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Simple Summary: FDG PET-CT scans are critical in detecting metastases during neoadjuvant
chemoradiotherapy for esophageal cancer, particularly for potential liver involvement. The liver’s
proximity to the radiation field in distal esophageal cancer therapies raises the risk of radiation-
induced liver damage. Therefore, greater FDG absorption in the liver does not always imply metas-
tases; it could also signal radiation-induced damage, which is a concern for distal esophageal
carcinoma therapies in the left hepatic lobe, potentially leading to overstaging. Accordingly, thorough
monitoring of FDG activity in the liver is required to reliably distinguish between radiation effects
and genuine distant metastases. If FDG activity is seen in the left or caudate liver lobes following CRT,
additional diagnostic procedures are demanded to confirm or rule out distant metastases. Surgery,
usually scheduled 6–8 weeks after CRT, should be followed by an FDG PET-CT scan to look for new
interval metastases, as their existence may prohibit surgical intervention.

Abstract: In patients with esophageal cancer undergoing neoadjuvant chemoradiotherapy (nCRT),
subsequent restaging with F-18-fluorodeoxyglucose (18F-FDG) positron emission tomography–
computed tomography (PET-CT) can reveal the presence of interval metastases, such as liver metas-
tases, in approximately 10% of cases. Nevertheless, it is not uncommon in clinical practice to observe
focal FDG uptake in the liver that is not associated with liver metastases but rather with radiation-
induced liver injury (RILI), which can result in the overstaging of the disease. Liver radiation damage
is also a concern during distal esophageal cancer radiotherapy due to its proximity to the left liver
lobe, typically included in the radiation field. Post-CRT, if FDG activity appears in the left or cau-
date liver lobes, a thorough investigation is needed to confirm or rule out distant metastases. The
increased FDG uptake in liver lobes post-CRT often presents a diagnostic dilemma. Distinguishing
between radiation-induced liver disease and metastasis is vital for appropriate patient management,
necessitating a combination of imaging techniques and an understanding of the factors influencing
the radiation response. Diagnosis involves identifying new foci of hepatic FDG avidity on PET/CT
scans. Geographic regions of hypoattenuation on CT and well-demarcated regions with specific
enhancement patterns on contrast-enhanced CT scans and MRI are characteristic of radiation-induced
liver disease (RILD). Lack of mass effect on all three modalities (CT, MRI, PET) indicates RILD.
Resolution of abnormalities on subsequent examinations also helps in diagnosing RILD. Moreover, it
can also help to rule out occult metastases, thereby excluding those patients from further surgery
who will not benefit from esophagectomy with curative intent.
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1. Introduction

Esophageal cancer is responsible for over 450,000 deaths annually, ranking as the
sixth leading cause of cancer-related mortality worldwide [1]. Surgical resection of the
esophagus, following neoadjuvant chemoradiotherapy (nCRT), is the standard of treatment
for patients with non-metastasized esophageal cancer [1–3]. nCRT has been shown to
downstage tumors and increase the rate of radical resection, and it is associated with
improved survival outcomes [2,3]. Esophageal cancer frequently metastasizes lymph
nodes in the abdomen, liver, and lungs [4], with liver metastases in up to 35% of cases [5].
Several studies have evaluated the use of F-18-fluorodeoxyglucose (18F-FDG) positron
emission tomography–computed tomography (PET-CT) for pre-surgical restaging after
nCRT, finding varying rate of interval metastases ranging from 2% up to 26% [6,7]. However,
these studies often lacked diagnostic accuracy measures, such as sensitivity and specificity,
and included only a small patient cohort [8–10]. Accurate preoperative identification of
(interval) metastasis is essential for selecting suitable candidates for surgery [11]. Radiation
therapy for liver and upper abdominal perihepatic tumors has been limited due to the
liver’s radiosensitivity [12]. Radiation damage, especially to the liver’s lateral segment
near the distal esophagus, is challenging to avoid [13]. Preoperative whole-body FDG
PET-CT is routinely used to assess the radiation response and exclude metastases. It can
detect radiation-induced liver damage 2 to 6 weeks after therapy, as indicated by increased
FDG uptake and reduced CT attenuation [13]. Radiation-induced liver disease (RILD),
a significant complication, can present in classic or non-classic forms, characterized by
diffuse or focal FDG uptake on PET-CT [14]. Understanding RILD’s pathophysiology
is vital for early detection and management [15–20]. FDG PET-CT effectively assesses
the primary tumor’s response to nCRT and the detection of interval metastases. In cases
of true interval metastases, none were associated with progressive or enlarging primary
disease [21]. Newly emerged FDG lesions during restaging could result from chemotherapy,
radiation, or their combination without pre-therapy signs of metastasis [9,10,22]. The risks
of RILD increase with concurrent hepatotoxic chemotherapy, and liver radiation tolerance
is reduced in patients with impaired liver function, heightening their risk of RILD [16].
This structured approach aims to navigate the complexities of diagnosing and managing
simulated liver metastasis in esophageal cancer patients following nCRT.

2. Mechanism and Application of FDG PET-CT Scan
2.1. Imaging Principles and Clinical Application

FDG, a non-physiological analog of glucose, differs only slightly from the chemical
structure of glucose. It follows the same cellular transport and metabolic pathways [23].
Upon injection, FDG is absorbed by cell membrane glucose receptors—primarily, the
glucose transporter-1 molecule (GLUT-1)—which transport it into cells where it is phos-
phorylated into FDG-6-phosphate by hexokinase. This process traps FDG inside cancer
cells, as it fails to undergo further metabolism. This property allows for the visualization of
metabolic activity at tumor sites. However, it is well-known that active benign pathological
conditions, such as inflammation and infection, can also exhibit increased FDG accumula-
tion. This is due to the enhanced glycolytic metabolism in inflammatory cellular infiltrates,
including activated macrophages, monocytes, and polymorphonuclear cells, which play
crucial roles in the recruitment, activation, and healing phases of tissue inflammation [24].

The integration of PET-CT using the glucose analog 18F-FDG has become a cornerstone
in the imaging of oncological patients. The realization that combining metabolic and
morphological information from FDG PET-CT significantly affects tumor staging and
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restaging, the detection of recurrent disease, and the optimization of therapy across a broad
spectrum of solid-organ malignancies has led to its increased adoption in oncology [25–28].
Specifically, in preoperative evaluation for esophageal cancer, whole-body FDG PET-CT
scans are instrumental in assessing the response to radiation treatment and excluding
metastases. Furthermore, identifying radiation-induced liver injury (RILI), marked by
elevated FDG uptake in areas near the irradiated field, is essential for precise staging and
treatment planning [12,13].

2.2. False Positive and False Negative PET/CT: Causes and Probabilities
2.2.1. Caveats in Interpreting PET-CT in Individuals with Esophageal Cancer

The interpretation of FDG PET-CT scans in the diagnosis of esophageal cancer neces-
sitates meticulous differentiation between authentic malignant lesions and false-positive
signals that may mimic malignancy (Table 1).

Table 1. Caveats in the interpretation of PET-CT in patients with esophageal cancer.

Causes of False-Positive Findings Causes of False-Negative Findings

Infections/inflammatory lesions Lesion dependent

Radiation-induced liver disease (RILD) Small tumors (<8–10 mm)

Radiation pneumonitis Low metabolic activity of the tumor

(Postobstructive) pneumonia/abscess The presence of a treatment-induced decrease in tumor metabolism

Mycobacterial or fungal infection Technique limitation

Granulomatous disorders (sarcoidosis, Wegener) Hyperglycemia

Chronic nonspecific lymphadenitis Paravenous FDG injection

(Rheumatoid) arthritis Excessive time between injection and scanning

Occupational exposure (anthracosilicosis) Low resolution or motion artifacts

Bronchiectasis

Organizing pneumonia

Reflux esophagitis

Iatrogenic causes

Invasive procedure (puncture, biopsy)

Talc pleurodesis

Radiation esophagitis and pneumonitis

Bone marrow expansion postchemotherapy

Colony-stimulating factors

Thymic hyperplasia postchemotherapy

Benign mass lesions

Salivary gland adenoma (Whartin)

Thyroid adenoma

Adrenal adenoma

Colorectal dysplastic polyps

Focal physiological FDG uptake

Gastrointestinal tract

Muscle activity

Brown fat

Unilateral vocal cord activity

Arherosclerotic plaques
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2.2.2. Common Non-Malignant Pathological Conditions Showing Increased Uptake of
FDG before Therapy

It is estimated that benign, non-physiological lesions with increased FDG uptake are
identified in more than 25% of FDG PET-CT studies conducted on oncological patients [29–31].
Detecting malignant infiltration of lymph nodes is crucial for the accurate staging of most
cancers. FDG PET-CT significantly contributes to this effort by identifying tumor involve-
ment in lymph nodes that are non-pathologically enlarged. These include inflammatory
conditions such as sarcoidosis or sarcoid-like reaction to malignancy, collagen vascular
diseases, and anthracosis and infective causes such as tuberculosis (TB), infectious mononu-
cleosis, acquired immunodeficiency syndrome (AIDS), and hepatitis C [32,33].

3. Current Treatment Protocol of Esophageal Cancer Involving True Liver Metastasis
and False Liver Metastasis
3.1. Current Standard Procedure of Treatment for Esophageal Cancer (Figure 1)

The typical duration between completing nCRT and undergoing esophagectomy may
vary, depending on the specific treatment protocol and the patient’s response to nCRT.
Generally, a waiting period of about 4 to 8 weeks is advised to allow patients to recover
from the effects of chemoradiation and for any potential tumor downsizing or downstaging
to occur. This interval also facilitates an assessment of the patient’s suitability for surgery
and allows time for necessary preoperative planning.

nCRT for locally advanced esophageal cancer is a well-established practice prior to
surgical resection, as evidenced by the Chemoradiation for Esophageal Cancer Followed
by Surgery Study (CROSS) trial [34]. Restaging imaging is recommended to confirm
that there has been no interval progression of disease or development of new metastases,
which would render the patient unresectable [35]. In esophageal carcinoma, neoadjuvant
radiotherapy can be delivered using three-dimensional (3D) conformal therapy or intensity-
modulated therapy (IMRT). IMRT has been shown to increase the radiation dose to the
primary tumor while minimizing damage to surrounding tissue compared with traditional
anterior–posterior opposing field radiotherapy [13]. At restaging with FDG PET-CT after
chemoradiotherapy, 8% of patients are found to have interval metastases [9,10]. However,
inflammatory reactions can cause false positive results on FDG PET-CT scans [36,37]. RILI
is observed in 3–8% of patients reassessed with an FDG PET-CT scan following nCRT.
Although this condition is relatively uncommon, being aware of its occurrence is crucial to
avoid mistakenly diagnosing metastatic disease (Table 2) [14].

Table 2. Diagnostic parameters of 18F-FDG PET-CT for the detection of interval metastasis by
Goense et al., 2018 [11].

Parameter 18F-FDG PET-CT

Sensitivity (%) [95%CI] 65/87 (74.7%) [64.3–83.4]
Specificity (%) [95%CI] 652/696 (93.7%) [91.6–95.4]
Positive predictive value (%) [95%CI] 65/109 (59.6%) [52.0–66.9]
Negative predictive value (%) [95%CI] 652/674 (96.7%) [95.4–97.7]
Diagnostic accuracy 91.6%
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Figure 1. Schematic figure of the current gold standard procedure for esophageal cancer treatment 
with nCRT for about 4 weeks followed by non-avid FDG PET-CT proceeding esophagectomy. 
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Figure 1. Schematic figure of the current gold standard procedure for esophageal cancer treatment
with nCRT for about 4 weeks followed by non-avid FDG PET-CT proceeding esophagectomy.

3.2. Reports of the Reference of True and False Metastasis for Restaging after nCRT

A retrospective analysis of 112 patients with distal esophageal cancer, who received
nCRT followed by restaging with FDG PET-CT, identified new liver foci in 10 out of
112 patients (9%). Nine of these cases were determined to be RILI, based on further imaging
(n = 6) or biopsy (n = 2), and one patient was diagnosed with interval metastatic disease
by biopsy. Notably, RILI occurred exclusively in the caudate and left hepatic lobes [22].
Another study involving 26 patients assessed FDG uptake in the liver before and after nCRT
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for esophageal cancer. New focal FDG uptake in the left liver lobe after chemoradiation
was seen in two patients (8%), with no increase in FDG uptake observed in the right part of
the liver. A biopsy confirmed radiation injury in one of these patients. CT scans showed
atrophy and decreased attenuation in the irradiated left liver lobe in 58% of patients, with
no signs of liver metastases [13].

Case Reports Series (Table 3) and Cohort Study

The findings of this study reveal that more than 10% of esophageal cancer patients
who undergo nCRT have detectable (interval) metastases. With a sensitivity of 73.9% and
a specificity of 91.3%, FDG PET-CT proves to be an accurate tool for identifying these
cases. Currently, a definitive restaging protocol is still absent, although previous reports
have indicated incidence rates of interval metastases between 8 and 17% [8,38–41]. To
date, two reports have specifically addressed the use of FDG PET-CT in detecting interval
metastases. In a study by Blom et al., four cases of interval metastases were identified
among 50 patients treated neoadjuvantly (8%) [8]. Restaging FDG PET-CT was conducted
6 weeks after completing neoadjuvant therapy, which included 5-FU, cisplatinum, and
50.4 Gy of radiotherapy. This cohort reported a false-positive rate of 2%, and metastatic
disease was observed intraoperatively in 1 out of 46 patients (2.2%) [8]. Another study
reviewed the records of 85 patients treated either with induction chemotherapy followed
by concurrent chemoradiotherapy or with concurrent chemoradiotherapy alone [38]. In
this group, post-nCRT FDG PET-CT identified metastatic disease in only 3.9% of patients.
The positive predictive value (PPV) of the post-nCRT FDG PET-CT for interval metastases
was notably low at 15.6% (10/64), and the findings related to the primary site on post-nCRT
FDG PET-CT did not appear to correlate with the development of metastatic disease [21].

The reported study’s findings indicate that 18F-FDG PET-CT restaging after nCRT
detects interval metastases in 8% of esophageal cancer patients, with a patient-based
sensitivity and specificity of 75% and 94%, respectively. The incidence of interval metastasis
in this study aligns with the results from other reports [8–10]. However, little is known
about the risk factors for developing interval metastases, and the small sample size in
the mentioned studies limits the ability to identify predictors for interval metastasis after
neoadjuvant therapy [8–10,42]. The false positive rate of 6% during 18F-FDG PET-CT
restaging was significant, with the lungs and liver being the most commonly affected
sites. This supports the literature reports of false positive rates ranging between 0% and
10% [8,43], with the liver and lung as the most frequently involved organs [21,22]. Previous
studies evaluating new FDG-avid hepatic lesions within the presumed radiation field in
patients with esophageal cancer have shown that these lesions are generally indicative of
RILD rather than metastatic disease [13,14,22]. 18F-FDG PET-CT restaging accurately detects
true distant interval metastases in 8.3% of patients after CRT for esophageal cancer [11].
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Table 3. Review of case reports.

Author (Year) Age TNM-
Pathology Chemotherapy

Radiotherapy
Dose-

Modality
Delay CRT

to FDG PET FDG PET CT MR Biopsy Liver
Tests

Follow-
Up

Iyer et al.
(2007) [13] 63 NA-adeno NA 50.4 Gy-3D

conformal 6w Nodular Well-defined, low
attenuation - Perop AP ↑ NA

Iyer et al.
(2007) [13] NA NA-NA NA 50.4 Gy-3D

conformal 6w Nodular Well-defined, low
attenuation - NA AP ↑ NA

Nakahara et al.
(2008) [5] 50 uT3N M2

1(bone)-NA
Docetaxel weekly

(20 mg/m2)

46 Gy +
boost 14

Gy-AP-RT
4w Wedge-

shaped

Well-defined, low
attenuation +

band-like lesion
(≈zone of <40 Gy)

- NA AP ↑ 4 months

DeLappe et al.
(2009) [44] 61 uT3N M1

0-NA

4 cycli (apirubicine
þ oxaliplatin +

capcetabine) + 3
cycli (docetaxel þ

irinotecan) +
concurrent 5-FU

50.4
Gy-IMRT 5w Ill-defined

nodular

Patchy defined, mixed
attenuation,

heterogeneous
enhancement of left

liver

- CT-guided +
perop NA NA

Wong et al.
(2012) [45] 58 NA-NA NA 50.4

Gy-AP-RT 6w
Nodular

with linear
distribution

Patchy-defined, low
attenuation in

segment 2 and 3
- NA Normal NA

Rabe et al.
(2016) [12] 53 uT3N M1

0-squamous
5 cycli (carboplatin

+ paclitaxel)
50.4 Gy-3D
conformal 2w Nodular Well-defined, low

attenuation
Hyperintens
T2-weighted Perop AP ↑ 12

months

Demey et al.
(2017) [46] 42 uT2N M1

0-adeno
Concurrent

Oxaliplatin + 5-FU
45 Gy-3D
conformal 4w Nodular

Patchy-defined, low
attenuation in

segment 2

Hyperintens
T2-weighted Perop Normal 18

months

NA: data not available; adeno: adenocarcinoma; Gy: Gray; w: weeks; AP: elevated alkaline phosphatase levels; AP-RT: conventional anterior–posterior radiotherapy; IMRT:
intensity-modulated radiation therapy; 5-FU: 5-fluorouracil.
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4. RILD Inducing False FDG PET-CT Interpretations

Clinical radiation injury in the left liver lobe, due to its anatomical position, may affect
6–66% of patients. This variance depends on the volume of hepatic tissue irradiated and
the dosage applied [13]. Grant et al. observed that all new 18F-FDG-PET-CT lesions in the
right lobe were metastatic, in contrast to the lesions in the left or caudate lobe, which were
all radiation-induced injuries. Thus, radiation fields should be meticulously compared with
the nodular lesion’s location, and only lesions outside these fields should be considered
highly suspicious of metastases [22]. Preoperative 18F-FDG-PET-CT proved useful in the
reevaluation of patients after nCRT to determine the treatment response and rule out occult
metastasis [46]. Eithne M. DeLappe reported a case of a 61-year-old esophageal cancer
patient with increased FDG uptake in the left liver lobe post-50.4 Gy radiation, where no
metastasis was found in the biopsy [44]. In Oregon, USA, out of 112 distal esophageal
cancer patients undergoing nCRT, 10 showed increased FDG uptake during restaging, with
1 later diagnosed with metastasis, while the rest had RILI [22]. At the Anderson Cancer
Center, 26 patients received similar treatment; 2 exhibited increased FDG uptake in the
left liver lobe, with no uptake in the right [13]. In a study by Francine et al. involving
205 patients, 6 exhibited increased FDG uptake in the caudate or left lobe during nCRT,
but none had liver metastasis [14]. The liver’s sensitivity to radiation restricts the use of
radiation therapy for upper abdominal tumors [12,13].

4.1. Implications of Increased FDG Uptake

The mechanism behind FDG accumulation in RILI remains uncertain, but it likely
involves an inflammatory component. It is well-documented that radiation-induced in-
flammation, such as postradiotherapy esophagitis [36], shows high FDG uptake due to
leukocyte glucose metabolism [5,47]. The exact timing and duration of this phenomenon
are unclear. Acute chemoradiotherapy side effects peak during and shortly after treatment
and then gradually subside, often taking 6 weeks or more. Serial FDG PET-CT scans
for patients suspected of RILI could offer insights into its natural progression [14]. New
FDG avidity foci in the liver developed during neoadjuvant therapy in 9% of patients,
with 8% identified as having RILD based on further imaging and/or biopsy [22]. Both
metastases and RILD can present as increased FDG avidity, usually attributed to RILD
during nCRT [22]. nCRT can cause liver damage resembling metastasis on FDG PET-CT,
often affecting the caudate and left hepatic lobes [48]. RILD may manifest on PET-CT as
focal increased FDG uptake, sometimes mistaken for metastatic disease [48].

4.2. The Formation and Classification of RILD

RILD occurs in two forms: classic and non-classic [17]. Classic RILD symptoms appear
1–3 months post-liver radiation therapy (RT), including fatigue, abdominal pain, increased
girth, hepatomegaly, and anicteric ascites [18]. Non-classic RILD, often occurring in patients
with chronic liver conditions like cirrhosis or viral hepatitis, presents more severe hepatic
dysfunctions, such as jaundice and elevated serum transaminases [17]. Radiotherapy
targeting the distal esophagus and locoregional nodes can expose adjacent nonmalignant
hepatic parenchyma to significant doses, potentially causing acute or chronic radiation
hepatitis (RH) [5,13], which may be identified on CT and FDG PET-CT as liver atrophy,
attenuation changes, and metabolic abnormalities in the irradiated liver parenchyma [13].
The development mechanisms of RILD remain largely unknown [17], but they likely begin
with damage to the central vein and sinusoid endothelial cells, leading to sinusoidal
congestion and advanced stages of veno-occlusive disease (VOD) [15,19].

4.3. Occurrence and Duration of RILD

Acute RH can occur from a dose of 30 Gy onward, typically manifesting 4–8 weeks after
RT completion. Histopathology characterizes it by sinusoidal congestion and fibrosis oc-
cluding central veins. Chronic RH emerges over 100 days post-irradiation, marked by portal
fibrosis and lobular architecture distortion, without typical centrilobular congestion [5,49].
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RILD presents symptoms like anicteric hepatomegaly, ascites, and elevated liver enzymes,
usually between 2 weeks to 3 months post-radiotherapy. Most patients recover within
3–5 months, though some may progress to liver fibrosis and failure [14]. Initially described
by Reed and Cox, RILD pathophysiology involves retrograde congestion as a key factor [15],
with occurrence times ranging from 2 weeks to 7 months post-radiation [16]. About 8% of
patients exhibit RILI during restaging [17].

4.4. Incidence of RILD

A systematic search reported a 3% incidence of RILI, with retrospective reviews finding
higher rates (8%) upon reevaluation of scans for focal uptake in the left liver lobe [13,22].
The discrepancy may be due to undetected cases of RILI in this study. RILD risk escalates
with the mean liver dose and irradiated volume. RILD is unlikely with a mean liver
dose below 31 Gy [50,51]. In distal esophageal cancer, liver radiation doses typically stay
under 30 Gy, but parts of the liver within the radiation target volume may receive up to
40–50 Gy, leading to localized RILI without clinical symptoms [5,52,53]. In a 205-patient
study undergoing nCRT, 6 cases showed localized increased FDG uptake in the liver post-
nCRT, unrelated to liver metastases. The institute’s RILD incidence was 3%, with the
literature citing about 8% at the restaging time [14].

4.4.1. Risk Factors for Radiation-Induced Liver Disease (RILD) by Tumor Cell Type

Distal esophageal cancers, including SCC and adenocarcinoma, present distinct risk
factors (Table 4) [54]. Alcohol consumption, a major risk factor for SCC, suggests patients
with SCC might face a higher incidence of liver dysfunction and, consequently, RILD,
compared with those with adenocarcinoma. This area, however, remains under-researched,
indicating a need for further studies to elucidate these correlations better.

Table 4. Risk factors for esophageal cancer * from Enzinger et al., 2003 [54].

Risk Factor Squamous Cell Carcinoma Adenocarcinoma

Tobacco use +++ ++
Alcohol use +++ -
Barrett’s esophagus - ++++
Weekly reflux symptoms - +++
Obesity - ++
Poverty ++ -
Achalasia +++ -
Caustic injury to the esophagus ++++ -
Nonepidermolytic palmoplantar
keratoderma (tylosis) ++++ -

Plummer–Vinson syndrome ++++ -
History of head and neck cancer ++++ -
Frequent consumption of extremely hot
beverages + -

* A single plus sign indicates an increase in the risk by a factor of less than two, two plus signs indicate an increase
by a factor of two to four, three plus signs indicate an increase by a factor of more than four to eight, and four plus
signs indicate an increase by a factor of more than eight.

4.4.2. Influence of Gender, Age, and Race on RILD Susceptibility

Although esophageal cancer predominantly affects males, the specific sensitivities of
different genders, ages, and ethnicities to RILD are not well-defined in the current literature.
The absence of detailed statistical analysis on these demographic aspects underscores a
crucial area for future research attention (Table 5).

4.5. Molecule Biology of RILD

Recent advancements in the understanding of RILD pathogenesis have yet to eluci-
date its molecular pathways fully. The pathogenesis of RILD involves vascular changes,
increased collagen synthesis, and the activation of growth factors and cytokines such as
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TNF-α, TGF-β, and Hedgehog, which are significant in liver repair [17,55]. Radiation
exposure results in DNA damage, oxidative stress, and the production of reactive oxy-
gen species, leading to hepatocellular apoptosis and inflammatory responses. Notably,
Kupffer cells (KCs) increase the susceptibility of hepatocytes to radiation-induced apop-
tosis through TNF-α secretion. Hepatic stellate cells (HSCs) also play a pivotal role by
transdifferentiating into myofibroblastic HSCs, the primary collagen-producing cells in the
liver, upon radiation exposure. This transdifferentiation is key in the development of RILD
given the high radiosensitivity of these cells. Furthermore, sinusoidal endothelial cell (SEC)
apoptosis is recognized as a primary event in RILD [55].

4.6. Effects and Implications of RILD
4.6.1. Radiotherapy Dosage

RILD radiation dose reports in the literature vary, mentioning pure doses up to 70 cGy,
combined with 30 cGy chemotherapy, or adjusted doses for pre-existing liver disease. The
risk of RILD strongly correlates with the mean liver dose and the volume of irradiated liver.
In distal esophageal cancer, parts of the liver may receive doses up to 40–50 Gy, leading to
localized RILD without clinical symptoms [14]. Various radiation doses and chemotherapy
regimens were used in different cases, including 41.4 Gy, 50 Gy, and 50.4 Gy in conjunction
with chemotherapy agents like carboplatin and cisplatin [14].

4.6.2. Synergistic Effects with Chemotherapy

The combined effects of chemotherapy and radiotherapy, particularly when using 3D
conformal or intensity-modulated therapy (IMRT) techniques, can induce complex liver
responses. Understanding these synergetic effects and the liver’s radiation tolerance is
crucial for predicting and managing potential RILD [9,10,16,22,56,57]. No specific details
were provided in the documents.

4.6.3. Pre-Existing Liver Diseases and Increased RILD Vulnerability

Information regarding Hepatitis B or C virus infection, liver cirrhosis, hepatomegaly,
and liver function impairment were not specified in the documents. Hepatitis B virus
carriers have a higher susceptibility to RILD [20]. Hepatitis C is presumed to pose a similar
risk level to Hepatitis B, necessitating further research to comprehend the implications for
patients with liver function risk factors associated with these hepatitis types.

4.7. Challenges in Diagnosing RILD Using Imaging

Differentiating RILD from metastatic disease using imaging techniques such as FDG
PET-CT and MRI presents significant challenges. Although imaging features are evolv-
ing, they currently offer vital insights into the nature and extent of radiation-induced
damage [44,52,58–62]. No specific details were found regarding the sensitivity of Sono, CT,
MRI, FDG PET-CT liver, or liver biopsy techniques in the documents.

4.7.1. Sonography of Liver and Its Sensitivity

Ultrasonography remains a mainstay for anatomical imaging of the liver. The advent
of new techniques, such as elastography and quantitative ultrasound parameters, has broad-
ened the scope for assessing liver tissue properties beyond mere echogenicity. This involves
measuring acoustic parameters to gauge tissue microstructure, which shows promise in
monitoring the severity of hepatic steatosis in chronic liver diseases. Such advancements
in ultrasound technology significantly enhance the diagnosis of liver disease, particularly
in identifying RILD [63]. Sonography typically reveals a hypoechoic appearance over the
caudate lobe (Figure 2A).
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Figure 2. (A) Sonography of the liver reveals a hypoechoic appearance over the caudate lobe. (B) The
contrast CT scan shows decreased enhancement in S1 of the liver. (C) MRI T1-weighted pictures of
the liver reveal a low signal intensity over the caudate lobe. (D) MRI T2-weighted pictures of the
liver indicate a strong signal intensity over the caudate lobe. Reprinted with permission from Sen-Ei
Shai et al. (2020) [48].

4.7.2. CT Scan and Its Sensitivity

The evolution of noninvasive imaging techniques continues to refine RILD charac-
terization [58]. Post-radiotherapy CT scans reveal reversible, distinct areas of reduced
enhancement in irradiated liver regions, possibly indicating an increase in water or fat
content [52,59,60]. Radiation-induced VOD may cause enhanced imaging due to increased
augmented arterial flow or delayed contrast clearance [61]. RILD can manifest as hypo-
or hyper-attenuated non-anatomic areas [62], with CT imaging typically displaying sharp,
straight margins aligned with radiation portals [13]. In contrast, metastatic lesions tend to
appear more mass-like and rounded on CT scans [13]. Acute RH is characterized by areas
of low attenuation with sharp linear borders on non-contrast CT, observable in patients
receiving more than 30–45 Gy [5,12,13,45]. Enhanced CT imaging may show increased con-
trast in irradiated liver areas due to augmented arterial flow or delayed contrast clearance
from radiation-induced VOD [12]. Contrast CT scans depict decreased enhancement in
S1 of the liver (Figure 2B), indicating edema in the irradiated area. Modern radiotherapy
techniques, utilizing multiple beams from varied angles, present a less pronounced dose
gradient. This results in a small volume of normal tissue near the target area receiving
a relatively high dose, while a larger volume of surrounding tissue receives lower doses.
Consequently, liver injury is typically confined to the high-dose irradiated area, leading to
localized edema and reduced attenuation on CT scans [64].

4.7.3. MRI and Its Sensitivity

MRI imaging post-liver radiation showcases decreased signal intensity on T1-weighted
images, increased T2 intensity, and enhanced proton spectroscopic imaging signals in
irradiated lobes, indicating elevated water content [60]. The high resolution and soft
tissue contrast of MRI make it ideal for differentiating organs [65]. Clinical studies have
used MRI to monitor radiation damage in the liver [66], myocardium [67,68], and bone
marrow [69,70]. MRI performed five weeks post-RT revealed a hypointense signal on
T1-weighted images and a markedly hyperintense signal on T2-weighted images, alongside
facilitated diffusion on diffusion-weighted MR imaging (DWI) images. These findings
showed heterogeneous alterations in the entire left liver lobe, attributed to mild RH in this
region and central acute RH in segment 2 [46]. The manifestation of MRI T1-weighted
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images of the liver displayed low signal intensity over the caudate lobe (Figure 2C), whereas
whole T2-weighted images showed strong signal intensity over the same area (Figure 2D).
Generally, liver areas subjected to high radiation doses exhibit low signal intensity on
T1-weighted images and high signal intensity on T2-weighted images due to edema [37,64].

4.7.4. SUVmax (Standardized Uptake Value) Value in FDG PET-CT Serve as Indicators
of RILD

The reported studies do not extensively compare FDG PET-CT SUVmax value be-
tween radiation injury and metastatic lesions. However, RILD typically shows SUVmax
ranging from 4 to 9/h, while metastatic lesions often have values exceeding 10/h, sug-
gesting the presence of metastasis. New hepatic FDG foci observed during neoadjuvant
chemoradiation for esophageal cancer usually signify RILD, attributed to the increased
FDG uptake by active leukocytes involved in inflammatory responses [44]. This pattern
implies a lower likelihood of metastasis [22]. The location of these foci within the radiation
field, typically the left and caudate lobes, is a crucial factor [22]. Before undergoing nCRT,
the esophageal tumor demonstrated high FDG uptake (measuring 9.7 × 5.6 cm with an
SUVmax of 29.3/h), as indicated by red circles. Notably, there were no active lesions in
liver segment I prior to nCRT, as indicated by red arrows (Figure 3). Imaging showed a
reduction in esophageal tumor after six weeks of nCRT (measuring 2.1 × 1.6 cm with an
SUVmax of 7.7/h), as highlighted in yellow circles (Figure 4). Six weeks post-nCRT, a new
FDG-avid lesion appeared in liver segment I (measuring 3.5 × 1.5 cm with an SUVmax of
4.2/h), as indicated by yellow arrows (Figure 5).
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Figure 3. Prior to neoadjuvant chemoradiotherapy (nCRT), the esophageal tumor exhibited high FDG
uptake (9.7 × 5.6 cm, SUVmax: 29.3/h) (red circles). There were no active lesions in liver segment I
before nCRT (red arrows). Reprinted with permission from Sen-Ei Shai et al. (2020) [48].
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Shai et al. (2020) [48].



Cancers 2024, 16, 948 14 of 20

4.7.5. Biopsy Options for Diagnosis of Liver lesions—Procedures Guided by Sonography,
CT Scan, Mini-laparoscopy, Open Biopsy, or Clinical Observation

Pathological Characteristics of RILD

RILD manifests as a VOD primarily affecting the central veins [71]. The process begins
with radiation-induced damage to endothelial cells, leading to platelet activation and fibrin
deposition. This cascade results in vessel congestion, activation of hepatic stellate cells,
and obstruction of blood flow. Consequently, these events trigger the loss of hepatocytes,
fibrosis, and potentially necrosis [71].

Gross and Microscopy Appearance of RILD

The gross and microscopic examination of RILD reveals significant pathological
alterations. The affected liver tissue, particularly in the caudate lobe, appears dark red and
infiltrated with blood, indicating acute radiation damage (Figure 6A,B). Microscopically,
this damage is characterized by congestion, thinned hepatic cords, and spaces filled with
erythrocytes (Figure 6C,D). These findings disrupt the normal liver architecture, signal-
ing extensive damage to the liver parenchyma due to vascular and cellular reactions to
radiation. Such damage impairs liver function by disturbing blood flow and causing cell
death. The specific reference to the caudate lobe suggests a localized impact of radiation,
providing insights into the radiation’s distribution and intensity.
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Figure 6. (A) The normal liver versus the inflamed caudate lobe. (B) An up-close image of the liver,
showing dark red, soft tissue, and blood infiltration in the caudate lobe. Pathology of the liver caudate
lobe. (C) A low-power field reveals no tumor metastasis at a magnification of 20×. (D) A high power
field indicates congestion with attenuated hepatic cords filled with erythrocytes at a magnification of
40×. Reprinted with permission from Sen-Ei Shai et al. (2020) [48].

5. Overview of Literature Review

A comprehensive summary of various studies related to the specific study and findings
of esophageal cancer treatment is provided in Table 5.
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Table 5. Overview of Literatures.

Author (Year) Gender Age (Range) Race
Chemoradiotherapy Liver

Function * Stage
Esophageal

Cancer

Neoadjuvant Dose Medicine SCC Adeno Other

1 Rabe et al.
(2016) [12] F 53 NA Yes 50.4 Gy Cbp and Ptx Yes T3N1M0-->T2-

weighted 1 0 0

2 Iyer et al.
(2007) [13] 24M/2F 54 (41–78) NA Yes 50.4 Gy NA Yes NA 2 24 0

3 Daly et al.
(2007) [4]

74.2%M/25.8%F,
n = 5044 67.3

76.8%
Non-Hispanic

Caucasian, 19.2%
African American,

4.0% Hispanic

NA NA NA NA

Clinical stage—0
(2.2%), I (14.1%),

II (23.0%),
III (22.1%),
IV (38.7%)

51.6% 41.9% 0

4 Nakahara et al.
(2008) [5] M 50 NA Yes

46 Gy with an
additional boost

irradiation of
14 Gy.

Dot Yes

Diagnosed with
esophageal
cancer with

lymph node and
bone metastases

NA NA 0

5 Voncken et al.
(2018) [14] M 50 NA Yes 50.4 Gy Cbp and Ptx NA T3N1M0 1 0 0

M 62 Not specified Yes 41.4 Gy Cbp and Ptx No T3N0M0 0 62 0

M 41 NA Yes 41.4 Gy Cbp and Ptx No T3N1M0 0 41 0

M 59 NA Yes 50 Gy Cis and 5-FU No T3N1M0 0 1 0

M 49 NA Yes 41.4 Gy Cbp and Ptx No T3N1M0 0 1 0

6 Stiekema et al.
(2014) [10] 60M/16F 63 (46–80) NA Yes 50 Gy or

50/50.4 Gy
5-FU and Cis or

Cbp and Ptx NA NA 14 60 2

24M/2F 63 (46–80) NA Yes
50 Gy (n= 21) or
41.4 Gy (n = 50)

or 50.4 Gy (n = 5)

5-FU and Cis
(n = 21) or Cbp and

Ptx (n= 55)
NA NA 9 39 0

7 Grant et al.
(2014) [22] 93M/19F 57 (28–81) NA Yes 41.4–50.4 Gy NA NA NA 21 97 4

8 Wieder et al.
(2004) [56] 27M/11F 60 (46–73) NA Yes 40 Gy 5-FU NA NA 38 0 0

9 DeLappe et al.
(2009) [44] M 61 NA Yes 50.4 Gy NA NA T3N1M0 0 1 0

10 Shai et al.
(2020) [48] M 66 Asian Yes 50 Gy NA No T3N1M0 1 0 0
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Table 5. Cont.

Author (Year) Gender Age (Range) Race
Chemoradiotherapy Liver

Function * Stage
Esophageal

Cancer

Neoadjuvant Dose Medicine SCC Adeno Other

11 Demey et al.
(2016) [46] M 42 NA Yes 45 Gy Oxa, levofolinic

acid, and 5-FU No uT2N1M0 0 1 0

12 Anderegg et al.
(2015) [72]

76.3%M,
n = 156 65 (34–83) NA Yes 41.4 Gy

Cbp and Ptx
(n = 139) or Cbp,
Ptx, and Vectibix

(n = 17)

NA NA 29 126 1

13 Voncken et al.
(2018) [14] M 50 NA Yes 50.4 Gy Cbp and Ptx NA T3N1M0 1 0 0

M 62 NA Yes 41.4 Gy Cbp and Ptx No T3N0M0 0 1 0

M 41 NA Yes 41.4 Gy Cbp and Ptx No T3N1M0 0 1 0

M 59 NA Yes 50 Gy Cis and 5-FU No T3N1M0 0 1 0

M 49 NA Yes 41.4 Gy Cbp and Ptx No T3N1M0 0 1 0

M 75 NA Yes 50 Gy Cbp and etoposide No T2N1M0 0 0 1

14 Goense et al.
(2018) [11] 675M/108F <65, n = 425;

≥65, n = 358 NA Yes 45 Gy or 50.4 Gy
Oxa and 5-FU or
Doc and 5-FU or
Xeloda and 5-FU

or other
NA NA 111 672 0

15 Gabriel et al.
(2017) [21] 234M/24F 61.5 NA Yes 50.4 Gy

Cis and Iri/Cbp
and Ptx or Oxa and

Xeloda or 5-FU
and Cis

NA NA 39 219 0

16 Li et al. (2020)
[73] 76M/48F 56 (25–82) NA NA NA NA NA NA 20 69 35

17 Blom et al.
(2011) [8] 40M/10F 61 (56–67) NA Yes 50.4 Gy Cis and 5-FU NA Stages II to IVa 9 40 1

18 Cerfolio et al.
(2005) [40] 41M/7F 68 (48–76) NA Yes <50 Gy (n = 22),

>50 Gy (n = 26) NA NA Stages I to Ivb 5 43 0

M: male; F: female; NA: data not available; SCC: squamous cell carcinoma; Adeno: adenocarcinoma; Gy: Gray; Cbp: Carboplatin; Ptx: paclitaxel; Dot: Docetaxel; 5-FU: 5-fluorouracil; Cis:
cisplatin; Iri: irinotecan; Oxa: oxaliplatin; Xeloda: Capecitabine; Vectibix: panitumumab. * Liver function: Yes indicates abnormal; No represents normal.
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6. Conclusions

New foci of increased FDG avidity are commonly observed in the caudate and left
hepatic lobes of the liver during nCRT for distal esophageal cancer. These findings are often
indicative of RILD rather than metastatic disease. It is crucial to be aware of the pitfalls
associated with high FDG uptake in RILI to prevent misinterpretation and ovestaging. In
addition to the location of FDG uptake, the lesion’s shape, and an SUVmax value greater
than 10/h, a convincing liver MRI or even a liver biopsy can provide accurate information
to distinguish between RILI and liver metastasis. Typically, surgery is scheduled for
approximately 6–8 weeks after the completion of CRT. Prior to proceeding with surgery, an
FDG PET-CT evaluation is recommended to check for new interval metastases. Patients
presenting with these will usually not proceed to surgery.
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Abbreviations

nCRT neoadjuvant chemoradiotherapy
CRT chemoradiotherapy
18F-FDG F-18-fluorodeoxyglucose
PET-CT positron emission tomography–computed tomography
RILI radiation-induced liver injury
RILD radiation-induced liver disease
TB tuberculosis
IMRT intensity-modulated therapy
RT radiation therapy
RH radiation hepatitis
VOD Veno Occlusive Disease
SCC squamous-cell carcinoma
KC Kupffer cells
HSC Hepatic stellate cell
SEC sinusoidal endothelial cell
IMRT intensity modulated therapy
SUV standardized uptake value
FLOT4 5FU, Leucovorin, Oxaliplatin, Docetaxel
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