moreover, nowadays, the use of ICIs extends beyond the adult population, with
emerging FDA approvals for pediatric patients. (Table 2) [19,20]. At the moment, the
majority of ICIs in clinical trials involving pediatric patients include children 12 years of
age and older, with the only exception being trials for atezolizumab (anti-PD-L1), which
is intended for children from 2 years of age and older. However, the increasing clinical
use of ICIs also brings new challenges, as more patients (including children) may achieve
durable remission and will have to deal with the long-term side effects associated with
their treatment.

Table 2. FDA-approved immune checkpoint inhibitors and their indications for pediatric patients.

Drug
(Brand Name)

First
Approval Date Drug Target Indications Age Range

Avelumab
(Bavencio) 23 March 2017 PD-L1 Merkel cell carcinoma 12 years and older

Pembrolizumab
(Keytruda) 23 May 2017 PD-1

Melanoma, classical Hodgkin
lymphoma, primary mediastinal B-cell

lymphoma, microsatellite
instability-high or mismatch repair

deficient cancer, Merkel cell
carcinoma, and tumor mutational

burden-high cancer

12 years and older

Ipilimumab
(Yervoy) 10 July 2018 CTLA-4 Melanoma and colorectal cancer 12 years and older

Nivolumab (Opdivo) 10 July 2018 PD-1 Melanoma and colorectal cancer 12 years and older

Nivolumab and
Relatlimab (Opdualag) 18 March 2022 PD-1, LAG-3 Melanoma 12 years and older

Atezolizumab
(Tecentriq) 9 December 2022 PD-L1 Alveolar soft part sarcoma 2 years and older

PD-1: programmed death protein 1, PD-L1: programmed death-ligand 1, LAG-3: lymphocyte activation gene-3,
CTLA-4: cytotoxic T-lymphocyte-associated protein 4.

3. Immunoregulation of the Testis

The mammalian testis possesses a unique immunoregulatory environment that is
essential for testicular function [21]. As an immune-privileged site, the testis prevents an
immune response against the immunogenic germ cells, while the local innate immunity is
essential in preventing microbial infections within the testicular environment. The tight
regulation of this environment is imperative to maintain immune homeostasis for normal
spermatogenesis [22]. The blood–testis barrier (BTB), together with the distinctive immune
cell repertoire and the combined release of immunostimulative and immunosuppressive
factors by Leydig cells, Sertoli cells, and peritubular cells, collectively contributes to the
maintenance of a tolerogenic environment within the testis [23]. Disturbance in testicular
immune homeostasis may result in autoimmune infertility and increase susceptibility to
testicular infections, leading to orchitis [23].

3.1. The Blood–Testis Barrier

The BTB is established through various junctions, such as the tight junction, basal
ectoplasmic specialization, gap junction, and desmosome-like junction, between adjacent
Sertoli cells and divides the seminiferous epithelium into basal and adluminal compart-
ments [24]. Thus, with the adluminal compartment being secluded from vascular and
lymphatic vessels, the selective passage of essential nutritional molecules and growth
factors to post-meiotic cells is facilitated by the BTB. Most importantly, this isolation estab-
lishes an environment where post-meiotic cells are shielded against immunological attacks
and the development of anti-sperm antibodies. This protective mechanism effectively
supports spermatogenesis and prevents infertility [25].
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3.2. Immune Cell Repertoire in the Testis

Immune cells have a critical role in maintaining testicular homeostasis by mitigating
the inflammatory response and supporting normal physiological functions. Several im-
mune cell types are present in the testis including macrophages, dendritic cells, mast cells
and T-cells contributing towards maintaining the tolerogenic immune state [26].

Macrophages are the most abundant and heterogeneous immune-cell population
found in the testis and exist in close physical and functional association with Leydig
cells [27]. Testicular macrophages demonstrate limited ability to produce proinflammatory
cytokines, in contrast to macrophages found in other tissues. They produce interleukin
(IL)-10 and exhibit an immunosuppressive phenotype [28,29]. Their role includes the
suppression of T-cell proliferation and activation, facilitating the differentiation of naive
T-cells into immunosuppressive regulatory T-cells. Moreover, they serve testis-specific
functions essential for maintaining normal homeostasis, including guiding testis embryonic
development, supporting steroidogenesis, and promoting spermatogenesis [30].

Dendritic cells are also found in the interstitium. These cells are “professional” antigen-
presenting cells and a cellular component of the adaptive immune system. Under physi-
ological conditions, immature dendritic cells support the immune privilege status of the
testis and suppress the activation of T-cells, while under inflammatory conditions, mature
dendritic cells proliferate and stimulate effector T-cell expansion [31]. In infertile patients
with chronic inflammation, both macrophages and dendritic cell numbers are increased,
and their functions are compromised [32].

Mast cells play diverse roles in innate immunity, tissue homeostasis, and remodeling,
as well as adaptive immunity. Direct interactions with autoreactive T-cells can activate
mast cells, leading to cytokine production, including tumor necrosis factor α (TNF-α), IL6,
and IL1β, following mast cell activation [33]. In conditions characterized by inflammation,
such as in patients with defective spermatogenesis, varicocele, infertility, or autoimmune
orchitis, there is an increase in the number of mast cells [34,35].

T-lymphocytes, following exposure to environmental signals, undergo commitment
to either regulatory or effector lineages, each exhibiting distinct functions that contribute
to either the establishment of immunologic tolerance or inflammation [36]. Several T-cell
subtypes have been identified within mammalian testes. Although they represent a small
portion of the testicular immune cells, approximately 10–20% of the total immune cells in
the adult rat testes under normal physiological conditions [37], these cells potentially play
a critical role in preserving immune tolerance and responding to pathogenic challenges
during testicular infection and inflammation. Collectively, the testicular T-cell popula-
tion includes regulatory T (Treg)-cells, helper T (Th)-cells, cytotoxic T (Tc)-cells, natural
killer (NK) T-cells, and γδ T-cells [38]. Regulatory T-cells, primarily found in the drain-
ing lymph nodes of the testes, play an important role in maintaining testicular immune
privilege [39], and their presence within the normal testis is well-established [40]. Under
normal physiological conditions, Treg cells secrete inhibitory cytokines, including IL-10,
IL-35, and transforming growth factor β (TGF-β), and through several immunosuppressive
mechanisms, they control effector T-cells and prevent excessive immune response and
autoimmunity [41]. Under pathological conditions, the expanding effector T-cells may
overpower the suppressive mechanisms of Treg cells, provoking an autoimmune response
and leading to impaired spermatogenesis, autoimmune orchitis, and/or azoospermia [42].
Notably, Treg cells are ineffective in preventing an attack on germ cells, possibly due to the
cytokines within the inflammatory milieu compromising their efficacy at sites of inflam-
mation [43]. Helper T-cells are classified into subgroups based on their secretion pattern,
serving a distinct immunological role. For instance, Th1 cells secrete cytokine interferon-γ,
IL-2, and TNF-α, contributing to antiviral and antibacterial immunity. Th2 cells secrete IL-4,
IL-5, and IL-13 and are involved in combating extracellular pathogens, and Th17 cells play
a role in antifungal defense and bacterial infection through the secretion of inflammation
cytokines IL-7A, IL-17F, and IL-22. Notably, the Th cell dynamic in the testes is crucial for
maintaining homeostasis, and imbalances may lead to infection or chronic orchitis [44].
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Cytotoxic T-cells are the most prominent T-cells in the testicular interstitium [38]. Their
function involves the secretion of cytotoxic molecules, antiviral cytokines, and TNF-β to
eliminate cells infected by pathogens, damaged cells, and malignant tumor cells. Moreover,
their functional association with the quantity of testicular macrophages suggests a role
in graft survival [45]. Natural killer (NK) T-cells possess immunoregulatory properties.
They enhance immune responses to tumors and infectious diseases while suppressing
cell-mediated immune reactions linked to autoimmune diseases and allograft rejection. γδ
T-cells exhibit features of both innate and adaptive immunity, bridging these responses and
contributing to antimicrobial and antitumor immunosurveillance, and they may amplify
adaptive immune responses [38].

Given the intimate role of immune cells and cytokines in immune tolerance, the in-
flammation and dysregulation of the immune system might impact the immune-privileged
status of the testis and spermatogenesis. Therefore, we hypothesize that an alteration of
circulating immune cells and a systemic elevation of cytokine levels by immunotherapy
may directly impact male fertility.

3.3. Testicular Cells

Different types of testicular cells actively secrete immunomodulatory molecules essen-
tial for establishing and maintaining the immune-privileged status of the testis. Sertoli cells
release anti-inflammatory cytokines, activin A, TGF-β, and galectin-1, which inhibit the
expression of proinflammatory cytokines in debritic cells and macrophages, contributing to
immune-response suppression [46]. Tissue transplantation studies have further validated
their immune protective role, leading to prolonged graft survival when co-transplanted
with Sertoli cells [47]. Furthermore, since damaged germ cells can induce inflammatory re-
sponses in the testis [48], the timely removal of apoptotic germ cells and residual bodies by
Sertoli cells is significant in preventing autoimmune responses [22]. Leydig cells also modu-
late immune responses. These cells secrete testosterone, known for its immunosuppressive
properties by acting on Sertoli cells, and macrophage migration inhibitory factor, which
inhibits the cytotoxic activities of T-cells [49]. Furthermore, peritubular cells contribute
to testicular immune tolerance by expressing activin A and toll-like receptor (TLR) [50].
Also, male germ cells have been identified as sources of various cytokines, including IL-1a
and TNF-α, suggesting a potential role in regulating the immune response [51]. Addition-
ally, spermatogonia release soluble programmed death-ligand 1 (sPD-L1) to induce T-cell
apoptosis [21].

4. Endocrinological and Testicular Changes during Development

From birth, through puberty, and to adulthood, the secretion of hormones in males
changes drastically and, in response to the changing endocrine conditions, the testis un-
dergoes distinctive cellular modifications [52]. Immediately after birth, the levels of go-
nadotrophins and testosterone increase (mini-puberty) before entering a “quiescent” period,
marked by a decline in hormone levels. Specifically, follicle-stimulating hormone (FSH)
and luteinizing hormone (LH) peak at 4–10 weeks post-natal, before reaching their lowest
levels at around 6 months. Similarly, testosterone production from Leydig cells reaches its
peak at approximately the third month and declines to prepubertal levels at 6–9 months.
The absence of androgen receptor (AR) expression in immature Sertoli cells during this
period delays further spermatogenesis, while anti-Müllerian hormone (AMH) production
remains high [53]. In the testis, shortly after birth, gonocytes undergo proliferation until 6
months of age and differentiate into Adark spermatogonia, which are considered the “true”
spermatogonial stem cells (SSCs). During prepubertal life until the onset of spermatogene-
sis at puberty, spermatogonia constitute the only germ cell population. In the first year of
life, the prepubertal testis harbors immature proliferative Sertoli cells, with fetal Leydig
cells persisting until 6 months post-natally, subsequently being replaced by adult Leydig
cell precursors (immature Leydig cells) [53,54].
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Around puberty, pulsatile gonadotrophin-releasing hormone (GnRH) secretion ini-
tiates a progressive surge in gonadotrophin release. FSH promotes the proliferation of
immature Sertoli cells, and LH induces the maturation of Leydig cells into adult Leydig
cells, resuming testosterone production [53,55]. Elevated testosterone levels stimulate the
maturation of Sertoli cells, which now express AR and are unable to undergo further mitotic
division, and inhibit AMH expression [55]. During this period, the expansion of the lumen
and the development of a layer of mature peritubular myoid cells separating seminiferous
tubules from the interstitial compartment take place. Notably, in the developing human
testis, the junctional specializations between Sertoli cells, building the BTB, are absent until
approximately 8 years of age. However, these junctional structures begin to assemble in the
early phase of puberty, typically occurring between 11 and 13 years of age [56]. Ultimately,
germ cells can enter meiosis, completing their differentiation into haploid spermatozoa,
with a directional progression from the basement membrane towards the lumen [52].

5. PD-1/PD-L1 and CTLA-4 Expression in the Testis

The exact function of the PD-1/PD-L1 pathway in testicular processes is not yet fully
established. PD-1/PD-L1 serves as an additional T-cell tolerance system, with PD-L1
inhibiting T-cell activation through its interaction with PD-1 [57]. Notably, PD-L1 plays a
role in the survival of islet allografts, suggesting that the PD-1/PD-L1 system serves as a
mechanism underlying testicular immune privilege [58].

A few studies have attempted to evaluate the expression and localization of PD-1
and PD-L1 in the testis, with controversial results. Initially, PD-L1 was found to have an
inducible expression on Sertoli cells but was consistently expressed on peritubular cells
in the testes of mice [59]. However, an allograft study revealed that spermatocytes and
spermatids were the primary cell types expressing PD-L1 in the seminiferous tubules [58].
A more recent study reported the detection of both PD-1 and PD-L1 in the testicular tissue
of adult mice, as well as their age-related expression and localization [60]. PD-1 was mainly
localized to advanced germ cells (elongating spermatids and spermatozoa), suggesting a
potential role in spermiogenesis, with occasional PD-1 staining observed in the interstitial
area. Since PD-1 was initially found in T-cells and is associated with programmed cell
death, the researchers postulated the hypothesis that the expression of PD-1 in germ cells
might be implicated in programmed cell death. Additionally, PD-L1 was expressed in
the nucleus of Sertoli cells regardless of the testis developmental stage, allowing for the
secretion of sPD-L1 into the testicular interstitial space, suggesting a role in the regulation
of testicular immune privilege. Studies on normal human testis reported little or no PD-L1
expression [61,62] and no PD-1 expression [62,63]. The different results obtained from the
aforementioned studies may be due to the utilization of different antibodies, distinct mouse
strains with different genetic backgrounds, or variations in the detection methodology [60].
Overall, the discrepancies in the expression patterns complicate the precise identification of
the function of the PD-1/PD-L1 pathway in testicular processes.

A new role for PD-L1 in the testis was revealed when researchers generated PD-L1
transgenic mice to investigate the physiological function of PD-L1 and its mechanism of
action in various diseases [64]. Overexpression of PD-L1 in the testis caused abnormal
testicular shrinkage and infertility in mice that were associated with abnormalities in sper-
matogenesis, including malformation and sloughing during spermatid development and a
disorganized and collapsed seminiferous epithelium. This spermatogenic failure was only
observed when PD-L1 was simultaneously expressed on Sertoli cells and spermatogonia,
not when it was expressed only on spermatogonia. Based on these results, the researchers
hypothesized that PD-L1 might engage in a self-interacting binding with PD-L1 on Sertoli
cells during the early stages of spermatogenesis, potentially leading to sperm cell slough-
ing, suggesting a regulatory role of PD-L1 in microtubule organization and cell adhesion
function. Recently, Shinohara and colleagues demonstrated that the enhancement of PD-L1
expression in SSCs enabled allogeneic offspring production in mice [65]. PD-L1 expression
was induced by activating the MAPK14-BCL6B pathway, which promotes self-renewal
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through the generation of reactive oxygen species. The overexpression of PD-L1 on SSCs
altered their immunological properties, enabling them to overcome the allogeneic barrier
and make allogeneic recipients into “surrogate fathers”.

As of our current understanding, no studies have been conducted to investigate the
expression of CTLA-4 in the testis and its potential role in testicular functions.

6. Direct and Indirect Effects on Testicular Function

The risk of gonadotoxicity associated with ICIs and the underlying mechanisms are
currently not well-defined. It is hypothesized that there might be either a direct effect
of ICIs on the testis and testosterone levels (primary hypogonadism) [66] or increased
inflammation, or an indirect effect through endocrine dysfunction due to IrAEs, such as
hypothyroidism or hypophysitis, resulting in decreased testosterone levels (secondary
hypogonadism) [67] (Figure 1).
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PD-1, anti-PD-L1, and anti-CTLA-4 could directly impact male fertility by disrupting testosterone
production and spermatogenesis. Additionally, their indirect effects could alter the hypothalamic–
pituitary–gonadal axis, affecting the hormonal regulation of the male reproductive system.

In the absence of preclinical studies, most data derive from small retrospective stud-
ies. The first retrospective study to investigate the impact of ICI therapy on testicular
function and spermatogenesis included seven patients (age range: 23–78 years) treated
with anti-CTLA-4 (ipilimumab) and anti-PD-1 (nivolumab) for over a month, at Johns
Hopkins University Hospital, who ultimately succumbed to metastatic melanoma [68]. The
post-mortem examination of testicular biopsies revealed impaired spermatogenesis in six
patients, including focal spermatogenesis (n = 1), hypospermatogenesis (n = 2), and Sertoli
cell-only syndrome (n = 3). No signs of increased peritubular hyalinization or fibrosis,
nor Leydig cell abnormalities, were observed in any of the patients. This finding may
indicate that ICI therapy could affect male fertility, an irAE that has previously been over-
looked. However, due to the limited sample size, a direct correlation between ICI treatment
and impaired spermatogenesis cannot be firmly established. The same group also re-
ported a case of a normozoospermic 30-year-old patient treated for BRAF-negative stage IV
metastatic melanoma, who developed azoospermia (Sertoli cell-only syndrome) two years



Cancers 2024, 16, 1176 9 of 16

after combined treatment with anti-PD1 and anti-CTLA4 (ipilimumab/nivolumab) [69].
The microscopic testicular sperm extraction performed five years after the patient’s ICI
therapy also failed to retrieve any viable sperm. In a recent small cross-sectional study,
including 25 men (age range: 26–59 years) undergoing ICI therapy for melanoma or cuta-
neous malignant tumors, the potential impact of these treatments on fertility was evaluated
by semen and hormonal analysis [70]. Approximately 20 months post-treatment, all pa-
tients reported normal sexual function and most patients (18/22, 82%) had a normal semen
analysis. However, three patients were diagnosed with azoospermia and one with oligoas-
thenoteratozoospermia. In three of the infertile patients, significant confounding factors
(history of testis radiation, alcohol abuse, chemotherapy, bacterial orchitis) were identified,
making the influence of ICI therapy on fertility unlikely in at least two cases. Interest-
ingly, two patients developed autoimmune hypophysitis, and another patient developed
autoimmune thyroiditis. The researchers concluded that one case of azoospermia, with the
patient showing an asymptomatic, inflammatory infiltrate with neutrophil granulocytes,
macrophages, and T-lymphocytes in the ejaculate, was likely ICI-related, and another case
showed a significant worsening of seminal parameters. Although the majority of patients
were not affected, a potential risk for an inflammatory loss of spermatogenesis seems
possible.

There is limited clinical evidence suggesting that ICI therapy-induced primary hy-
pogonadism from orchitis and secondary hypogonadism due to hypophysitis may pose a
potential risk for male infertility [66,71]. Malfunctions of the BTB with damage to the germ
epithelium, inflammation and impaired spermatogenesis might be induced by ICIs leading
to autoimmune orchitis. Two reported cases involve patients with metastatic melanoma
who encountered acute painful swelling of the testes. In one instance, a 54-year-old man
experienced bilateral orchitis while undergoing ipilimumab-nivolumab (anti-PD-1/anti-
CTLA-4) treatment. This was accompanied by abnormally low levels of testosterone and
significantly high levels of LH, which is indicative of primary hypogonadism [72]. Hor-
monal levels spontaneously recovered, but since the patient did not consent to a semen
analysis, the impact of this transient orchitis on spermatogenesis is unknown. The second
case involved a patient who developed epididymo-orchitis while receiving pembrolizumab
(anti-PD-1) treatment [73]. In this case, high-dose steroids were administered and there
was a subsequent regression of symptoms, although hormone levels were not measured.

Additionally, endocrine autoimmune side effects may adversely impact fertility. Fol-
lowing an increasing trend since 2017, endocrine-related disorders are frequent irAEs of
ICI therapy, involving disruptions in pituitary, thyroid, and adrenal functions, as well as
diabetes [74–76]. Endocrine side effects of any grade are seen in up to 10% of patients
receiving ICI monotherapy [77] or in up to 30% in the case of combined ICI therapy [78].
A retrospective single-center analysis of melanoma patients demonstrated that 11 out
of 134 male patients (8%) developed hypophysitis following anti-CTLA-4 (ipilimumab)
treatment within four months after the first dose. Even in the absence of hypophysitis,
low testosterone levels were reported [74]. Interestingly, in cases of combined CTLA-4
and PD-1 blockade, the associated risk of hypophysitis, as well as thyroid dysfunction,
was higher. Although patients received hormone replacement therapy, endogenous hor-
mone secretion rarely recovered. Several other studies also reported similar incidences
of hypophysitis after ICI therapy, with higher prevalence in males, and gonadotrophin
deficiency [79,80]. In a recent analysis of VigiBase, the World Health Organization’s ad-
verse drug reaction database, Bai and colleagues reported a higher and disproportionate
risk of hypogonadism in men compared to women following treatment with ICIs [76].
Interestingly, the spectrum of endocrine-related disorders induced by various ICI therapies
demonstrated notable distinctions. Anti-CTLA-4 monotherapy exhibited a higher asso-
ciation with hypophysitis (leading to hypopituitarism) and adrenal insufficiency, while
anti-PD-1/PD-L1 monotherapy was found to be predominantly linked to thyroid dysfunc-
tion and type 1 diabetes mellitus. Additionally, combination therapy (anti-CTLA-4 plus
anti-PD-1/PD-L1) covered almost all endocrine-related disorders and exhibited a stronger
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association compared to monotherapy, confirming previous studies on the increased risk for
ICI-related endocrinopathies following combined treatment [76,78,81]. Of note, a previous
study based on the French Pharmacovigilance database reported hypophysitis to occur
with any type of currently available ICI, at any time of treatment, and regardless of the
type of cancer [82]. Interestingly, hormonal function did not recover in any of the patients
with gonadotrophic hormonal supplementation being suggested as part of their long-term
onco-endocrinological care.

Treatment with anti-PD-1 and/or anti-CTLA-4 was also associated with low testos-
terone levels in 34 of 49 (69%) men with melanoma [83]. Furthermore, four patients
developed hypophysitis and subsequent hypopituitarism while receiving ipilimumab.
Individuals with stage 3 or 4 melanoma undergoing immunotherapy seemed to face an
elevated risk of developing testosterone deficiency during their treatment.

In the preclinical setting, the only available data on the potential impact of ICIs on
male fertility derive from studies performed by pharmaceutical companies. According
to FDA reports, most of the clinically approved drugs do not have an effect on the male
reproductive organs or fertility parameters in monkeys (Table 3). Only one drug (anti—PD-
1/anti-LAG3) has been shown to cause inflammation (epididymis, seminal vesicles, and
testes), while for the two anti-CTLA-4 drugs, such data are lacking. Unfortunately, access
to more detailed data from these studies is not provided.

Table 3. FDA evidence.

Drug (Brand Name) Drug Target Reproductive Findings

Ipilimumab
(Yervoy) CTLA-4 No fertility studies performed

Pembrolizumab
(Keytruda) PD-1

No notable effects in male reproductive organs in 1- and 6-month
repeat-dose toxicology studies on monkeys; however, most animals in

these studies were not sexually mature

Nivolumab
(Opdivo) PD-1

No significant effects on male reproductive organs in 1- and 3-month
toxicology studies on monkeys; however, most animals in these studies

were not sexually mature

Atezolizumab
(Tecentriq) PD-L1 No notable effects in male reproductive organs in a 26-week repeat-dose

toxicity study in monkeys

Avelumab
(Bavencio) PD-L1 No notable effects in male reproductive organs in a 3-month repeat-dose

toxicity study in monkeys

Durvalumab
(Imfinzi) PD-L1 No notable effects in male reproductive organs in 3-month repeat-dose

toxicology studies on sexually mature monkeys

Cemiplimab
(Libtayo) PD-1

No effects on fertility parameters (semen analysis or testicular
measurements) or in male reproductive organs in a 3-month repeat-dose

toxicology study in sexually mature monkeys

Dostarlimab
(Jemperli) PD-1

No significant effects on male reproductive organs in 1- and 3-month
toxicology studies on monkeys; however, most animals in these studies

were not sexually mature

Nivolumab and
Relatlimab (Opdualag) PD-1, LAG-3 Inflammation within the reproductive tract (epididymis, seminal vesicles,

and testes) was observed in a 1-month study in monkeys

Tremelimumab
(Imjudo) CTLA-4 No fertility studies performed

Retifanlimab
(Zynyz) PD-1

No significant effects on male reproductive organs in 1- and 3-month
toxicology studies on monkeys; however, most animals in these studies

were not sexually mature

Toripalimab
(Loqtorzi) PD-1 No notable effects in male reproductive organs in 4- and 26-week

repeat-dose toxicology studies in sexually mature monkeys

PD-1: programmed death protein 1, PD-L1: programmed death-ligand 1, LAG-3: lymphocyte activation gene-3,
CTLA-4: cytotoxic T-lymphocyte-associated protein 4.
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Given the recent approval of ICIs for pediatric patients, there is currently a lack of
clinical evidence regarding their potential impact on the prepubertal testis. Additionally,
there are no preclinical studies conducted. Moreover, only two (anti-PD-1: pembrolizumab
and nivolumab) out of the six FDA-approved drugs for pediatric use have been tested
on non-sexually matured monkeys with results reporting “no significant effects on the
reproductive organs” (Table 3).

7. Discussion: Fertility Preservation before ICI Treatment and Future Perspectives

Infertility is a major side effect of cancer treatment [84]. With the development of
more efficient drugs, patients have increased chances of survival. As a result, there is a
growing population of adult, but also pediatric, cancer survivors who may face infertility.
The impact of conventional cancer treatments, including radio- and chemotherapy, on
the testis is well established. Several doses of irradiation and fractionation, as well as
some chemotherapeutic drugs, especially alkylating and platinum-based agents, may cause
infertility [85,86]. These treatments may affect both the adult and the prepubertal testis.
Therefore, cryopreserving sperm before initiating such therapy can provide adult men
with the opportunity to have biological children post-treatment. For prepubertal and early
pubertal boys who cannot yet produce sperm, experimental testicular tissue banking before
treatment is the sole option to safeguard their fertility [87,88]. While there are several
indications for testicular tissue banking, ICI treatment and immunotherapy in general are
not included due to the lack of evidence [86].

Although in the last decade a substantial number of clinical trials using ICIs have been
conducted, the absence of data on fertility, and male fertility in particular, is staggering.
None of the trials leading to the FDA approval of ICIs for various indications have included
information on testicular function, sex hormone levels, or sexual health-related quality of
life. At the same time, the use of ICIs continues to expand to various cancer types and
younger ages of patients, which will result in more men and boys being exposed in the
near future.

Despite the limited data currently available on the impact of ICIs on spermatogenesis
and testicular function, the guidelines from the European Society for Medical Oncology and
the European Society of Human Reproduction and Embryology emphasize the importance
of fertility counseling for all patients [66]. A step further, the American Society of Clinical
Oncology recommends sperm cryopreservation in males undergoing such treatments [89].
These recommendations reflect the cautious approach taken in light of the potential impact
of ICIs on male fertility. Moreover, they highlight the need for comprehensive discussions
regarding reproductive health in the context of oncology treatment, together with a patient-
centered approach that considers individual circumstances and concerns.

Currently, there are no (pre)clinical data available on the potential impact of ICIs on
the prepubertal testis. In contrast to previous knowledge [90], the prepubertal testis is
potentially more susceptible to conventional oncological treatments compared to the adult
testis due to the continuous turnover of early germ cells [91,92]. As reviewed earlier, limited
data suggest the expression of PD-1 and PD-L1 on somatic and germ cells in the mouse
testis. However, their function and the pathways they are involved in, both in mouse and
human testes, are not known. Also, the expression of CTLA-4 has not yet been studied. In
combination with the absence of the completely formed BTB before early puberty, this may
render testicular cells vulnerable to treatments with anti-PD-1, anti-PD-L1, and anti-CTLA-
4, resulting in a potential disruption of spermatogenesis. Additionally, from early puberty
onwards, the activation of the hypothalamic–pituitary–gonadal axis and the initiation of
spermatogenesis in response to gonadotrophin stimulation take place. Therefore, treatment
with ICIs may affect sex hormonal regulation and testosterone production similarly to
adult patients. Consequently, although there are cases reported where sperm collection
and cryopreservation have been successfully performed for boys as young as 12 years
old [93,94], it is possible that immature testicular tissue banking will be the only option for
fertility preservation. In the case of pediatric patients, the identification of reproductive
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toxicity associated with new treatments may extend over a period of up to two decades or
even longer, given their young age. Therefore, it becomes imperative to conduct preclinical
studies employing animal models and/or human immature testicular biopsies to gain
insights into the potential reproductive effects of these treatments. Such investigations
are crucial for understanding the long-term impact on reproductive health in pediatric
populations and the necessity for fertility preservation before the initiation of the treatment.

8. Conclusions

In summary, while ICIs have revolutionized cancer treatment, their potential impact
on male fertility presents a growing concern. Although some mechanisms are not fully
understood, it is clear that ICIs can cause reproductive dysfunction. The observed adverse
effects, encompassing impaired spermatogenesis and endocrine-related disorders, highlight
the importance of considering fertility-preservation strategies. Further research efforts,
however, are essential to fully understand the mechanisms and potential off-target and
long-term effects of ICIs on male reproductive health. Nevertheless, clinicians should be
vigilant, and discussions about the potential reproductive risks and fertility preservation
with the adult patients, or their primary caregivers in the case of pediatric patients, should
be integrated into the comprehensive care.
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