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Simple Summary: Cancer-related fatigue is a prevalent symptom, with a significant impact on the
daily lives of those affected. While physical exercise has demonstrated effectiveness in reducing the
intensity and duration of fatigue, the literature still lacks sufficient evidence on the physiological
mechanisms explaining this impact. This conceptual review aimed to provide an overview of the
evidence regarding the effect of acute exercise on peripheral and neuronal inflammation, immune
function, and the neuroendocrine system in the context of cancer. We aim to integrate these pathways
into a conceptual model that can serve as a starting point for further research into the physiological
mechanisms linking exercise and cancer-related fatigue.

Abstract: Cancer-related fatigue (CRF) is a prevalent and persistent issue affecting cancer patients,
with a broad impact on their quality of life even years after treatment completion. The precise
mechanisms underlying CRF remain elusive, yet its multifaceted nature involves emotional, physical,
and cognitive dimensions. The absence of effective medical treatments has prompted researchers to
explore integrative models for potential insights. Notably, physical exercise emerges as a promising
strategy for managing CRF and related symptoms, as studies showed a reduction in CRF ranging
from 19% to 40%. Current recommendations highlight aerobic training at moderate intensity as
beneficial, although questions about a dose–response relationship and the importance of exercise
intensity persist. Despite the positive impact of exercise on CRF, the underlying mechanisms remain
elusive. This review aims to provide a theoretical model explaining how aerobic exercise may alleviate
CRF. Focusing on acute exercise effects, this review delves into the potential influence on peripheral
and neural inflammation, immune function dysregulation, and neuroendocrine system disruptions.
The objective is to enhance our understanding of the intricate relationship between exercise and CRF,
ultimately paving the way for tailored interventions and potential pharmacological treatments for
individuals unable to engage in physical exercise.

Keywords: immune system; hypothalamic–pituitary–adrenal axis; inflammation; neuroinflammation;
aerobic exercise; acute exercise

1. Introduction

Cancer-related fatigue (CRF) is a significant burden for patients [1,2], affecting 14%
to 99% of them, depending on various factors such as cancer stage, treatment type, and
assessment methods [3,4]. While recognized as a multidimensional syndrome encompass-
ing emotional, physical, and cognitive manifestations [5], CRF is defined by the National
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Comprehensive Cancer Network as “an unusual, persistent, subjective sense of tiredness
related to cancer or cancer treatment that interferes with usual functioning” [6]. CRF can
persist more than 10 years after the end of cancer treatments [7,8] and has a deleterious
impact on health-related quality of life [9]. Usually, this fatigue sets in within a few days of
treatment, peaking 1 to 3 days post-chemotherapy, and then gradually subsides, returning
to values near those before treatment around 10 days post-chemotherapy (as shown in
Figure 1). There is currently no effective medical treatment for CRF, mainly because its
underlying mechanisms remain unclear. In the past decade, several groups have attempted
to fill this gap by suggesting integrative models that consider potential mechanisms in-
volved in CRF [10–14]. Despite the lack of established medical treatments, these models
and the systemic impact of physical exercise suggest exercise as a promising and effective
strategy for managing CRF [15] and other treatment-related symptoms [16]. In fact, while
we observed a reduction in CRF for up to 19% in oncogeriatric patients with exercise
training [17], others have reported a greater impact in adjuvant breast cancer with a 40%
reduction [16]. Currently, it is suggested that aerobic training at moderate intensity (65%
heart rate max [HRmax] or 45% VO2 max) reduced CRF, while it remains unclear if there is
a dose–response relationship and if exercise intensity matters [18–20]. Nevertheless, there is
a paucity of data regarding the underlying mechanisms by which exercise training reduces
CRF. Unveiling the mechanisms by which exercise reduces CRF is crucial for developing
personalized interventions and potential pharmacological alternatives for individuals un-
able to exercise. Given that chronic exercise is the outcome of accumulating acute exercise
effects [21], we can infer that the decrease observed after an exercise intervention may be
explained by the repetitive impact of acute exercise effects on CRF (Figure 1).
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Figure 1. Kinetics of cancer-related fatigue depending on the cycle of chemotherapy treatment and
exercise. Figure 1 illustrates the kinetics of CRF in relation to chemotherapy treatment cycles and
their cumulative effect. The orange curve depicts a characteristic pattern of CRF intensity following
each treatment cycle. A peak in CRF is observed between 3 and 5 days post-treatment, followed
by a recovery period in the subsequent days. Notably, the intensity of CRF progressively increases
with the accumulation of treatments. The blue curve depicts the fatigue kinetics when physical
exercise is incorporated during treatment cycles, highlighting the potential for chronic effects. Here, a
marked reduction in CRF intensity is observed compared to the no-exercise scenario. Additionally,
the cumulative anti-cancer treatment effect appears less pronounced with exercise intervention. This
observation suggests that the acute effect of exercise, practiced within a treatment cycle, might
contribute to a gradual attenuation of CRF over time, potentially reflecting the cumulative impact of
acute exercise. Image created with Biorender.com (accessed on 6 December 2023).

While there is no accepted mechanistic model explaining the reduction in CRF induced
by exercise, it would be possible to provide such a theoretical model by using available
evidence from exercise studies performed with cancer patients, or other chronic diseases
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like chronic fatigue syndrome [22], as well as healthy patients. In fact, among the sug-
gested mechanisms involved in CRF etiology, some of them may be acutely influenced by
aerobic exercise, such as peripheral pro-inflammatory state [23], immune function dysreg-
ulation [14,24], as well as neuroendocrine dysregulations [25,26]. Hence, the objective of
this conceptual review is to provide a theoretical model explaining how aerobic exercise
may reduce CRF. Therefore, this review will mostly focus on the acute effect of exercise on
peripheral and neural inflammation, as well as dysregulation of the immune function and
neuroendocrine system. Nevertheless, a brief review of the current literature regarding po-
tential mechanisms explaining CRF precedes the content section to facilitate understanding
(for a more detailed review, please see [10,11,27]).

2. The Effects of Peripheral and Neural Inflammation on Cancer-Related Fatigue
2.1. Effect of Chemotherapeutic Treatments

Chemotherapy treatments, primarily used for cancer, trigger an acute response from
both the innate and adaptive anti-tumor immune systems [28]. However, prolonged treat-
ment and the accumulation of chemotherapeutic agents can lead to changes in the immune
system within the tumor environment, including tumor cell death, and damage to healthy
tissues due to chemicals. In response to this acute disturbance in the body’s homeostatic,
the immune system initiates a protective response by synthesizing cytokines. The objective
is to reduce tissue damage by increasing the production of pro-inflammatory cytokines
and chemokines, which help stimulate and release lymphocytes and monocytes in the
affected tissue. This acute inflammatory response leads to an increase in both pro- and anti-
inflammatory cytokines. However, with repeated chemotherapy treatments, this response
becomes detrimental, leading to a maladaptive chronic inflammatory state. Studies have
shown an increase in various inflammatory markers in the peripheral circulation during
cancer [29], including IL-1, IL-6, IL-1β, and TNF-α in different types of cancer [30–32].
Notably, this rise of inflammatory cytokines coincides with a peak in CRF levels, as shown
by Raudonis et al. [33].

Progressively, the repeated elevation of pro-inflammatory cytokines after each treat-
ment cycle triggers a rise in circulating anti-inflammatory cytokines [34,35], ultimately
contributing to the maladaptive chronic inflammation mentioned above. This periph-
eral inflammation disrupts the blood–brain barrier (BBB) and activates the microglia, the
resident macrophage population responsible for immune defense in the central nervous
system (CNS) [36]. Repeated microglial activation initiates a harmful cycle, leading to the
production of more pro-inflammatory cytokines and the activation of neurotoxic reactive
astrocytes—both contributing to neuroinflammation [37]. Additionally, the compromised
BBB allows for increased permeability [37]. It was previously shown that chemotherapeutic
substances can reach and cross the BBB due to a negative impact of some pro-inflammatory
cytokines (IL-1α and IL-1β) on tight junctions [38,39], and both IFN-γ and TNF-α can
alter BBB permeability by affecting the expression and cellular distribution of junctional
adhesion molecules (i.e., ICAM-1 and VCAM-1) [40]. This disruption enables an elevated
number of blood-derived molecules and cells, such as activated T cells and B-cells, to enter
the CNS and initiate neurodegeneration that could promote CRF. Microglia activation can
also initiate an inflammatory cascade that eventually alters the metabolic pathways within
CNS such as the kynurenine pathway, ultimately leading to impairments in the releasing of
neurotransmitters such as serotonin and especially dopamine [41,42]. It is well established
that several chemotherapeutics agents can negatively impact the hippocampal region,
leading to a decreased cell proliferation or increased cell death [43]. This effect can manifest
as behavioral changes, including cognitive, emotional, and spatial impairment in cancer
patients. Dopamine signaling plays a crucial role in influencing motivational states [44],
which, in turn, can impact hippocampal function. Dysfunction in any of these components
can potentially lead to alterations in motivational behaviors and cognitive processes.
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2.2. The Acute Effect of Aerobic Exercise on Peripheral and Neural Inflammation

Aerobic exercise can have a beneficial acute effect on the peripheral inflammatory pro-
file. During exercise, a rise in pro-inflammatory cytokines occurs while a switch takes place
after the end of exercise, with an increase in circulating anti-inflammatory cytokines [45].
More precisely, according to the intensity [46] and duration of aerobic exercise, many
inflammatory myokines increase, especially IL-6 [47]. In response to a short bout of aerobic
exercise, it was proposed that the release of myokine IL-6 could upregulate the produc-
tion of anti-inflammatory cytokines, including IL-10, IL-1Ra, and TGF-β, which would
dampen the inflammatory response for several hours after exercise [48,49]. When these
anti-inflammatory cytokines are carried into the central nervous system (CNS), they might
help reduce neural inflammation [50], potentially leading to changes in behavior. Indeed, in
a large meta-analysis of 18 studies [51], evidence showed that acute moderate-intensity ex-
ercise led to an increase in anti-inflammatory cytokines, with a marked response observed
after high-intensity exercise. However, it is not clear whether this increase in post-exercise
anti-inflammatory cytokines leads to a decrease in CRF, as no study has directly measured
this relationship. Therefore, because high peripheral levels of anti-inflammatory cytokines
inhibit microglial activation by interacting with brain cytokine receptors [52], it may be
possible that during the following hours after aerobic exercise, the neural activation is
reduced, which could explain the lower CRF observed in response to exercise.

The BBB also benefits from aerobic exercise, notably by restoring permeability and
re-establishing the expression of tight junction transmembrane proteins [53]. This effect
was observed in a mouse model of multiple sclerosis, where endurance exercise led to a
significant decrease in IFN-γ and IL-1β production within the CNS, contributing to the
protection of the BBB [53]. These findings imply that aerobic exercise can help restore the
function of the BBB, which, in turn, reduces inflammation in the CNS. This prevents the
entry of neurotoxic metabolites from the kynurenine pathway into the CNS, potentially
resulting in a decrease in CRF.

3. Immune Function Dysregulation and Cancer-Related Fatigue
3.1. Immune Response after Chemotherapy

While the precise role of immune cells in the development of CRF is not yet fully
understood, recent evidence indicates that immune system dysregulation, including the
activity of natural killer (NK) cells and T lymphocytes, might be involved in the onset
and persistence of CRF. T cells, specifically CD4+ and CD8+, are key players in adaptive
immunity and have direct antitumor effects [54,55]. CD4+ T cells, also known as T helper,
help coordinate immune responses by releasing cytokines and activating other immune
cells. CD8+ T cells, also called cytotoxic T cells, directly kill infected or cancerous cells.
Dysregulation of T lymphocytes, including a shift in the balance between different T cell
subsets and altered cytokine production, has been observed in myalgic encephalomyeli-
tis/chronic fatigue syndrome (ME/CFS) patients [56]. These dysfunctions can result in
impaired immune responses against cancer cells, which can contribute to disease progres-
sion and fatigue. However, there is currently no evidence linking T-cell dysfunction in
cancer patients to CRF. Moreover, research on ME/CFS patients demonstrated the reduced
activity of NK cells [57,58], which has also been reported in cancer patients experiencing
fatigue. Two distinct populations of NK cells can be found in peripheral circulation based
on their cell surface density, the CD56bright (immature) and CD56dim (cytotoxic). A recent
study showed a slight but significant decrease in the population of cytotoxic NK cells
(CD56dim) in patients with CRF compared to a non-fatigued group [24], suggesting a po-
tential involvement of impaired NK cell function in CRF. However, the reason for reduced
NK cell cytotoxic activity in cancer patients with CRF is yet to be determined.

Altogether, these dysregulations can promote the release of pro-inflammatory cy-
tokines and other signaling molecules, which then contribute to a state of chronic inflam-
mation. The persistent activation of the immune system and the resulting inflammatory
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response can induce CRF by affecting the CNS, altering neurotransmitter levels, and dis-
rupting normal energy metabolism.

3.2. Acute Effect of Aerobic Exercise on Immune Markers

Growing evidence suggests that aerobic exercise may improve CRF by modulating
the immune system. Research has shown that exercise improves immunosurveillance
by increasing the number of lymphocytes in the peripheral circulation during exercise in
healthy adults [59], a key component of the immune response, although this effect dimin-
ishes after cessation. While we recently finished a proof-of-concept study investigating the
relationship between acute exercise-induced immune response and CRF (clinicalTrials.gov
ID: NCT04715061), it was previously reported that a single bout of moderate-intensity
aerobic exercise is sufficient to enhance the mobilization of NK cells and recruitment of
cytotoxic T cells (CD8+) [60], with both implicated in immune surveillance. Since NK
cell [61] and T cell [62] dysfunction has been linked to fatigue in various populations, it
may be possible that exercise-induced improvements in immune function contribute to
reduced CRF.

Supporting this notion, studies by Campbell et al. [60] and others [63,64] have demon-
strated that high-intensity aerobic exercise (85% peak power output) elicits a transient
greater lymphocyte mobilization in the peripheral circulation compared to moderate-
intensity in healthy individuals, then returning to baseline values after 60 min post-exercise.
Moreover, our preliminary results (under review) further suggests that aerobic exercise,
particularly high-intensity exercise in fitter individuals, can promote acute lymphocyte
mobilization in the peripheral circulation in metastatic cancer patients [65]. Additionally,
high-intensity exercise has been shown to induce a more pronounced increase in NK cell
cytotoxic activity compared to light- or moderate-intensity aerobic exercise [66,67]. This
transient mobilization of cytotoxic NK cells in peripheral blood might be transported into
the tumor microenvironment. However, further research is necessary to comprehensively
characterize the extent of immune modulation induced by different aerobic exercise in-
tensities in cancer patients and to definitively establish the link between these changes
and CRF.

4. Neuroendocrine Alteration and Cancer-Related Fatigue
4.1. The Influence of Chemotherapeutic Agents on the Neuroendocrine System

Neuroendocrine alterations may also contribute to CRF as reviewed by O’Higgins
et al. [27]. In fact, chronic inflammation tends to reduce the synthesis and release of
corticotropin-releasing hormone (CRH) [27,68], which is a central regulator of the hypotha-
lamic–pituitary–adrenal (HPA) axis. This disrupts the HPA axis, which negatively impacts
the regulation of stress hormone cortisol’s synthesis and release. Furthermore, studies
have observed either resistance or sensitivity to glucocorticoids [69], suggesting a potential
disruption in the negative feedback loop regulating CR, ACTH, and cortisol levels. This
impaired regulation may lead to the HPA system releasing cortisol at a constant level
throughout the day in cancer patients. Supporting this notion, a study conducted by Bower
et al. [70] reported higher daytime cortisol levels with a blunted circadian rhythm (flatter
slope) compared to normal peak times (morning and evening), suggesting dysfunction of
the HPA axis in patients with CRF. However, the relationship between HPA dysfunction
and CRF is still controversial. It is worth noting that some cancer treatments, such as
glucocorticoids and certain chemotherapy drugs, can affect the HPA axis, potentially
contributing to CRF. However, this appears to be more common when glucocorticoid
withdrawal coincides with adrenal insufficiency [71].

Interestingly, indoleamine-2,3-dioxygenase (IDO) is a counter-regulatory enzyme that
contributes to immune suppression in the tumor microenvironment [72]. By numerous
mechanisms reviewed in Johnson et al. [73], greater activation of IDO expression stimulates
tryptophan catabolism, resulting in increased circulating levels of kynurenine (KYN) to
the detriment of serotonin [74]. Knowing that serotonin regulates upstream CRH signaling
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systems [75], a decrease in serotonin levels might reduce the activity of the HPA axis
and impair cortisol production [27,76]. Studies conducted in cancer patients have shown
a correlation between IDO activity and CRF severity, indicating that a low tryptophan
concentration or a high ratio of kynurenine/tryptophan was correlated with high CRF or
lethargic behaviors. IDO activity is closely linked to the immune system, as the peripheral
mononuclear cells have been shown to be potent producers of IDO [77]. In an interesting
way, KYN promotes the generation of Treg cells and also inhibits the proliferation of NK
cells, B cells, and CD4+ and CD8+ lymphocytes [78], which can be argued to play a role
in the reduction of immune defense. Similarly, the hypothesis of dopaminergic imbalance
appears to be akin to serotonin dysregulation. In this context, both low and excessive levels
of dopamine can induce fatigue in individuals with multiple sclerosis [42]. In this scenario,
T cells, especially CD4+ cells, can breach the BBB in the CNS and trigger the production of
IFN-γ, which, in turn, inhibits dopamine production and can even lead to the destruction
of dopamine neurons. Finally, as the kynurenine metabolites reach the BBB and enter the
CNS, they become metabolized into quinolinic acid by glial cells (e.g., microglia) and cause
neurotoxicity, potentially leading to CRF.

4.2. The Acute Effect of Aerobic Exercise on the Neuroendocrine System

In healthy humans, the acute response to moderate-to-vigorous exercise (>60% of VO2
max) stimulates the HPA axis by increasing adrenocorticotropic hormone (ACTH) and
cortisol levels [42]. Nevertheless, two studies on cancer survivors revealed that during
moderate-intensity exercise (60% VO2 peak), the magnitude of the increase in cortisol and
ACTH blood concentration is smaller [79,80], mainly because of the higher baseline levels
observed in cancer patients compared to healthy individuals. Hence, exercise-induced HPA
axis activation may be somewhat limited in cancer survivors. However, to which extent
aerobic training performed over several weeks in cancer patients during treatment can help
restore normal baseline circulating cortisol and ACTH levels remains to be investigated.

The sensitivity of glucocorticoid receptors, principal inflammatory regulators of the
HPA axis, is also affected by aerobic exercise. In fact, it was demonstrated that exercise
acutely increased tissue sensitivity to glucocorticoids, which could be explained by an
increasing number of glucocorticoid receptors or a shift in their isoform expression [81].
Hence, cortisol has more potential to bind to glucocorticoid receptors, which would restore
appropriate negative feedback. It could then be hypothesized that exercise allows for the
recovery of diurnal cortisol variations via the enhancement of glucocorticoid receptors
sensitivity, thus providing a negative feedback loop.

At the central level, exercise acutely acts on dopaminergic and serotoninergic path-
ways, which are suggested to be contributors to CRF. Acute exercise increases the bioavail-
ability of free tryptophan in the brain, along with an increase in tryptophan hydroxylase,
the enzyme that converts tryptophan into serotonin. By doing this, exercise leads to an
increase in serotonin levels in the hours after exercise [82]. Even though there are still dis-
crepancies in the literature regarding the required intensity of exercise to trigger increased
cerebral serotonin levels in cancer patients, it is accepted that high-intensity exercise pro-
motes higher serotonin and dopamine levels [83]. An adequate concentration of these two
neurotransmitters ensures their optimal function and could consequently decrease CRF.

IDO activation, which was previously associated with a high level of CRF [84,85],
could also be influenced by aerobic exercise. Studies investigating the acute effect of aerobic
exercise showed an increase in kynurenine concentration in circulation [86,87]. This is
mainly explained by the transient elevation of pro-inflammatory cytokines during exer-
cise [88]. However, the acute anti-inflammatory impact of exercise in the following hour
could also decrease IDO activity [89] and thus restore normal tryptophan metabolism. Re-
garding BBB permeability, acute exercise suggests the re-establishment of the BBB function
and permeability and might prevent the crossing of neurotoxic metabolites from the kynure-
nine pathway to the CNS [36]. However, little evidence is available on this phenomenon in
acute exercise in cancer patients.
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5. Physiological Variability in Exercise Response

Inter-individual variability in physiological responses following exercise is observed
in both healthy populations and cancer patients [90] and is influenced by a multitude of
factors such as genetics, baseline fitness levels, age, and demographic variables like sex and
ethnicity. Studies have demonstrated a wide range of responses to exercise, with individuals
experiencing either increased fatigue or improvements in factors like cardiorespiratory
fitness. Among the explaining factors, a genetic component likely contributes, as twin
and family studies revealed a genetic component explaining 30 to 60% of the variation in
cardiorespiratory fitness response to exercise [91]. Distinct responses observed between
“low” and “high” responders in animal experiments provide evidence for genetic factors
influencing training adaptations and thus possibly the impact of a single exercise session.
Additionally, the type, intensity, duration, and timing of exercise play a significant role
in shaping the outcome. Inconsistency in exercise prescription across studies hinders the
comparison of true variability in response to exercise. Studies have employed various
approaches for standardization, including fixed duration, intensity, or caloric expenditure
targets. Most of the existing literature fails to report exercise interventions following
CERT guidelines, often only considering adherence, defined as exercise session attendance,
solely. Moreover, monitoring methods like heart rate can be affected by cardiovascular
drift and pharmacological treatment, potentially leading to underestimating the actual
workload. Beyond these factors, behavioral aspects like overall physical activity levels,
dietary habits, and sleep quality contribute to the variability observed in exercise responses.
This is particularly relevant for cancer patients due to their unique characteristics, including
pre-existing comorbidities, fitness levels, and specific cancer diagnoses (e.g., initial cancer
type, the presence and location of metastases, and treatment regimen).

Overall, the hypothetical mechanisms by which aerobic exercise can decrease CRF
are presented in Figure 2. Keeping in mind that this is a proposed theoretical model,
the scientific literature on chronic fatigue syndrome provides a good starting point for
future studies.
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particularly when performed at high intensity, is associated with an anti-inflammatory effect during
the first few hours after exercise, possibly transiently alleviating chronic peripheral inflammation
(a). Aerobic exercise promotes the mobilization of circulating lymphocytes, thus helping to restore
immune function (b). This reduction in inflammation would lead to a reduction in the activation
of IDO (c), with effects accentuated by vigorous intensity. The restoration of BBB function prevents
the passage of pro-inflammatory cytokines into the CNS, which decreases microglia activation and
therefore prevents neurotoxic damage (d). Aerobic exercise manages to re-regulate the activation
of the HPA axis (e), notably by recovering the amplitude of cortisol release, while promoting a
better sensitivity to glucocorticoids and restoring the negative feedback loop. Image created with
Biorender.com (accessed on 22 September 2022).

6. Conclusions

Although the underlying mechanisms explaining how aerobic exercise impacts CRF
are still under investigation, this conceptual review proposes an explanatory theoretical
model of exercise based on the suggested etiology of CRF. While this review focuses on the
physiological aspects and immediate impacts of chemotherapy treatment, shedding light
on these aspects, the etiology of CRF is intricate and involves multiple factors, such as type
of treatment, type of cancer, and chemotherapeutic agents. Additional factors mentioned
in the literature may account for other aspects of CRF, such as physical deconditioning,
depression, and cachexia. Understanding these biological mechanisms is crucial for devel-
oping personalized exercise interventions for cancer patients and mitigating the impact of
this significant side effect on their quality of life. Further studies and a proof of concept are
required to confirm or refute this model and assess its applicability based on the specifics of
cancer treatment, such as the type and drugs used. Moreover, knowing that aerobic exercise
is currently one of the most efficient strategies to reduce CRF, a better understanding
of the underlying mechanisms would offer the opportunity to develop pharmacological
treatments for individuals who cannot exercise or achieve a sufficient exercise workload to
benefit from this type of intervention. By enhancing our knowledge of these mechanisms,
more precise exercise prescriptions could help patients increase their survival rate after
diagnosis or reduce the risk of recurrence [92], as well as alleviate treatment-related side
effects such as CRF [93], initiating a virtuous circle. Establishing recommendations based
on new evidence regarding the comprehension of CRF mechanisms will provide impor-
tant leverage in implementing exercise as an integral part of the healthcare pathway for
individuals with cancer.
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