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Simple Summary: Transformer models, originally successful in natural language processing, have
found application in computer vision, demonstrating promising results in tasks related to cancer
image analysis. Despite being one of the prevalent and swiftly spreading cancers globally, there is
a pressing need for accurate automated analysis methods for oral cancer. This need is particularly
critical for high-risk populations residing in low- and middle-income countries. In this study,
we evaluated the performance of the Vision Transformer (ViT) and the Swin Transformer in the
classification of mobile-based oral cancer images we collected from high-risk populations. The results
showed that the Swin Transformer model achieved higher accuracy than the ViT model, and both
transformer models work better than the conventional convolution model VGG19.

Abstract: Oral cancer, a pervasive and rapidly growing malignant disease, poses a significant
global health concern. Early and accurate diagnosis is pivotal for improving patient outcomes.
Automatic diagnosis methods based on artificial intelligence have shown promising results in the
oral cancer field, but the accuracy still needs to be improved for realistic diagnostic scenarios.
Vision Transformers (ViT) have outperformed learning CNN models recently in many computer
vision benchmark tasks. This study explores the effectiveness of the Vision Transformer and the
Swin Transformer, two cutting-edge variants of the transformer architecture, for the mobile-based
oral cancer image classification application. The pre-trained Swin transformer model achieved
88.7% accuracy in the binary classification task, outperforming the ViT model by 2.3%, while the
conventional convolutional network model VGG19 and ResNet50 achieved 85.2% and 84.5% accuracy.
Our experiments demonstrate that these transformer-based architectures outperform traditional
convolutional neural networks in terms of oral cancer image classification, and underscore the
potential of the ViT and the Swin Transformer in advancing the state of the art in oral cancer
image analysis.

Keywords: Vision Transformer; Swin Transformer; oral cancer; oral image analysis; artificial intelligence

1. Introduction

Oral cancer is a serious global health challenge, and its incidence continues to rise,
posing a major threat to public health. According to the World Health Organization
(WHO) [1], oral cancer is one of the ten most common cancers worldwide, with an estimated
377,713 new cases to be reported in 2020 alone [2]. Despite advances in medical research and
technology, the prognosis for oral cancer patients remains challenging, largely due to late
diagnosis [3]. Early detection remains a key factor in improving survival rates and reducing
the burden of oral cancer on patients and healthcare systems [4]. Traditional methods
of detecting oral cancer include clinical examination and, in some cases, invasive biopsy.
However, these methods are not without limitations. In the search for non-invasive, cost-
effective, and convenient screening methods, mobile imaging devices are being explored
as a potential game changer in the field of oral cancer diagnosis [5]. Often embedded in
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smartphones, these devices provide a cost-effective and easy-to-use means of capturing
high-quality images of the oral cavity. The use of mobile devices for imaging provides a
unique opportunity for early detection and remote screening. The widespread availability
of smartphones makes this approach particularly advantageous for large-scale screening
programs, especially in resource-limited settings where traditional diagnostic infrastructure
may be lacking. However, the large amount of image data generated by mobile devices
poses a serious challenge [6]. Efficiently and accurately analyzing these images requires
advanced computational methods, which set the stage for integrating artificial intelligence
into the field of oral cancer detection.

Artificial intelligence has showcased remarkable effectiveness across diverse domains,
with a notable impact in medical image analysis [7,8]. Convolutional neural networks
(CNNs) have traditionally been at the forefront of image classification tasks, excelling in
identifying abnormalities and diseases in medical images [9–11]. However, a paradigm
shift has occurred with the emergence of transformer-based architectures [12]. The trans-
former architecture is built upon a self-attention mechanism, enabling the model to learn
intricate relationships between sequence elements. While attention models have been
widely employed in feed-forward and recurrent networks, transformers uniquely rely
entirely on the attention mechanism [13]. Vision transformers (ViTs) [14] have multiple
advantages compared to CNNs for vision tasks. ViTs [15] capture global dependencies
in the input image by considering all image segments simultaneously. This helps to un-
derstand the relationships between different parts of the image and is beneficial for tasks
that require global context. ViTs use a self-attention mechanism that allows them to weigh
the importance of different image segments during the learning process. This attentional
mechanism provides interpretability, allowing researchers to understand which parts of an
image are more critical for making predictions.

ViTs have been shown to drive state-of-the-art technology in a wide range of vision
tasks, including image classification [16], object detection [17], semantic segmentation [18],
image colorization [19], and video understanding [20]. ViTs have garnered great interest
in the medical imaging community and have been used in multiple medical imaging
applications. Costa et al. [21] used ViT with performer to classify lung CT images for
COVID-19 diagnosis and achieved good performance. Tanzi et al. [22] applied a Vision
Transformer (ViT) for femur fractures classification with X-ray images, and outperforming
the state-of-the-art approaches based on CNN, the attention maps and clustering further
showed the reliability of the approach. Gheflati et al. [23] applied Vision Transformers (ViT)
to categorize breast ultrasound images, revealing that ViT models demonstrate efficiency
comparable to, or even surpassing, CNNs in the classification of ultrasound breast images.
This underscores the significant potential of ViT models in the realm of breast ultrasound
image classification. In a distinct study, Jiang et al. [24] devised an ensemble model
integrating the Vision Transformer model and the EfficientNet model into the ViT-CNN
ensemble model for diagnosing acute lymphoblastic leukemia. The results exhibited a
noteworthy superiority of the ViT-CNN ensemble model over three classic convolutional
neural network models. Chen et al. [25] introduced TransUnet, a model incorporating both
transformers and Unet for medical image segmentation. Their investigation demonstrated
that transformers function as robust encoders for medical image segmentation tasks. The
amalgamation with Unet enhances finer details by recovering localized spatial information,
leading to superior performance compared to various competing methods across diverse
medical applications. In a separate contribution, Chen et al. [26] presented ViT-V-Net,
combined Vision Transformers and ConvNets, designed for volumetric medical image
registration. Experimental results showed the superior performance of the proposed
architecture when compared to several top-performing registration methods.

The Swin Transformer [27,28] is a transformer-based model with state-of-the-art per-
formance in vision tasks. It is highly efficient and accurate, and outperformed multiple
existing transformer-based models on number of benchmark datasets and tasks. The Swin
Transformer is used as the backbone for many vision-based model architectures due to
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these desirable properties. The Swin Transformer uses a combination of local and global
attention mechanisms to process images and improve accuracy, it uses a series of shifted
window attention mechanisms that enable the model to focus on different parts of the image
at different scales, and a hierarchical structure that enables the model to learn and reason
about the relationships between different image regions. Zhang et al. [29] present a deep
learning-based framework for the diagnosis of COVID-19 using chest CTs with a Unet and
Swin Transformer backbone and achieved good results. Xie et al. [30] proposed the Swin-
SimAM network. They incorporated the SimAM attention module, which is parameter free,
to emphasize crucial parts of skin lesions for improved melanoma detection. Additionally,
the Swin Transformer was applied to medical segmentation tasks. Hatamizadeh et al. [31]
introduced the Swin Unet Transformer, utilizing a U-shaped network which used the Swin
Transformer as the encoder, and achieved good performance for semantic segmentation
of brain tumors in MRI images. In this study, we utilized the Vision Transformer and the
Swin Transformer for mobile-based oral cancer image classification. The pre-trained Swin
Transformer model exhibits notable performance, achieving an accuracy of 88.7% in the bi-
nary classification task, this surpassed the ViT model by 2.3%. And both transformer-based
models outperformed the classic CNNs. The experimental results showed the promising
potential of the Vision Transformer and the Swin Transformer in pushing the boundaries of
oral cancer image analysis and advancing the state of the art in this field.

2. Materials and Methods
2.1. The Vision Transformer

Visual transformers (ViTs) are a pioneering approach in the field of computer vision
that challenges traditional convolutional neural networks (CNNs) in image processing tasks.
Visual transformers are an extension of the transformer architectures originally designed
for natural language processing and have achieved significant success in various computer
vision benchmark tests [15]. Unlike traditional CNNs, ViTs rely on a pure transformer
architecture. The architecture of the Vision Transformer used in this study is shown in
Figure 1.
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A critical aspect of Vision Transformers is the self-attention mechanism, which allows
the model to weigh the importance of different patches when processing a particular patch.
This mechanism enables the model to capture long-range dependencies and contextual
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information, making it highly effective for image understanding. The self-attention mech-
anism computes attention scores between all pairs of positions in the input sequence,
generating an attention matrix. This matrix is then used to weigh the importance of each
patch during the aggregation of information. The ability to attend to different regions of
the image simultaneously enhances the global context awareness of Vision Transformers.
The input of the self-attention block is a sequence of embeddings representing different
positions or tokens in the input sequence, and each embedding corresponds to a position
in the input sequence. The embeddings are linearly transformed into three vectors for
each position, key, query, and value, these transformations are learned during the training
process of the Vision Transformer. The output of a self-attention block in a Transformer is
a weighted sum of the input embeddings, determined by attention scores that reflect the
relationships between different positions in the input sequence. Each input embedding
undergoes linear transformations to obtain query, key, and value vectors, and attention
scores are computed by taking the dot product of query and key vectors. These scores
are then normalized using the softmax function, producing weights that represent the
relevance of each position. The output captures the contextual information from the entire
input sequence, with each position attending to other positions based on their relevance.

The multi-head self-attention mechanism in a Vision Transformer (ViT) is a key com-
ponent that enhances the model’s ability to capture diverse patterns and relationships in
visual information. The outputs from these parallel attention heads are then concatenated
and linearly transformed to produce the final multi-head attention output. The use of mul-
tiple attention heads allows the model to focus on different aspects of the input sequence,
enabling it to capture both fine-grained and coarse-grained features effectively. The multi-
head mechanism enhances the model’s representational capacity and is a crucial element in
the success of Vision Transformers across various computer vision tasks. Self-attention and
multi-head self-attention can be mathematically expressed as follows. WQ, WK, WV are the
learned weight matrices for the query (Q), key (K), and value (V) transformations.

Sel f Attention(Q, K, V) = so f tmax

(
QKT√

dq

)
V

Multi Head(Q, K, V) = Concat(head1, . . . headh)WO

headi = Attention
(

QWQ
i , KWK

i , VWV
i

)
The output from the multi-head self-attention block is inputted into a point-wise feed-

forward network (FFN) that incorporates two linear activation functions and a rectified
linear unit (ReLU) activation. X represents the output of the previous layer and the weight
matrices of the first and second linear layers as Wa and Wb, and the bias vectors as Ba and
Bb. The output of the point-wise feed-forward network can be expressed mathematically as:

FFN = ReLU(XWa + Ba)Wb + Bb

ReLU is a common non-linear activation function that introduces element-wise non-
linearity to the model. This process allows the model to capture complex and non-linear
patterns specific to each position independently. The output of the point-wise FFN con-
tributes to the enriched representation of each position in the ViT, enabling the model to
learn and represent intricate features in the input image sequence.

For training and inference with Vision Transformers (ViTs), the input image is parti-
tioned into a sequence of non-overlapping fixed-size patches. Each patch undergoes linear
embedding, transformed into a flattened vector through a trainable linear transformation.
This positional information, in conjunction with the sequence of overlapping patches, is
then introduced into the encoder block of the transformer, allowing the model to process
and capture both spatial and contextual information from the image in a sequence format.
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2.2. The Swin Transformer

Vision Transformers process images by dividing the images into a sequence of fixed-
size non-overlapping patches. However, this approach may not fully capture the intricate
details of an image, especially when dealing with a combination of local and global features.
The Swin Transformer has several advantages over ViTs and addresses some limitations
of ViTs. The Swin Transformer introduced a hierarchical structure and shifted windows,
providing a more efficient way to capture spatial hierarchies and local-global relationships
within images. ViTs utilized a flat structure, which may hinder their ability to understand
complex patterns in visual data. In addition, ViTs exhibit quadratic complexity, which poses
computational challenges, especially for high-resolution images, while Swin Transformers
alleviate this by introducing a more efficient hierarchical structure.

Similar to ViT, the process of the Swin Transformer begins by dividing the input
image into distinct, non-overlapping patches through a dedicated patch splitting module.
Treating each patch as a ‘token’, its feature is composed by concatenating the raw pixel RGB
values. A linear embedding layer is then applied to project these raw-valued features into
an arbitrary dimension denoted as C. A series of transformer blocks, featuring modified
self-attention computation known as Swin Transformer blocks, is subsequently employed
on these patch tokens. These transformer blocks, keeping the initial number of tokens intact,
form ‘Stage 1′ alongside the linear embedding. To establish a hierarchical representation, a
patch merging layer is utilized to reduce the number of tokens as the network advances
deeper. The initial patch merge layer combines the features of each 2 × 2 neighboring patch
group, applying a linear layer over the resulting 4C-dimensional concatenated features,
resulting in a 4-fold reduction in the number of tokens. This initial patch merging and
feature transformation block is denoted as ‘Stage 2’. This process repeats twice, creating
‘Stage 3′ and ‘Stage 4’.

The Swin Transformer introduces a novel shifted window-based self-attention mech-
anism. This approach aims to adeptly capture both local and global features, different
from the conventional multi-head self-attention (MSA) model typically found in traditional
transformer blocks. The standard Transformer architectures for vision tasks employ a
global self-attention mechanism that involves computing relationships between a token
and all other tokens. This global computation results in quadratic complexity relative to
the number of tokens, making it unsuitable for many vision tasks that demand an extensive
set of tokens for dense prediction or for presenting high-resolution images.

The primary aim of the shifted window is to execute self-attention within localized
windows. Each window is composed of non-overlapping patches with dimensions MXM,
and self-attention is computed within this window. As a result, there is a reduction in
computational complexity; while the original multi-head self-attention (MSA) exhibits
quadratic complexity concerning the patch number, the window-based MSA demonstrates
linear complexity.

The Swin Transformer integrates a shifted window partitioning strategy, alternating
between two configurations across consecutive blocks to efficiently model window con-
nections. The initial module employs a standard window configuration, allowing for local
self-attention computation from evenly spaced windows, commencing from the top-left
pixel. Subsequently, the subsequent Swin Transformer block adopts a window configura-
tion shifted by (M/2, M/2) pixels from the preceding layer. This strategic shift contributes
to the model’s capacity to capture diverse spatial relationships effectively. Self-attention of
Swin transformer blocks can be mathematically expressed as follows, where B is a relative
position bias of the window.

Sel f Attention(Q, K, V) = so f tmax

(
QKT√

dq
+ B

)
V



Cancers 2024, 16, 987 6 of 10

ViT and Swin transformer architectures have several variants; in this study, we used
the base models, ViT-B and Swin-B. The architecture of the Swin Transformer used in this
study is shown in Figure 2.
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2.3. CNN Models for Comparison

We used two classic CNN models VGG19 [32] and ResNet50 [33] for comparison.
These two models were also pre-trained with the ImageNet dataset.

3. Experiments and Results
3.1. The Dataset

The dataset employed in this study was obtained through our customized oral cancer
screening platform [34–36], utilized in the outpatient clinics of the Department of Oral
Medicine and Radiology at the KLE Society Institute of Dental Sciences (KLE), the Head
and Neck Oncology Department of Mazumdar Shaw Medical Center (MSMC), and the
Christian Institute of Health Sciences and Research (CIHSR) in India. Every participant
in this study received direct telediagnosis by specialists remotely [35]. The details of the
oral cancer screening study regarding the image quality assessment and standardization,
and software (including mobile application and cloud server) have been described in our
previous published paper [35].

For this study, we used a total of 2434 oral images. The images were separated into
two categories: ‘non-suspicious (1243 images), which contains normal and benign mucosal
lesion images, and ‘suspicious’ (1191 images), which contains oral potentially malignant
lesion (OPML) and malignant lesion images. The oral images were annotated by oral
oncology specialists.

3.2. Data Augumentation

The efficacy of a network’s representational capacity is closely related to the amount of
training data, especially for the transformer models. Generally, a larger dataset correlates
with stronger representation ability of the model, and improved classification performance.
Data augmentation refers to the method of introducing small changes to the existing
training data or generating synthetic data from the existing dataset to increase its size. We
applied data augmentation techniques, including horizontal and vertical flipping, random
rotation, color jitter, and shearing to our training dataset.

3.3. Pre-Training

Recent advancements in the field of computer vision have seen transformers achieve
state-of-the-art results, surpassing CNNs in various tasks. Despite this success, it is im-
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portant to note that transformer architectures tend to be more data hungry than CNNs,
necessitating a large amount of training data for optimal performance. Given the inherent
challenge of data scarcity in medical imaging, transfer learning emerges as a promising
approach to enhance the effectiveness of transformer models. By pre-training transformer
models on large datasets and subsequently fine-tuning them on smaller, domain-specific
datasets, notable improvements in performance have been observed. It outperformed
the CNN architectures in many computer vision tasks such as object detection [27,37],
semantic segmentation [38–40], and image classification [41]. All the models used in this
study were pre-trained with the ImageNet dataset and then transfer-leaned to our oral
cancer image dataset. In this study, the transformer-based models were pre-trained with
the ImageNet dataset.

3.4. Experiments Setup

Code implementation was made on PyTorch (pytorch.org, accessed on 1 December
2023) and all the training was performed on the high-performance computing platform of
the University of Arizona. We trained all the networks in this study with cross-entropy loss
and the Adam optimization algorithm [42]. To enhance the robustness of the training set,
we applied data augmentation techniques, which including random rotation, vertical and
horizontal flipping, color jitter and shearing, before training each network. Each training
session utilized an initial learning rate of 10−3, which decayed 10-fold every 50 epochs. The
total number of epochs was set to 180, and a batch size of 32 was employed. We saved the
models with the best validation accuracy. In all experiments in this study, we performed
5-fold cross-validation.

3.5. The Experiments Results

In this study, the VIT and Swin Transformer models are compared with two classic con-
volutional neural networks, VGG19 and ResNet50. The performance of these models were
compared through sensitivity, specificity, positive prediction value, negative prediction
value and accuracy. Table 1 lists the 5-fold cross-validation sensitivity, specificity, positive
prediction value, negative prediction value, and accuracy of all models on our dataset. It
can be seen from the table that the Swin Transformer model performs best with a sensitivity
of 0.905, a specificity of 0.870, a PPV of 0.870, a NPV of 0.905, and an accuracy of 0.887. The
accuracy of the Swin Transformer model is 2.3%, 4.2% and 3.5% higher than that of the
VIT, ResNet50 and VGG19, respectively. The sensitivity of the Swin Transformer model is
3.3%, 5.7% and 4.1% higher than that of the VIT, ResNet50 and VGG19, respectively. The
specificity of the Swin Transformer model is 2.4%, 2.8% and 2.9% higher than that of the
VIT, ResNet50 and VGG19, respectively.

Table 1. The 5-fold cross-validation sensitivity, specificity, positive prediction value, negative predic-
tion value and accuracy of the ViT, the Swin Transformer, VGG19, and ResNet50.

5-Fold Cross-Validation
Results Sensitivity Specificity PPV NPV Accuracy

VGG19 0.864 0.841 0.839 0.866 0.852
ResNet50 0.848 0.842 0.838 0.853 0.845

ViT 0.872 0.856 0.853 0.875 0.864
Swin Transformer 0.905 0.870 0.870 0.905 0.887

4. Discussion

Despite their impressive performance, transformer-based models also have some limi-
tations. Although the interpretability and explainability of CNNs based models are not very
good, transformer-based models are even harder to interpret, making it challenging to un-
derstand the predictions, because interpretable models are essential in medical applications
to gain insights into decision-making processes and to build trust among healthcare profes-
sionals and patients. Another limitation is that transformer-based models typically require

pytorch.org
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more computational resources compared to CNNs due to their self-attention mechanism
and large parameter space. This increased computational overhead may pose challenges
for real-time or resource-constrained applications in cancer image analysis. In our pre-
vious study, we have performed extensive tests with our previous CNN models for oral
cancer image analysis. We will perform more validation assessments and analyses with
transformer-based models in the future since they have shown promising performance
with the preliminary tests.

5. Conclusions and Future Work

In the realm of global health, the escalating prevalence of oral cancer necessitates
innovative diagnostic solutions. This study explores the potential of Vision Transformers
(ViT) and Swin Transformers in mobile-based oral cancer image classification. Benchmark
results reveal that the pre-trained Swin Transformer model achieved an 88.7% accuracy in
binary classification, outperforming the ViT model by 2.3% and surpassing the conventional
VGG19 and ResNet50 CNN models, which achieved 85.2 and 84.5% accuracy. These
findings underscore the capability of Transformer-based architectures, particularly the
Swin Transformer, in advancing state-of-the-art oral cancer image analysis.

While this study demonstrates the effectiveness and potential of transformer-based
oral cancer classification, future research could focus on exploring real-world integration
feasibility, optimizing transfer learning strategies, and investigating multimodal approaches
given the availability of a multimodal oral cancer dataset we previously collected. Addi-
tionally, exploring the reliability, interpretability, and trustworthiness of transformer-based
models for oral cancer diagnosis is crucial. Addressing these aspects in future research
can contribute to the broader applicability of transformer-based architectures, fostering
advancements in global healthcare.
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