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Simple Summary: The aryl hydrocarbon receptor (AhR) is a cytoplasmic and environmental receptor
that responds to both exogenous and endogenous ligands to impart a broad range of functions
and thereby significantly impact cancer progression. AhR activation impacts both tumor-intrinsic
pathways and immune cells in a context-specific manner. Understanding the impact of AhR activation
on the tumor immune microenvironment is critical to guide cancer therapies targeting the receptor.

Abstract: The aryl hydrocarbon receptor (AhR) is a ubiquitous nuclear receptor with a broad range
of functions, both in tumor cells and immune cells within the tumor microenvironment (TME).
Activation of AhR has been shown to have a carcinogenic effect in a variety of organs, through
induction of cellular proliferation and migration, promotion of epithelial-to-mesenchymal transition,
and inhibition of apoptosis, among other functions. However, the impact on immune cell function is
more complicated, with both pro- and anti-tumorigenic roles identified. Although targeting AhR in
cancer has shown significant promise in pre-clinical studies, there has been limited efficacy in phase
III clinical trials to date. With the contrasting roles of AhR activation on immune cell polarization,
understanding the impact of AhR activation on the tumor immune microenvironment is necessary to
guide therapies targeting the AhR. This review article summarizes the state of knowledge of AhR
activation on the TME, limitations of current findings, and the potential for modulation of the AhR as
a cancer therapy.

Keywords: aryl hydrocarbon receptor; tumor immune microenvironment; immunotherapy; tumor
immune evasion

1. Introduction

The aryl hydrocarbon receptor (AhR) is a cytoplasmic receptor and ligand-dependent
transcription factor that functions as an environmental sensor. Through binding with a
broad spectrum of both endogenous and exogenous ligands, AhR activates or inhibits
cellular pathways in a cell-specific and context-specific manner [1]. Table 1 details com-
mon agonists and antagonists of AhR and their sources, which have previously been
reviewed in detail [2–4]. In the absence of ligands, AhR is located in the cytoplasm, and
activation through binding with a ligand leads to nuclear translocation and interaction
with the AhR nuclear translocator (ARNT) to bind dioxin or aryl hydrocarbon response
elements and promote transcriptional regulation (Figure 1) [1,5], as detailed in depth in
the review by Larigot et al. [6]. AhR was initially studied as a receptor for the exogenous
ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) [7] and shown to have carcinogenic
effects in a variety of organs [8]. Through direct activation of cancer cells, AhR signaling
has been implicated in induction of cellular proliferation and migration [9,10], promo-
tion of epithelial-to-mesenchymal transition and metastasis [11], and the inhibition of
apoptosis [12].
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In addition to revealing their broad role in carcinogenesis, initial studies on AhR
and TCDD demonstrated an immunosuppressive effect of TCDD on T cells and dendritic
cells [13]. More recently, AhR activation has been shown to have a physiologic role in the
differentiation and maintenance of the function of immune cells upon binding to ligands
from diet, microbial byproducts, and host cell metabolism [14]. With significant effects on
immune function and its direct signaling in tumor cells, activation of AhR has emerged
as an important modulator of the tumor immune microenvironment, with both pro- and
anti-tumor effects.

Table 1. Common AhR agonists and antagonists listed by source [2–4].

Source Ligand

Agonists

Endogenous

Tryptophan Metabolites:
- Kynurenic acid
- Kynurenine
- 6-formylindolo[3,2b]carbazole (FICZ)
- Indoxyl sulfate
Heme-Derived:
- Bilirubin
- Biliverdin
Arachidonic Acid Metabolites:
- Lipoxin 4
- Prostaglandin PGG2
- Hydroxyeicosatrienoic acid

Dietary

Indoles:
- Indole-3-carbinol
- 3,3′-diindoylmethane
- Indolo[3,2b]carbazole
Flavonoids:
- Quercetin
- Galangin

Microbiota

- Indirubin
- Indol-3-acetic acid
- Indole-3-aldehyde
- Tryptamine
- 1,4-dihydroxy-2-napthoic acid

Xenobiotic

Halogenated Aromatic Hydrocarbons:
- 2,3,7,8-tetrachlorodibenzo-p-dioxin
- Benzo[a]pyrene
- Benzanthracenes
- Benzoflavones
- Biphenyls
- Polyaromatic hydrocarbons
Other:
- Omeprazole
- Tranilast
- Leflutamide

Antagonists

Dietary - Resveratrol

Xenobiotic
- CH-223191
- StemRegenin 1
- GNF352
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lation of cellular proliferation and migration, epithelial-to-mesenchymal transition, apoptosis, angi-
ogenesis, stemness, and expression of immune checkpoints. Abbreviations: MMP-9 (matrix metal-
loproteinase-9), Memo-1 (mediator of cell motility 1), Bcl-2 (B-cell lymphoma 2), cIAP (cellular in-
hibitor of apoptosis protein), XIAP (x-linked inhibitor of apoptosis protein), VEGF (vascular endo-
thelial growth factor), ALDH (aldehyde dehydrogenase), ABCG2 (ATP-binding cassette super-fam-
ily G member 2), PD-L1 (programmed death-ligand 1), and CTLA4 (cytotoxic T-lymphocyte-associ-
ated protein 4). 
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kynurenine, has been proposed to abrogate tumor intrinsic malignant signaling and en-
hance anti-tumor immunity [15,16]. Preclinical studies of IDO1 in experimental models of 
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benefit of AhR modulation, phase III clinical trials to date have been ineffective—inhibi-
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Figure 1. Tumor-associated AhR activity is often increased compared to adjacent normal tissue.
The AhR is a cytoplasmic receptor responsive to a variety of endogenous and exogenous ligands
that translocates to the nucleus upon activation. Elevated AhR activity leads to a variety of down-
stream tumor-intrinsic effects that impact tumor proliferation and therapeutic resistance, including
modulation of cellular proliferation and migration, epithelial-to-mesenchymal transition, apoptosis,
angiogenesis, stemness, and expression of immune checkpoints. Abbreviations: MMP-9 (matrix
metalloproteinase-9), Memo-1 (mediator of cell motility 1), Bcl-2 (B-cell lymphoma 2), cIAP (cellular in-
hibitor of apoptosis protein), XIAP (x-linked inhibitor of apoptosis protein), VEGF (vascular endothe-
lial growth factor), ALDH (aldehyde dehydrogenase), ABCG2 (ATP-binding cassette super-family G
member 2), PD-L1 (programmed death-ligand 1), and CTLA4 (cytotoxic T-lymphocyte-associated
protein 4).

Multiple strategies have been proposed to modulate AhR activity, including regulation
of endogenous ligand production. Inhibition of indoleamine-2,3-dioxygenase 1 (IDO1), a
key enzyme regulating tryptophan catabolism to the AhR ligand (AhRL) kynurenine, has
been proposed to abrogate tumor intrinsic malignant signaling and enhance anti-tumor
immunity [15,16]. Preclinical studies of IDO1 in experimental models of cancer using this
strategy have shown promise [17–19]. However, despite the theoretical benefit of AhR
modulation, phase III clinical trials to date have been ineffective—inhibition of IDO1 in
combination with immune checkpoint inhibitors (ICI) showed no difference in survival
compared to ICI alone in metastatic or unresectable melanoma [20]. Recently, the discovery
of the enzyme interleukin-4-induced-1 (IL4I1) as an additional regulator of tryptophan
catabolism with IDO1 [21], along with the likely paracrine pathways of AhR production
within tumors [22], suggested that inhibition of IDO1 alone may be insufficient to target
AhR signaling. Additionally, given the complex cell-specific role of AhR signaling on
immune function within the tumor microenvironment (TME), therapeutic targeting of
AhR in cancer requires careful consideration. Herein, we review the impact of AhR on the
tumor immune microenvironment, limitations of current findings, and the potential for
modulation of AhR as a cancer therapy.
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2. Role in Carcinogenesis

AhR has long been associated with a variety of cancers, and its expression is elevated
and the receptor chronically active in tumors, including T cell leukemia [23], B cell lym-
phoma [24], hepatocellular carcinoma [25], glioblastoma [26], and lung cancer [27], among
others. Wang et al. previously reviewed the association of AhR activity, increased tumor
aggression, and worse oncologic outcomes [28]. Constitutive activation is thought to impact
carcinogenesis through disruptions in physiologic and pathologic processes, including
cellular proliferation and migration, apoptosis, extracellular matrix remodeling, and the
induction of angiogenesis (Figure 1).

Elevated AhR activity leads to a variety of downstream tumor-intrinsic effects that
impact tumor proliferation and therapeutic resistance, including modulation of cellular
proliferation and migration, epithelial-to-mesenchymal transition, apoptosis, angiogenesis,
stemness, and expression of immune checkpoints.

2.1. Cellular Proliferation and Migration

AhR activation has been implicated in cellular proliferation in a variety of tumor types.
Disruption of AhR function in a murine hepatoma cell line led to decreased proliferation
and prolonged doubling time compared to its wild-type counterpart [29]. Overactivation
by treatment with the AhR agonist TCDD led to increased cellular proliferation in a lung
cancer cell line [30], and a similar trend was seen in human mammary epithelial cells [10].

In addition to playing a role in cellular turnover, AhR signaling appears to influence
the propensity of tumors to invade and migrate through modulation of cell adhesion, where
the loss of cell adhesion molecules and signaling renders cancer cells more motile and
invasive [31]. AhR activation with TCDD disrupted cell–cell contact and induced migration
via a c-Jun N-terminal kinase (JNK)-dependent pathway in breast cancer [9], which was
abrogated with JNK inhibition [32]. This AhR-dependent cellular migration appears to
be mediated in part by regulation of matrix metalloproteinases (MMPs) and mediator
of cell motility 1 (Memo-1). In gastric cancer, AhR activation via TCDD induces MMP-9
expression and enzymatic activity in a dose-dependent manner, thereby promoting cellular
invasion [33]. Studies in a prostate cancer model corroborated the upregulation of MMP-9
expression with AhR activity [34]. In colon cancer, Ahr/ARNT activity was mediated by
expression of Memo-1, a gene implicated in colorectal carcinoma (CRC) migration, and
Memo-1 depletion led to decreased CRC cell migration and invasion [35]. These studies
suggest that AhR activation influences loss of cell–cell contact and extracellular matrix
remodeling, thereby promoting cellular migration and invasion.

2.2. Epithelial-to-Mesenchymal Transition and Metastasis

Epithelial-to-mesenchymal transition (EMT) is the process through which epithelial
cells, which normally interact with a basement membrane, lose apicobasal polarity and
acquire a more mesenchymal phenotype, thereby increasing the ability of cells to metasta-
size [11]. Loss of E-cadherin expression is an important step in EMT, which is regulated by
the genes Snail, Slug, Twist, and vimentin [11,36]. In both triple-negative breast cancer and
inflammatory breast cancer cell lines, AhR activation via 6-formylindolo(3,2-b)carbazole
(FICZ), a prototypical AhR ligand, increased expression of the EMT-associated genes Snail1,
Twist, and vimentin [37]. Similarly, induction of an AhR plasmid into mammary epithelial
cells induced motility, vimentin expression, and morphologic changes consistent with
EMT [10]. Clinically, high AhR expression in inflammatory breast cancer correlates with
lymph node metastases and advanced tumor grade [38]. This induction of EMT has also
been found in other tumor types. AhR was overexpressed in esophageal squamous cell car-
cinoma (SCC), and selective AhR modulation with DIM (3,3′-diindolylmethane) inhibited
migration and invasion and downregulated the mesenchymal markers vimentin and Slug
to suppress both EMT and metastases [39]. Taken together, these studies implicate a role
for AhR activation in the promotion of EMT and the propensity for tumors to metastasize.
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2.3. Apoptosis

One of the hallmarks of malignant cells is the ability to resist cell death and apoptosis.
Recent studies have implicated the AhR pathway in resistance to cellular death through
upregulation of anti-apoptotic protein expression. Treatment with TCDD led to the loss
of apoptosis response in three lymphoma cell lines through the downregulation of B-cell
lymphoma-extra-large (Bcl-xL) and myeloid cell leukemia-1 (mcl-1), which was abrogated
with an AhR antagonist [12]. In skin keratinocytes, AhR activation was shown to decrease
UVB-induced apoptosis [40], and AhR knockout subsequently led to decreased SCC for-
mation in a UVB mouse model [41]. Further, in estrogen receptor (ER)-positive breast
cancer, AhR signaling increased antiapoptotic x-linked inhibitor of apoptosis (XIAP) and
superoxide dismutase type 1 in two cell lines, leading to apoptotic resistance [42]. In pan-
creatic cancer, the AhR ligand kynurenine increased expression of multiple anti-apoptotic
proteins, including XIAP and B-cell lymphoma 2 (Bcl-2), while decreasing the pro-apoptotic
protein bax, which was abrogated with the addition of the AhR inhibitor CH-223191 [43].
Taken together, these studies show that activation of AhR enhances tumor cells’ ability to
resist apoptosis.

2.4. Angiogenesis

Angiogenesis is critical to providing oxygen and nutrients to a proliferating tumor
and impacts the propensity for metastasis. AhR activation has been shown to promote an-
giogenesis through a variety of mechanisms. Activated AhR-ARNT heterodimers interact
with hypoxia-inducible factor (HIF)-1α to increase expression of interleukin-8 and vascu-
lar endothelial growth factor (VEGF), downregulate expression of transforming growth
factor beta, and promote new vessel formation [44,45]. This AhR-mediated angiogenesis
appears to be dependent upon VEGF: while AhR null mice had impaired angiogenesis, the
phenotype was rescued with the addition of VEGF [45].

3. Role in Innate Immunity

AhR has been implicated in the differentiation and function of a variety of both innate
and adaptive immune cells. In this section, we review the known impact of AhR on various
immune subtypes (Figure 2), as well as the limitations of current findings.

3.1. Dendritic Cells

Dendritic cells (DCs) and macrophages are antigen-presenting cells (APCs) that medi-
ate adaptive immune responses through processing and presentation of foreign antigens.
The impact of AhR signaling on DC function is complex and context dependent. AhR
expression is important in monocyte-derived type 1 DC differentiation, which plays an
important role in the anti-tumor response [46,47]. However, AhR has also been found to
regulate differentiation of tolerogenic DCs in mice, defined by decreased co-stimulatory
signals, immature phenotype, and expression of inhibitory molecules and cytokines [48].
Tolerogenic DCs have been shown to induce immunosuppressive regulatory T cells (Tregs)
through an AhR-dependent pathway mediated by tryptophan metabolites and nuclear coac-
tivator 7 [49]. The dichotomous impact of AhR on dendritic cells underscores the need for
further studies to understand its true role in DC subsets and its impact on tumor immunity.

3.2. Macrophages

Macrophages are APCs that are thought to span a continuum from a more inflamma-
tory M1 phenotype associated with nitric oxide expression to an anti-inflammatory M2
phenotype associated with arginine expression [50]. M1 macrophages are thought to be
more anti-tumorigenic, while M2 macrophages suppress cytotoxic T cell function, thereby
impairing immune surveillance [51]. AhR is critical in macrophage polarization, as demon-
strated by AhR knockout in M1-polarized macrophages. This leads to production of more
inflammatory cytokines, but significantly decreased phagocytic capacity, rendering mice
more susceptible to infection. Interestingly, AhR knockout in M2-polarized macrophages
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decreases immunoregulatory IL-10 production, but increases arginase activity, thereby
heightening their immunosuppressive capabilities [52]. Macrophages found within the
TME are known as tumor-associated macrophages (TAMs), and their polarization state and
functionality are similarly influenced by AhR activation, leading to enhanced immuno-
suppression. In melanoma, increased expression of IDO1 or tryptophan 2,3-dioxygenase
(TDO), another enzyme involved in metabolizing tryptophan to AhR ligands, increases the
abundance of TAMs and polarizes to a more M2-like immunosuppressive phenotype [17].
In a pancreatic cancer mouse model, TAMs demonstrated high AhR activity, and a reduc-
tion in AhR deficiency activity in TAMs led to a more inflammatory phenotype associated
with control of tumor growth [19].
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Figure 2. Aryl hydrocarbon receptor ligands’ impact on tumor immunity. Summarized here is
the impact of AhR activation on macrophages, NK cells, CD8+ and CD4+ T cells, MDSCs, DCs,
and ILCs. There are a variety of sources of AhR ligands within the tumor microenvironment, and
activation of AhR in immune cells can lead to pro- or anti-tumorigenic effects. For instance, AhR
activation in macrophages has been shown to increase inflammatory cytokine secretion but decrease
phagocytic capacity and increase immunosuppressive arginase expression. In CD8+ T cells, AhR
activation leads to increased exhaustion markers and immune checkpoint expression, as well as
increased tissue-resident memory-like T cells. CD4+ T cells are subject to ligand-specific effects, but
AhR activation generally increases FoxP3+ and Tr1 Tregs as well as Th22 cells. Additionally, AhR
activation promotes both type 1 DCs and tolerogenic DCs. Abbreviations: NK (natural killer), IDO
(indoleamine 2,3-dioxygenase), TDO (tryptophan 2,3-dioxygenase), IL4I1 (interleukin 4-induced 1),
MDSC (myeloid-derived suppressor cell), DC (dendritic cell), Tr1 (Type 1 regulatory T cell), Treg
(regulatory T cell), ILC (innate lymphoid cell), and PD-1 (programmed cell death receptor-1).

In addition to influencing the overall polarization state of TAMs, T cell–macrophage
crosstalk is critical to anti-tumor immunity and regulated by AhR activation. In glioblas-
toma, macrophage-derived kynurenine suppressed T cell-mediated immunity, and
macrophage-specific deletion of AhR in an intracranial glioblastoma mouse model re-
duced tumor growth [53]. Kynurenine-mediated AhR activation led to increased C-C motif
chemokine receptor 2 (CCR2) activation and TAM recruitment, as well as recruitment of
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ectonucleotidase CD39, which promoted CD8+ T cell dysfunction [53]. In line with this,
AhR activation promoted expression of immunosuppressive programmed death-ligand 1
(PDL1) in TAMs, and AhR inhibition mildly decreased the tumor size and improved the
CD8 to Treg ratio in a separate glioblastoma model [54]. In pancreatic cancer, macrophage-
specific deletion of AhR or AhR inhibition impaired tumor growth, improved the efficiency
of checkpoint blockade therapy, and increased infiltration of CD8+ T cells [19]. In general,
AhR activation appears to polarize to an immunosuppressive macrophage phenotype,
while dampening T cell function.

3.3. Myeloid-Derived Suppressor Cells

Myeloid-derived suppressor cells (MDSCs), a heterogenous group of neutrophils and
monocytes with potent immunosuppressive activity, are known to impair the anti-tumor
immune response [55]. Evidence of the role of AhR in MDSC tumor immunity is limited.
There is some evidence that intraperitoneal exposure to the prototypical ligand TCDD
may increase MDSCs within the peritoneal cavity and spleen among wild-type mice [56].
However, it is possible that this finding was unrelated to actual activation by TCDD and
may instead be related to dysbiosis, as TCDD was shown to alter the gut microbiome and
bacterial tryptophan metabolism [57]. Additionally, the non-microbial-associated indole-3-
proprionic acid, an AhRL produced from dietary tryptophan, was also shown to induce
polymorphonuclear MDSC differentiation in vitro [58]. Given these limited results, further
studies are needed to understand the role of AhR in MDSC differentiation and function.

3.4. Natural Killer Cells and Innate Lymphoid Cells

Natural killer (NK) cells are cytotoxic innate immune cells of lymphoid origin that are
integral in viral and anti-tumor responses [59]. A correlation between NK infiltration and
overall survival has been seen in multiple cancer types [60], and AhR activation appears
to potentiate NK cell cytolytic activity. Cytokine stimulation with interleukin (IL) 2, IL15,
or IL12 induced AhR expression in NK cells of mice in vitro, while knockout of AhR in
NK cells reduced their cytolytic activity and ability to control lymphoma formation [61].
In addition to improving cytolytic activity, AhR activation has been shown to promote
NK cell migration. Murine Ahr−/− NK cells had reduced capacity to migrate, associated
with decreased ankyrin repeat and SOCS box protein 2 (Asb2) gene expression. Similarly,
Asb2 knockdown in human NK cells demonstrated reduced migratory capacity [62]. Taken
together, these studies suggest that AhR activation appears to be critical for proper NK
cell function.

Innate lymphoid cells (ILCs) are innate immune cells derived from common lymphoid
progenitors. ILCs are primarily tissue resident and respond to tissue damage via secretion
of cytokines to mediate both innate and adaptive immunity. The three general families of
ILCs (types 1, 2, and 3) differ in their principal transcription factor and cytokine production
profile. Type 1 ILCs are generally thought to be pro-inflammatory and, therefore, anti-
tumor; however, there is conflicting evidence on the overall role of type 2 ILCs (ILC2) and
their impact on tumorigenesis. For instance, ILC2s have been shown to both suppress
NK cell-mediated tumor cytotoxicity via interleukin-33 in melanoma [63] and to promote
MDSC differentiation and tumor establishment [64,65]. However, high ILC2 infiltration
has also been associated with improved prognosis in melanoma [66] and pancreatic ductal
adenocarcinoma (PDAC) [67]. Further studies are needed to determine the role of ILC2s in
tumor immunity given the context-dependent results to date.

In contrast, type 3 ILCs (ILC3), driven by the retinoic acid receptor-related orphan
receptor gamma t (RORγt) transcription factor, are highly sensitive to AhR activation.
ILC3s are generally seen as pro-tumorigenic, as suggested by studies in both hepatocellular
carcinoma [68] and colorectal cancer [69], in part due to their ability to induce tumor cell
signal transducer and activator of transcription 3 (STAT3) activation and cellular prolifer-
ation [69,70]. In breast cancer, ILC3s are associated with lymph node metastasis, and in
mice, depletion of ILC3s decreased lymph node metastasis [71]. AhR regulates the differ-
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entiation and proliferation of ILC3s and is necessary for interleukin-22 (IL22) production
within ILC3s [72,73]. IL22 has been shown to promote cancer formation in both the colon
and pancreas. AhR plays a critical role in driving the balance of ILCs, with activation of
AhR shown to suppress ILC2s and promote ILC3s [74,75]. Consistent with this, murine
AhR knockouts have more ILC2s in the gut compared to their wild-type counterparts [74].
Similarly, ILC3s and IL22 expression was decreased in Ahr−/− and Ahrfl/flRorc-cre mice,
while the constitutively expressed knock-in Ahr+/dCAIR demonstrated increased ILC3s and
IL22 [74,75].

3.5. Role in Adaptive Immunity
3.5.1. CD8+ T Cells

There is conflicting evidence on the role of AhR in CD8+ T cell subsets, where activation
has been shown to induce both pro-tumorigenic and anti-tumorigenic phenotypes. AhR
activation promotes T cell exhaustion and reduces effector T cell function, but at the
same time promotes formation of tissue-resident memory (TRM)-like cells associated with
anti-tumor responses and disease control. In a murine model of influenza A infection,
TCDD-treated mice showed reduced CD8+ effector T cells in lungs and lymph nodes in an
AhR-dependent manner [76]. In tumors, kynurenine activated AhR and led to upregulated
programmed cell death protein 1 (PD-1) expression on CD8+ T cells, promoting T cell
exhaustion. Blockade with the AhR antagonist 3′,4′-dimethoxyflavone impaired tumor
growth and improved survival in B16GF10 melanoma [77]. Similarly, in an orthotopic
model of oral SCC, AhR-knockout in oral SCC cells led to smaller tumors and increased
activated T cells, while controls had increased expression of exhaustion markers and the
checkpoint inhibitors PD-1, cytotoxic T-lymphocyte protein-4 (CTLA-4), and lymphocyte
activation gene 3 (Lag3) [78].

TRM cells are a subset of memory T cells that remain within the tissue and are found
predominantly in mucosal linings and skin at common sites of pathogen exposure. TRM
are CD8+ T cells often identified by co-expression of cluster of differentiation (CD) 69 and
CD103 [79]. Recently, CD69+CD103+ TRM-like T cells have been found in solid tumors,
where increased infiltration is associated with improved outcomes and survival [80,81].
For instance, in a melanoma model, TRM-like cells promoted spontaneous disease control,
preventing tumor outgrowth in mice with occult melanoma [82]. Similarly, in a preclinical
head and neck cancer model, induction of local TRM-like cells inhibited tumor growth [83] in
lung cancer, wherein TRM-like cells improved survival [81]. TRM-like cells had a T cytotoxic
(Tc) type 17 (Tc17)-like phenotype with high AhR and phospho-STAT3 expression [84].

An additional anti-tumorigenic role for AhR activation is seen with Tc22 cells, CD8+IL22+

cytolytic T cells that are dependent upon AhR and IL6 for differentiation and function [85].
In ovarian cancer, Tc22 cells’ and IL22 production was associated with improved sur-
vival [85]. Since AhR can have both pro- and anti-tumorigenic roles within the CD8+ T cell
compartment, further studies are needed to better understand the context dependence of
AhR activation.

3.5.2. CD4 T Cells

AhR plays a vital role in the differentiation of regulatory T cells (Tregs). Tregs express-
ing the transcription factor forkhead box P3 (Foxp3) were induced by the ligand TCDD,
while activation of AhR by the endogenous ligand FICZ inhibited Treg differentiation and
promoted T helper (Th)17 differentiation, suggesting a ligand-specific role in Treg develop-
ment [86]. Similarly, type 1 regulatory T cells (Tr1), a subset of immunosuppressive CD4+ T
cells that inhibit antigen-specific T cell responses but differ from traditional Tregs through
their lack of Foxp3 expression, relied upon AhR for differentiation and maintenance of
activation [87,88]. CD39, ectonucleoside triphosphate diphosphohydrolase-1, drives a
shift from a pro- to an anti-inflammatory milieu by increasing production of adenosine,
which is critical in regulating the immunosuppressive function of Tregs [89]. AhR has been
shown to increase expression of CD39 via the STAT3 signaling pathway and, therefore,
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immunosuppressive function [88]. Together, these studies suggest that ligand-specific AhR
activation drives Treg differentiation and, in general, promotes immune suppression.

In addition to its direct action on Tregs, AhR activity has been implicated in crosstalk
among Tregs and both macrophages and dendritic cells (DCs). IDO1 and TDO2 are key
enzymes in the catabolism of tryptophan into kynurenine: IDO1 and TDO2 expression has
been shown to be immunosuppressive through action on MDSCs and T cells [90,91], and
has been associated with resistance to ICI therapy in preclinical models [90,92]. Campesato
et al. found that tumors with IDO1 and TDO2 generate kynurenine and activate AhR to
drive generation of Tregs and tolerogenic TAMs. Selective AhR blockade in tumors with
high expression of IDO1 and TDO2 reversed Treg- and TAM-mediated immunosuppression
and improved the efficacy of PD-1 blockade [17]. Through an additional mechanism, DCs
treated with an AhR agonist induced Treg formation via IL-2 and IL-10, acting upon the
negative immune regulator B7-H4 [93].

AhR regulates the differentiation and function of other CD4+ T helper cells. Th22
and Th17 cells, for example, are driven by the transcription factor RORγt, but Th22 cells
are distinct from Th17 cells in that they produce IL22 but not IL17 [94]. The role of AhR
activation on Th17 differentiation appears to be ligand-specific. FICZ has been shown to
induce Th17 differentiation [95], whereas TCDD led to expansion of Tregs and decreased
Th17 differentiation [86]. However, AhR activation appears to regulate Th22 differentia-
tion [86,95,96] by preferentially differentiating to IL22-producing cells over IL17-producing
subtypes [95]. The role of IL22 and, therefore, AhR-dependent T helper cell differentiation
in cancer progression, is context dependent, with both pro-tumor and anti-tumor roles
described [97,98]. IL22 signaling has been implicated in increasing stemness, tumor pro-
liferation, tumor migration and invasion, and anti-apoptotic resistance in multiple cancer
types [98]. However, in colitis-associated colorectal cancer (CRC), AhR has been shown to
serve a protective role against CRC, which is thought in part to be due to the role of IL22 in
tissue repair and regeneration in the gastrointestinal tract [99,100]. In a preclinical model
utilizing VillincreAhRfl/fl mice, azoxymethane alone led to the development of CRC, an
effect not seen in wild-type mice [101].

4. Additional Mechanisms of Tumor Immune Evasion

AhR signaling has also been implicated in other mechanisms of tumor immune evasion,
including upregulation of tryptophan metabolism, induction of checkpoint inhibitors, and
induction of stemness and chemoresistance within tumor cells (Figure 1).

4.1. Induction of Immune Checkpoints and ICI Resistance

Another common mechanism of tumor immune evasion involves upregulation of
immune checkpoints, such as PD-1 and its ligand programmed death-ligand 1 (PD-L1),
or CTLA4. AhR signaling has been shown to impact immune checkpoint expression
directly on tumor cells and within tumor-infiltrating lymphocytes. The kynurenine-AhR
pathway directly upregulates PD-1 expression on CD8+ T cells, while interferon gamma
(IFNγ) expression from activated CD8+ T cells drives further kynurenine production from
tumor repopulating cells, leading to paracrine deactivation [77]. Similarly, the AhRL
benzo(a)pyrene (BaP) induced PD-L1 expression on lung epithelial cells and promoted
lung cancer progression, while anti-PD-L1 antibodies or AhR deficiency suppressed BaP-
induced lung cancer progression [102]. Among patients treated with pembrolizumab
in a lung cancer cohort, high AhR expression was associated with partial response or
stable disease, whereas low AhR expression was associated with disease progression [102].
Similarly, the immune checkpoint molecules CTLA4 and Lag3 are known to be upregulated
with AhR signaling [78].

4.2. Stemness and Chemoresistance

AhR has been shown to direct hematopoietic progenitor cell expansion and differ-
entiation [103,104]. AhR is critical for normal function of hematopoietic progenitor cell
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populations, and normal function of these populations is disrupted in AhR knockout
mice [105,106], suggesting a role for AhR signaling in stem-related cell function.

Cancer stem cells drive tumor initiation and resistance to cancer therapy and have been
detected in a wide variety of solid tumors [107]. Stemness within tumors is characterized
by a reduced level of tumor differentiation and increased self-renewal capacity [108]. AhR
has been shown to influence expression of stem-related genes in multiple cancer types.
In triple-negative breast cancer, AhR activation led to upregulation of stem-related gene
expression [37]. In spheroids developed from human colon cancer samples, stemness
characteristics were dependent upon AhR expression [109].

A hallmark of cancer stemness is resistance to chemotherapy. One mechanism by
which AhR supports chemoresistance is through the upregulation of the transporter ATP-
binding cassette super-family G member 2 (ABCG2), which has been shown to export
chemotherapy drugs in multiple cancers, including breast [110], choriocarcinoma [111], and
nasopharyngeal and lung [112]. Similarly, aldehyde dehydrogenase (ALDH) contributes
to drug export from tumor cells, through upregulation of ATP-binding cassette super-
family B member 1 (ABCB1) [113], and its expression is associated with both chemo-
and radio-resistance [114,115]. AhR activation has been shown to upregulate ALDH
in oral cancer [116] and breast cancer [117], while in triple-negative breast cancer, AhR
inhibition reduced chemoresistance in ALDHhigh tumors [37]. Similarly, inactivation of
AhR in cancer stem cells in a breast cancer model sensitized tumors to the chemotherapy
doxorubicin [117].

However, the role of AhR activation in stemness and chemoresistance can be tumor
dependent. For instance, in acute myeloid leukemia, AhR ligands impaired cell growth and
suppressed self-renewal [118]. Additionally, selective AhR agonists with mild activating
properties, and certain endogenous ligands, can be anti-tumorigenic [119,120]. This context
dependence may be due to tissue-specific and ligand-specific effects of AhR, as these can
differentially recruit AhR cofactors depending on the tissues and ligands [121,122].

5. Therapeutic Potential and Future Directions
5.1. Direct Targeting of AhR

Given the importance of AhR in pathologic immune cell polarization, its role in
carcinogenesis, and impact on tumor immune evasion, targeting AhR offers an exciting
opportunity for cancer therapy. Directly targeting AhR has shown some promise in preclin-
ical models. Campesato et al. showed decreased tumor growth and controlled regulatory T
cell formation with the AhR inhibitor CH-223191 and the AhR antagonist Kyn-101 from
Ikena Oncology [17]. The AhR inhibitor HP163, developed by Hercules Pharmaceuticals,
reduced tumor growth in oral, breast, and skin orthotopic tumor models, and was shown to
decrease immunosuppressive CD11b+ cells in the draining lymph nodes of oral squamous
cell cancer [123]. An additional AhR inhibitor, BAY-218 (from Bayer AG, Leverkusen,
Germany), stimulated pro-inflammatory monocyte and T cell responses in vitro and anti-
tumor responses in vivo in tumor models using CT16 and B16-OVA cell lines [124]. Phase I
clinical trials are underway studying two oral AhR inhibitors, BAY2416964 and IK-175, in
patients with advanced solid tumors unresponsive to prior treatments [125,126]. Interim
results showed that of the 67 patients treated with BAY2416964, 32.8% demonstrated stable
disease [127].

Similarly, as upregulation of PDL1 and other inhibitory checkpoint molecules is a
common mechanism of acquired resistance to immunotherapy that is enhanced by AhR-
dependent signaling [77,78,102], a strategy of AhR inhibition in combination with ICI
therapy makes logical sense. Phase Ib clinical trials are underway investigating BAY2416964
and pembrolizumab in patients with advanced solid tumors [128], as well as IK-175 in
combination with nivolumab in primary PD-1-inhibitor-resistant metastatic or locally
incurable recurrent head and neck squamous cell carcinoma [129].

However, blockade of the AhR signaling pathway requires careful consideration, as
AhR agonism can be associated with anti-tumor effects in certain contexts (Figure 2) [119,120].
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Additionally, AhR activation plays a number of physiologic roles, and its deletion has been
shown to induce several detrimental phenotypes in AhR-null mice, including impairment
of vascular differentiation, immune abnormalities, and liver abnormalities [106,130,131].
Interim analysis of the phase I trial of systemic AhR inhibition with BAY2416964 showed
that the compound was generally well tolerated, with no dose-limiting toxicities, but
12.5% of patients experienced grade 3 treatment-emergent adverse events (TEAEs), while
the remainder of adverse events were grade 1 or 2 [127]. Similarly, when considering
ICI therapy, although the rates of adverse events vary with the specific ICI agent used,
complications are common. Severe immune-related adverse events range from 0.5% to
13% for single-agent therapy, while up to 43% of patients on combination ICI therapy
discontinued therapy due to adverse events [132,133]. While systemic AhR blockade
may be an effective method for AhR modulation, further clinical trials are needed to
determine safety and efficacy, both for AhR inhibition alone and in combination with
immune checkpoint blockade.

5.2. Kynurenine Depletion and Dual Blockade of IL4I1 and IDO/TDO

Upregulation of tryptophan catabolism by IDO1 and TDO2 is a well-described mecha-
nism of cancer immune evasion. IDO1 and TDO2 expression are associated with numerous
tolerogenic immune cells, including suppression of effector T cells and infiltration of MD-
SCs and Tregs in multiple cancer types [134]. AhR activation is believed to be the primary
mechanism linking tryptophan metabolism to immune suppression in the TME. One strat-
egy for modulation of AhR signaling in cancer treatment entails eliminating the pool of
immunosuppressive AhR ligands, either through inhibition of tryptophan catabolism or
by promoting clearance of the ligands. A preclinical study of PEGylated kynureninase,
an enzyme that degrades kynurenine into an immunologically inert byproduct, thereby
decreasing the pool of immunosuppressive AhR ligands, was associated with decreased
tumor growth and increased CD8+ T cell infiltration in breast, melanoma, and colon cancer
cell lines when combined with ICI therapy [18].

Direct inhibition of IDO1 and TDO2 is an alternate strategy to decrease kynurenine
production and target tumor immune evasion. Despite the promise of IDO/TDO block-
ade in preclinical studies, a phase III clinical trial in unresectable melanoma found no
difference in survival between IDO1 blockade with ICI therapy when compared to ICI
therapy alone [20]. Early clinical trials revealed that complete blockade of tryptophan
catabolism with IDO and/or TDO inhibition could lead to non-specific activation of AhR,
as well as non-specific activation of mammalian target of rapamycin (mTOR) signaling,
which can induce cell growth and proliferation [135]. These non-specific actions appear
to limit the efficacy of IDO1 inhibition. Additionally, the reliance of IDO on tryptophan
metabolism is variable, with some tumors having very little expression. A study of ad-
vanced melanoma revealed that only 39.5% of patients had tumors with elevated IDO
expression, and only 9.3% expressed both IDO1 and PDL1 [136]. In a preclinical study of
melanoma, IDO inhibition in IDO-expressing B16 melanoma, but not wild-type melanoma,
decreased the tumor size, while direct AhR inhibition decreased the tumor size in both
IDO- and TDO-expressing tumors [17]. There may be a role for molecular profiling to
target tryptophan catabolism or AhR in tumors with high IDO and TDO expression, but
this requires further study.

Recently, IL4I1 was shown to catalyze a secondary tryptophan catabolic pathway to the
AhRLs kynurenic acid and other indoles [21]. IL4I1 is upregulated in multiple tumor types,
associated with poor prognosis, and is more closely associated with AhR activation than
IDO expression. Together, these data suggest that IDO or TDO inhibition may be inadequate
for suppression of AhR-mediated immunosuppression, and that IL4I1 expression could
in part explain the failure of combination ICI and IDO1 inhibition observed in previous
studies. Combination of IDO and/or TDO inhibition with IL4I1 blockade is a promising
therapeutic strategy that deserves additional investigation to evaluate its safety and efficacy.
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5.3. Modulation of the Microbiome and Diet

The microbiota of the gastrointestinal tract has been shown to systemically impact
innate and adaptive immunity, with both pro- and anti-tumor effects through the regu-
lation of signaling pathways, growth factor production, and inflammation [137–139]. As
such, gut microbiota play a large role in responsiveness to chemotherapy, radiotherapy,
and immunotherapy [138]. For instance, modulation of the microbiome through fecal
microbiota transplant (FMT) from ICI responders improved the efficacy of PD-1 blockade,
whereas FMT from non-responders showed no improved response in mouse models of
melanoma [140,141]. This effect of the microbiome regulating the response to ICI therapy
was further demonstrated in a phase II single-arm trial, where FMT partially reversed
checkpoint inhibitor resistance in PD-1 refractory melanoma [142].

Both diet and microbiota are significant sources of indoles and metabolites with
AhR activity [143]. These AhR metabolites have broad effects on immune tolerance and
response [3], carcinogenesis [2], and epithelial integrity within the GI tract [144]. Decreasing
AhR ligand production from the gut microbiota is an additional strategy for indirect AhR
modulation in cancer therapy. Hezaveh et al. found that in a pancreatic cancer model,
indoles from the gut microbiome drove alternative TAM polarization and tumor growth,
and depletion of indole-producing bacteria or dietary tryptophan blocked this effect [19].
Interestingly, in a preclinical melanoma model, Bender et al. found that the probiotic-
released AhR ligand indole-3-aldehyde promoted anti-tumor immunity via interferon-γ-
producing CD8+ T cells and improved ICI efficacy [145]. Further studies on the context-
dependent and ligand-specific effects of microbial metabolites on AhR signaling are needed.

6. Conclusions

AhR has broadly been shown to directly impact carcinogenesis through its role in
cellular proliferation, EMT, angiogenesis, stemness, and induction of chemoresistance. Its
impact on tumor immunity is more complicated; in general, it is context- and cell-type-
specific, with both pro- and anti-tumorigenic roles. Further insights are needed to classify
the role of AhR signaling in immune cell polarization, as this appears to be the primary way
AhR signaling impacts the immune microenvironment. Given the contrasting roles of AhR
activation, and the potential consequences of systemic AhR blockade, additional factors
need to be considered when developing strategies to target AhR in cancer therapy. While
modulation of AhR signaling through inhibition of tryptophan metabolism offers promise,
the lack of a survival benefit in a phase III clinical trial suggests alternative strategies are
needed, such as molecular profiling to target high-IDO-expressing tumors or blockade of
IL4I1. Similarly, further studies of direct AhR inhibition by modulation of the microbiota
could provide a novel means for boosting anti-tumor immunity.
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