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Simple Summary: Glioblastoma (GBM) is an aggressive brain tumor with limited treatment success.
Despite efforts, the prognosis remains poor, impacting patients’ quality of life. Current therapies
include surgery, radiation, and chemotherapy, but options for relapsed GBM are unclear. Immunother-
apy shows potential, but the highly immunosuppressive nature of GBM poses challenges. Clini-
cal trials with small-molecule inhibitors show mixed results, emphasizing the need for targeted
immunomodulatory pathways in GBM treatment. This review explores potential strategies for
improving GBM therapy through small molecule immunomodulators.

Abstract: Glioblastoma (GBM), the most aggressive astrocytic glioma, remains a therapeutic challenge
despite multimodal approaches. Immunotherapy holds promise, but its efficacy is hindered by the
highly immunosuppressive GBM microenvironment. This review underscores the urgent need to
comprehend the intricate interactions between glioma and immune cells, shaping the immunosup-
pressive tumor microenvironment (TME) in GBM. Immunotherapeutic advancements have shown
limited success, prompting exploration of immunomodulatory approaches targeting tumor-associated
macrophages (TAMs) and microglia, constituting a substantial portion of the GBM TME. Converting
protumor M2-like TAMs to antitumor M1-like phenotypes emerges as a potential therapeutic strategy
for GBM. The blood–brain barrier (BBB) poses an additional challenge to successful immunotherapy,
restricting drug delivery to GBM TME. Research efforts to enhance BBB permeability have mainly
focused on small molecules, which can traverse the BBB more effectively than biologics. Despite
over 200 clinical trials for GBM, studies on small molecule immunomodulators within the GBM
TME are scarce. Developing small molecules with optimal brain penetration and selectivity against
immunomodulatory pathways presents a promising avenue for combination therapies in GBM. This
comprehensive review discusses various immunomodulatory pathways in GBM progression with a
focus on immune checkpoints and TAM-related targets. The exploration of such molecules, with the
capacity to selectively target key immunomodulatory pathways and penetrate the BBB, holds the key
to unlocking new combination therapy approaches for GBM.

Keywords: small molecules; immune checkpoints; glioblastoma; drug discovery; immunomodulation;
immunosuppression

1. Introduction

Glioblastoma (GBM), identified as the most aggressive diffuse glioma within the as-
trocytic lineage [1–6], is categorized as a grade IV glioma according to the World Health
Organization (WHO) classification [7–10]. GBM constitutes approximately 57% of all
gliomas and 48% of primary malignant central nervous system (CNS) tumors [1–6]. Al-
though efforts towards multimodality GBM therapy have involved surgery, radiotherapy,
and systemic treatments, the overall prognosis remains bleak [11–16]. Additionally, the
associated morbidity, characterized by a progressive decline in neurologic function and
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quality of life, profoundly impacts patients, caregivers, and families. GBM treatment is in-
tricate, initially involving a maximally safe surgical resection followed by radiation therapy
and concurrent temozolomide chemotherapy [11–16]. Treatment options in the relapsed or
recurrent stage of GBM lack a clear definition, with no established standard of care and
limited evidence supporting interventions that extend overall survival [17,18]. Given that
recent therapeutic advancements have only marginally increased the median survival to
over 15 months in treated GBM patients [19–23], there is an urgent need to substantiate
novel therapeutic strategies for GBM.

The immunotherapy revolution [24–26] holds potential to advance the development
of more effective and well-tolerated treatments to combat the aggressive nature of GBM.
Immunotherapy aims to leverage the body’s own immune system to recognize and elim-
inate abnormal tumor cells [27,28]. However, current trials with immunotherapies yield
unsatisfactory outcomes in the majority of GBM patients [29–36], underscoring the need
for a deeper understanding of the complex and dynamic interactions between glioma and
immune cells. Regrettably, the benefits of immunotherapies for GBM have been confined
to small randomized trials in the neoadjuvant setting and limited advantages in phase
III trials in the adjuvant setting [29–36]. The highly immunosuppressive nature of GBM
poses a significant challenge to immunotherapy, as glioma cells evade effective antitumor
immunity by shaping the tumor microenvironment (TME) [37–41]. Consequently, there is
an urgent need to develop new immunomodulatory approaches that can reverse immune
suppression in GBM, unlocking the full potential of immunotherapy for this condition. In
this context, the immunosuppressive tumor-associated macrophages (TAMs) and microglia
comprise a substantial portion (30% to 50%) of the total tumor composition in GBM and
play a crucial role in the GBM TME [42,43]. GBM TAMs originate from bone marrow (BM)-
derived blood monocytes and brain-resident microglia [42,43]. Notably, monocyte-derived
macrophages (MDMs) significantly contribute to the immunosuppressive microenviron-
ment of high-grade glioma, indicating distinct functions of microglia and MDMs within
the GBM TME [44,45]. Emerging evidence suggests that protumor M2-like TAMs are often
accumulated and associated with higher-grade gliomas, while repolarizing TAMs toward
an antitumor M1-like phenotype leads to tumor regression by producing proinflammatory
cytokines and key molecules that stimulate T cell antitumor responses [46,47].

The impediment posed by the blood–brain barrier (BBB) in safeguarding brain tumor
cells presents a challenge to the success of immunotherapy in GBM treatment [48,49].
The BBB, primarily consisting of CNS endothelial cells interconnected by intricate tight
junctions with limited vesicular transport, hinders passive transport [50]. Only a select
few low molecular weight or lipid-soluble molecules can traverse the BBB through passive
transport [51]. Clinical evidence indicates that all GBM patients exhibit tumor regions with
an intact BBB [52]. Consequently, effective drug delivery for GBM treatment must penetrate
the BBB to target these regions or stimulate an endogenous cellular immune response
capable of reaching them. Addressing these challenges has spurred extensive research
endeavors focused on enhancing the BBB permeability of potential GBM therapies in
preclinical models [53–62]. In contrast to monoclonal antibodies (mAbs) and other biologic-
based therapeutics, small molecules can easily traverse the BBB and are more adaptable
to pharmacokinetic optimization [63–66]. Consequently, identifying small molecules with
favorable BBB permeability holds promise for GBM therapeutics with clinical potential. Up
to now, over 200 clinical trials have been concluded or are currently underway for GBM [67].
In these trials, researchers employed small molecules either as standalone treatments or in
combination regimens. The results of these trials indicated that small-molecule inhibitors,
particularly kinase inhibitors, did not provide additional benefits for newly diagnosed
GBM [68]. However, clinical investigations involving progressive GBM often asserted
“noninferiority” in comparison to historical outcomes [67,68]. GBM drug candidates not
only require high potency and selectivity against the intended therapeutic target, but
also optimal brain penetration. Therefore, off-target and inadequate BBB penetration
are major limitations of new therapeutics for GBM [69–73]. The development of small
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molecules that selectively target key immunomodulatory pathways in GBM and possess
BBB permeability will enable the development of new combination therapy approaches
for GBM. In this review, we discuss various immunomodulatory pathways implicated
with GBM progression and highlight opportunities for therapeutic intervention using
small molecules.

2. Immune Checkpoints

The immune system possesses a remarkable ability to balance T-cell activation and
suppression, crucial for safeguarding the body against infections and cancer. However, an
excessive T-cell response can result in chronic inflammation and tissue damage. To maintain
this delicate equilibrium, the immune system induces the expression of co-inhibitory
signals, known as immune checkpoints [74–81]. These surface molecules regulate host
immunity when bound to their corresponding ligands or receptors. Cancer cells exploit this
mechanism to evade T-cell destruction, leading to the development of immune checkpoint-
targeting therapies aiming to restore T-cell anti-tumor immunity [74–81]. The success of
immune checkpoint blockade in treating various malignancies has garnered significant
attention in the past decade, earning recognition as the 2013 “Breakthrough of the Year” in
Science magazine. Despite its success in various cancers, immune checkpoint blockade has
shown limited therapeutic efficacy in GBM. Consequently, ongoing clinical trials focus on
combination therapy, pairing checkpoint inhibitors with other therapeutic agents [82–84].
We highlight below key immune checkpoints that represent promising targets for GBM
and have been subject to small molecule drug discovery research efforts.

2.1. PD-1/PD-L1

Programmed cell death protein 1 (PD-1) is a negative immune checkpoint that is
mainly expressed on the surface of activated T cells and induces T-cell apoptosis upon
binding to its ligand (PD-L1), expressed on the surface of tumor cells or antigen-presenting
cells [85]. Clinical studies have revealed the expression of PD-L1 by tumor cells in GBM,
and that PD-L1 expression level is correlated to the levels of malignancy and tumor aggres-
siveness [86,87]. However, monotherapeutic approaches based on PD-1/PD-L1 inhibition
have resulted in poor outcomes in clinical trials, including GBM patients [88]. Moreover,
anti-PD1 mAbs have been employed in combination therapy approaches for GBM. For
example, the CheckMate-548 trial (NCT02667587) investigated the impact of incorporating
nivolumab (anti-PD-1 mAb) into the established standard of care (temozolomide and ra-
diation therapy) compared to a placebo combined with the standard care for a subset of
GBM patients [89]. Regrettably, the CheckMate-548 trial did not achieve its primary objec-
tives related to overall survival upon final analysis [89]. It is noteworthy to mention that
anti-PD-1 therapies are approved for treating solid tumors characterized by microsatellite
instability-high (MSI-H), mismatch repair deficiency (dMMR), or high tumor mutation
burden (TMB-H), including GBM [90]. This highlights the potential of PD-1-targeted agents
as potential GBM therapies.

There are limited instances of successful discovery of small molecule PD-1/PD-L1
inhibitors. Bristol Myers Squibb (BMS) researchers have unveiled a series of substituted
biphenyl derivatives, showcasing their effectiveness in impeding PD-1/PD-L1 signal-
ing [91]. A representative example of the BMS compounds is BMS-202 (Figure 1). Various
companies, including Incyte Corporation, have identified a variety of small molecule
PD-1/PD-L1 inhibitors utilizing the biphenyl core [91,92]. The most notable success in
this regard is the development of INCB086550 (Figure 1) with potent immunomodulatory
activity in animal immuno-oncology models that warranted advancement to an ongoing
phase I clinical trial [93]. Remarkably, numerous research groups have endeavored to
optimize the BMS compounds as PD-L1/PD-1 inhibitors [94–98].
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Figure 1. Chemical structures of BMS-202 and INCB086550.

2.2. TIM-3

T-cell immunoglobulin and mucin-domain containing-3 (TIM-3) is a key negative
immune checkpoint that is expressed on various immune cells, including T cells, B cells,
natural killer cells, and dendritic cells [99]. The immunomodulatory function of TIM-3 is
based on key interactions with TIM-3 ligands (e.g., galectin-9, phosphatidylserine (PtdSer),
and carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1)) expressed on
tumor cells or antigen-presenting cells [99]. The higher intertumoral expression of TIM-3 in
GBM in comparison to low-grade gliomas in CD4+ and CD8+ T cells is indicative of the
contribution of TIM-3 to glioma severity in patients [100]. Moreover, anti-TIM-3-targeted
therapeutics have revealed promising outcomes in combination therapy approaches in
preclinical models of GBM [101]. Our lab has recently utilized a virtual screening approach
to identify a first-in-class small molecule TIM-3 inhibitor [102]. The top optimized lead
compound from our study (A-41, Figure 2a) binds TIM-3 with submicromolar binding
affinity, based on surface plasmon resonance (SPR) screening (Figure 2b), and inhibits key
TIM-3 interactions with PtdSer and CEACAM1 (Figure 2c,d) [102]. Further optimization of
our TIM-3 lead (A-41) will result in promising compounds that can be incorporated into
combination therapy approaches in preclinical models of GBM.

Cancers 2024, 16, x FOR PEER REVIEW 4 of 18 
 

 

phase I clinical trial [93]. Remarkably, numerous research groups have endeavored to 
optimize the BMS compounds as PD-L1/PD-1 inhibitors [94–98].  

 
Figure 1. Chemical structures of BMS-202 and INCB086550. 

2.2. TIM-3 
T-cell immunoglobulin and mucin-domain containing-3 (TIM-3) is a key negative 

immune checkpoint that is expressed on various immune cells, including T cells, B cells, 
natural killer cells, and dendritic cells [99]. The immunomodulatory function of TIM-3 is 
based on key interactions with TIM-3 ligands (e.g., galectin-9, phosphatidylserine (PtdSer), 
and carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1)) expressed on 
tumor cells or antigen-presenting cells [99]. The higher intertumoral expression of TIM-3 in 
GBM in comparison to low-grade gliomas in CD4+ and CD8+ T cells is indicative of the 
contribution of TIM-3 to glioma severity in patients [100]. Moreover, anti-TIM-3-targeted 
therapeutics have revealed promising outcomes in combination therapy approaches in 
preclinical models of GBM [101]. Our lab has recently utilized a virtual screening approach 
to identify a first-in-class small molecule TIM-3 inhibitor [102]. The top optimized lead 
compound from our study (A-41, Figure 2a) binds TIM-3 with submicromolar binding 
affinity, based on surface plasmon resonance (SPR) screening (Figure 2b), and inhibits key 
TIM-3 interactions with PtdSer and CEACAM1 (Figure 2c,d) [102]. Further optimization of 
our TIM-3 lead (A-41) will result in promising compounds that can be incorporated into 
combination therapy approaches in preclinical models of GBM. 

 
Figure 2. (a) Chemical structure of A-41; (b) SPR binding curve of compound A-41 to TIM-3 [102]—
error bars represent standard deviation (n = 3); (c) Detection of the binding of TIM-3 to apoptotic 
Jurkat T cells expressing surface PtdSer using flow cytometry (MFI) upon preincubation with 

Figure 2. (a) Chemical structure of A-41; (b) SPR binding curve of compound A-41 to
TIM-3 [102]—error bars represent standard deviation (n = 3); (c) Detection of the binding of TIM-3 to
apoptotic Jurkat T cells expressing surface PtdSer using flow cytometry (MFI) upon preincubation
with different concentrations of the tested agents (anti-TIM-3 Ab (M6903), A41, and small molecule
TIM-3 binder) [102]; (d) Binding of His-tagged CEACAM1 to plate-bound TIM-3 in competitive
ELISA upon preincubation with different concentrations of the tested agents (anti-TIM-3 Ab (M6903),
A41, and a small molecule TIM-3 binder) [102]. Error bars represent standard deviation (n = 5).
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2.3. LAG-3

Lymphocyte-activation gene 3 (LAG-3) is a negative immune checkpoint that is ex-
pressed on various immune cells and inhibits T cell activation via binding major histocom-
patibility complex class II (MHC-II) [103]. The immunosuppression function of LAG-3 is
achieved in conjunction with other immune checkpoints, such as PD-1 [103]. By employ-
ing LAG-3 knockout mice, Lim and colleagues validated LAG-3 inhibition as an efficient
strategy to control GBM growth [104]. LAG-3 was established as an early marker of ex-
haustion of effector T cells, providing the basis for the potential of early LAG-3 inhibition
to release an antitumor immune response [104]. Remarkably, a combination of LAG-3 and
PD-1 biologics has the ability to eradicate GBM in vivo [104]. It is noteworthy to mention
that anti-LAG-3 mAb (BMS-986016) has advanced to a phase I clinical trial for GBM in
combination with PD-1 blockade (NCT02658981). In 2023, our group reported the first
examples of small molecule LAG-3 inhibitors that can be pursued as drug candidates for
GBM in preclinical studies [105,106]. The most promising compound from our screening
campaign (SA-15, Figure 3a) inhibits key LAG-3 interactions in cell-free and cell-based
assays [105]. We further investigated the binding mode of SA-15 to LAG-3 using molecular
dynamics (MD) simulation (Figure 3b,c [105]), providing the mechanistic assessment of
the LAG-3/MHCII inhibition by SA-15 [105]. These computational studies will facilitate
hit-to-lead optimization efforts in the future to develop potent leads with nanomolar LAG-3
inhibition profiles. We anticipate that such discoveries will pave the way for incorporating
small molecule LAG-3 inhibitors in combination therapy regimens in preclinical and clinical
evaluations for GBM treatment.

Cancers 2024, 16, x FOR PEER REVIEW 5 of 18 
 

 

different concentrations of the tested agents (anti-TIM-3 Ab (M6903), A41, and small molecule TIM-
3 binder) [102]; (d) Binding of His-tagged CEACAM1 to plate-bound TIM-3 in competitive ELISA 
upon preincubation with different concentrations of the tested agents (anti-TIM-3 Ab (M6903), A41, 
and a small molecule TIM-3 binder) [102]. Error bars represent standard deviation (n = 5). 

2.3. LAG-3 
Lymphocyte-activation gene 3 (LAG-3) is a negative immune checkpoint that is 

expressed on various immune cells and inhibits T cell activation via binding major 
histocompatibility complex class II (MHC-II) [103]. The immunosuppression function of 
LAG-3 is achieved in conjunction with other immune checkpoints, such as PD-1 [103]. By 
employing LAG-3 knockout mice, Lim and colleagues validated LAG-3 inhibition as an 
efficient strategy to control GBM growth [104]. LAG-3 was established as an early marker 
of exhaustion of effector T cells, providing the basis for the potential of early LAG-3 
inhibition to release an antitumor immune response [104]. Remarkably, a combination of 
LAG-3 and PD-1 biologics has the ability to eradicate GBM in vivo [104]. It is noteworthy 
to mention that anti-LAG-3 mAb (BMS-986016) has advanced to a phase I clinical trial for 
GBM in combination with PD-1 blockade (NCT02658981). In 2023, our group reported the 
first examples of small molecule LAG-3 inhibitors that can be pursued as drug candidates 
for GBM in preclinical studies [105,106]. The most promising compound from our 
screening campaign (SA-15, Figure 3a) inhibits key LAG-3 interactions in cell-free and 
cell-based assays [105]. We further investigated the binding mode of SA-15 to LAG-3 
using molecular dynamics (MD) simulation (Figure 3b,c [105]), providing the mechanistic 
assessment of the LAG-3/MHCII inhibition by SA-15 [105]. These computational studies 
will facilitate hit-to-lead optimization efforts in the future to develop potent leads with 
nanomolar LAG-3 inhibition profiles. We anticipate that such discoveries will pave the 
way for incorporating small molecule LAG-3 inhibitors in combination therapy regimens 
in preclinical and clinical evaluations for GBM treatment. 

 
Figure 3. (a) Chemical structure of SA-15; (b) Core-RMSD graph of the dynamics of LAG-3/MHCII 
in complex with compound SA-15, the blue color indicates the average core-RMSD of the system, 
while the gray transparency represents the error [105]. (c) The cluster for compound SA-15 binding 
to the LAG-3/MHCII interface [105]. 

2.4. CTLA-4 
The cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4, CD152) is a co-inhibitory 

receptor that binds to cell surface ligands CD80 and CD86 on the antigen-presenting cells 
[107]. Given its ability to disrupt CD28 co-stimulatory signaling, CTLA-4 can inhibit T-cell 
antigen-specific responses, establishing itself as a key negative regulator of T-cell 
activation [107]. Elevated CTLA-4 expression in high-grade gliomas compared to low-
grade gliomas suggests a positive correlation between CTLA-4 expression and cancer 
severity [108]. A phase II clinical study is presently investigating the efficacy of anti-
CTLA-4 in GBM patients post-radiation and chemotherapy, comparing temozolomide 
treatment alone with temozolomide combined with ipilimumab (anti-CTLA-4) [109]. 
Several concurrent clinical trials are exploring the combined efficacy of CTLA-4 with PD-
1 in GBM treatment, aiming to maximize the potential of anti-CTLA-4 therapy. Efforts to 
develop CTLA-4-targeted small molecules have included the discovery and optimization 

Figure 3. (a) Chemical structure of SA-15; (b) Core-RMSD graph of the dynamics of LAG-3/MHCII
in complex with compound SA-15, the blue color indicates the average core-RMSD of the system,
while the gray transparency represents the error [105]. (c) The cluster for compound SA-15 binding
to the LAG-3/MHCII interface [105].

2.4. CTLA-4

The cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4, CD152) is a co-inhibitory
receptor that binds to cell surface ligands CD80 and CD86 on the antigen-presenting
cells [107]. Given its ability to disrupt CD28 co-stimulatory signaling, CTLA-4 can in-
hibit T-cell antigen-specific responses, establishing itself as a key negative regulator of
T-cell activation [107]. Elevated CTLA-4 expression in high-grade gliomas compared to
low-grade gliomas suggests a positive correlation between CTLA-4 expression and cancer
severity [108]. A phase II clinical study is presently investigating the efficacy of anti-CTLA-
4 in GBM patients post-radiation and chemotherapy, comparing temozolomide treatment
alone with temozolomide combined with ipilimumab (anti-CTLA-4) [109]. Several con-
current clinical trials are exploring the combined efficacy of CTLA-4 with PD-1 in GBM
treatment, aiming to maximize the potential of anti-CTLA-4 therapy. Efforts to develop
CTLA-4-targeted small molecules have included the discovery and optimization of penta-
cyclic indole alkaloid-like compounds (Figure 4) as dual CTLA-4 and PD-1 small molecule
inhibitors with the ability to suppress the CTLA-4 and PD-L1 gene expression and their
protein expression on the cell surface [110].
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2.5. TIGIT

The T-cell immunoreceptor with Ig and ITIM domain (TIGIT) is a co-inhibitory receptor
expressed in lymphocytes [111]. TIGIT has recently emerged as a promising target for
immunotherapy of GBM. Preclinical work validated the ability of anti-TIGIT mAbs to
effectively inhibit T-cell proliferation and enhance the anti-tumor immune response, either
as a standalone therapy or in conjunction with other immune checkpoint inhibitors [112].
In GBM patients, the significant upregulation of TIGIT expression in CD8+ T cells at the
tumor site compared to healthy individuals has been reported [113]. In agreement with
this finding, a correlation between increased expression of the TIGIT ligand poliovirus
receptor (PVR) and reduced survival in glioma patients was established [114]. Remarkably,
a combination of anti-TIGIT with anti-PD-1 mAbs led to improved survival rates compared
to monotherapy in a murine GBM model [114]. This improvement was associated with
elevated effector T-cell activity and the downregulation of regulatory T cells [114]. Various
virtual screening campaigns have resulted in the identification of TIGIT-targeted small
molecules with potent in vitro and in vivo immunomodulatory activity [115,116]. These
recent discoveries underscore the potential of TIGIT-targeted small molecules for future
development as potential GBM therapies.

2.6. VISTA

V-domain immunoglobulin suppressor of T cell activation (VISTA) is a negative
immune checkpoint that shares sequence homology with PD-L1 and has a dual ability
to function as a receptor on T cells or a ligand on antigen-presenting cells [117]. Clinical
data reveal the correlation between high levels of VISTA expression and poor prognosis in
glioma patients, especially in grade III/IV gliomas [118]. Thus, increasing research interest
has been directed toward VISTA as a potential target for advanced gliomas. We utilized
random screening of a chemical library using a fluorescence-based assay to identify small
molecule VISTA inhibitors [119]. Subsequent hit-to-lead optimization guided by molecular
docking, saturation transfer difference (STD) NMR, and site-directed mutagenesis led to
the discovery of a small molecule VISTA inhibitor (III, Figure 5a) with submicromolar
VISTA binding affinity [119]. Importantly, III demonstrated the ability to restore T-cell
proliferation in the presence of VISTA-expressing ovarian and endometrial cancer cell lines
(Figure 5b,c) [119]. Ongoing efforts in our lab are focused on the optimization of III to
afford leads with optimal properties for BBB permeation that can be evaluated in preclinical
models of GBM.
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2.7. ICOS

The inducible co-stimulator (ICOS) belongs to the costimulatory molecule family,
which includes ICOS, CD28, and CTLA-4 [120]. It is highly expressed on the surface of
activated and mature T cells rather than on naïve T cells [120]. The activation of the costim-
ulatory signal occurs when ICOS engages with its specific ligand (ICOSL), leading to the
facilitation of various immune-related processes. These processes include the development
of germinal centers, activation of T-cell-dependent B cells, and the switch of antibody
class [120]. Significantly, the ICOS/ICOSL pathway plays a crucial role in promoting the
differentiation, proliferation, activation, and survival of T cells themselves [120]. Moreover,
ICOS contributes to the enhanced secretion of various immune cytokines. Any deviation
in ICOS expression can result in a spectrum of pathophysiological dysfunctions, includ-
ing immunodeficiency, susceptibility to opportunistic infections, and the development
of malignant tumors [120]. Increased ICOS levels in patients demonstrate a correlation
with greater glioma malignancy and a significant association with regulatory T cell (Treg)
activity within the immune responses related to gliomas [121]. In the analysis of cell lin-
eage, gliomas with elevated ICOS levels exhibited a tendency to recruit dendritic cells,
monocytes, and macrophages into the TME [121]. Thus, the development of ICOS-targeted
drug candidates has the potential to pave the way for new immunomodulatory therapeu-
tic strategies for GBM. We recently developed and optimized a fluorescence-based assay
(Figure 6a) for high-throughput screening (HTS) of chemical libraries to identify small
molecule ICOS/ICOSL inhibitors [122]. Implementation of our HTS assay in screening a fo-
cused chemical library resulted in the identification of AG-120 (Figure 6b) as a first-in-class
small molecule ICOS/ICOSL inhibitor [122]. Our computational study validated the ability
of AG-120 to interact with ICOS, sterically gate ICOSL binding, and prevent ICOS/ICOSL
complex formation (Figure 6c) [122].
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3. TAM-Related Targets
3.1. CCL2/CCR2 Axis

CCR2 is a member of the human Class A G protein-coupled receptors (GPCRs) within
the chemokine receptor subfamily [123]. Two isoforms, namely CCR2A and CCR2B, exhibit
variations in their C-terminal regions, leading to distinct signaling properties. Notably,
CCR2 finds expression in monocytes/macrophages in humans [123]. CCL2 serves as the
prototypical chemokine that binds to CCR2, and the interaction between CCL2 and CCR2
is the most significant for the functionality of CCR2 [123]. Activation of the chemokine
receptor CCR2 through ligation initiates the activation of various downstream signaling
pathways [123]. Inhibition of the TAM infiltration into the GBM TME by targeting the inter-
actions between chemo-attractants and their receptors is a promising therapeutic strategy
for GBM. Thus, CCL2/CCR2 represents a potential target to overcome the immunosup-
pressive nature of the GBM TME. CCL2, secreted by cancer cells, attracts myeloid cells
expressing CCR2 (such as TAMs and myeloid-derived suppressor cells) to the TME of
GBM [124]. In preclinical models of GBM, CCR2 blockade via an antagonist suppresses
the recruitment of TAMs and improves the efficacy of immune checkpoint inhibitors [124].
Although numerous small molecule CCR2 antagonists have been developed in recent
years [125], the lack of clinical efficacy requires further investigation into their mechanism
of action. Assessment of the binding sites of these small molecule antagonists on CCR2 has
revealed that multiple binding sites are present on CCR2, which is a key determinant of
the different modes of inhibition of these compounds [125]. Nevertheless, small molecule-
based CCR2 blockade has the potential to maximize the number of GBM patients benefiting
from immunotherapies. This potential is exemplified by the ability of a small molecule
inhibitor for CCR2 (CCR2i) to maximize the efficacy of PD-1 blockade in a murine model of
a cutaneous T-cell lymphoma (CTCL) [126].

3.2. CHI3L1/Gal-3

Chitinase-3 like-protein-1 (CHI3L1) is a secreted glycoprotein categorized under the
glycoside hydrolase family 18 that plays a critical role in shaping the landscape of the
GBM TME. Notably, CHI3L1 has received growing research interest as a novel prognostic
marker for high-grade gliomas [127]. Clinically, increased mRNA level of CHI3L1 has
been associated with poor survival of GBM patients [128]. Moreover, CHI3L1 has been
identified as a regulator of glioma cell invasion, migration, and growth [129]. Additionally,
it plays a role in driving tumor vascularization in glioblastoma-stem-like cells (GSCs) [130].
Furthermore, CHI3L1 promotes tumorigenesis in GSCs with unmethylated MGMT pro-
moter and contributes to temozolomide resistance [131]. A key aspect of the ability of
CHI3L1 to modulate the GBM TME is based on its ability to form a protein complex with
galectin-3 (Gal3) or galectin-3–binding protein (Gal3BP) to promote macrophage-mediated
immune suppression [132]. The interaction between CHI3L1 and Gal-3 promotes the infil-
tration of monocyte-derived macrophages (MDMs) and induces their reprogramming into
a tumor-promoting M2-like phenotype [132]. Notably, this process is negatively regulated
by Gal3BP. The CHI3L1/Gal-3 pathway facilitates GBM evasion from immune surveillance
by leveraging the CHI3L1/Gal-3 protein complex capacity to activate the AKT/mTOR-
mediated transcriptional regulatory network (involving NF-κB and CEBPβ) [132]. This
activation results in a macrophage switch from immune stimulation to immune suppres-
sion [132]. These findings provide a basis for the disruption of the CHI3L1/Gal-3 protein
complex as a potential strategy to mitigate tumor immunosuppression and enhance the
antitumor immune response within the GBM tumor microenvironment. In a proof-of-
concept study published in 2021, the local delivery of a peptide-based inhibitor targeting
CHI3L1/Gal-3 (Gal3BP mimetic peptide) into brain tumors demonstrated the ability to
induce tumor regression in treated mice. This effect was accompanied by a decrease in
M2-like macrophages and an increase in M1-like macrophages and CD8+ T cells within the
TME [132]. The recent discovery of small molecule CHI3L1 inhibitors, such as K284 and
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G721-0282 (Figure 7), will remarkably contribute to realizing the potential of CHI3L1 as a
therapeutic target for GBM [133,134].
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3.3. SLIT2/ROBO

The Slit guidance ligands (SLITs) constitute a group of secreted proteins that orches-
trate positional interactions between cells and their environment during development.
They achieve this function by signaling through the roundabout (ROBO) receptors [135].
In mammals, SLITs 1, 2, and 3 transmit signals by binding to the second leucine-rich
repeat region (D2), specifically interacting with the Ig1 domain of ROBO1 and ROBO2
receptors [136]. The SLIT2/ROBO pathway assumes pivotal roles in organ development,
homeostatic maintenance, and the process of tumorigenesis [135]. In the context of tumors,
SLIT2 possesses a proangiogenic role, and elevates tumor cell aggressiveness and migration,
metastatic spread, and resistance to therapeutics [137,138]. Recently, the SLIT2/ROBO
signaling pathway was identified as a novel immune evasion mechanism within the TME of
GBM [139]. Elevated SLIT2 expression observed in GBM patients and mouse models led to
the accumulation of immunosuppressive TAMs and vascular abnormalities [139]. Notably,
when SLIT2 was knocked down in glioma cells, or its systemic inhibition was achieved
through an SLIT2-trapping protein (ROBO1Fc), it prevented the tumor-promoting polar-
ization of TAMs and the expression of angiogenic genes [139]. This intervention resulted
in improved functionality of tumor vessels and enhanced efficacy of chemotherapy and
immunotherapy in GBM mouse models [139]. Remarkably, the impact of SLIT2 inhibition
on angiogenesis and the augmentation of T cell response surpasses the outcomes achieved
by previously explored therapeutic approaches targeting the TAM component within the
GBM TME [139]. As of now, there are no ongoing clinical trials evaluating the inhibition
of SLIT2/ROBO as a therapeutic strategy for GBM. Therefore, there is an urgent need to
direct research efforts towards small molecule-based SLIT2/ROBO inhibition.

3.4. CD47

The cluster of differentiation (CD) 47, present on both healthy and malignant cells,
regulates macrophage-mediated phagocytosis by transmitting a “don’t eat me” signal to
the signal regulatory protein alpha (SIRPα) receptor [140]. Growing evidence supports the
notion that blocking the interaction between CD47 and SIRPα can augment the clearance of
cancer cells by macrophages [140]. Furthermore, inhibiting the CD47/SIRPα interaction has
the potential to enhance antigen cross-presentation, promoting T-cell priming and activating
an adaptive antitumor immune response. Consequently, targeting the CD47/SIRPα axis
holds significant promise for advancing tumor immunotherapy. Research on CD47 mAbs
is currently at the forefront, yielding impressive results. However, a notable challenge has
emerged in the form of hematotoxicity, particularly anemia, which has become the most
prevalent adverse effect associated with CD47 monoclonal antibody treatment [140]. To
address this issue, more specific targeted drugs, including bispecific antibodies, SIRPα/Fc
fusion protein antibodies, and small-molecule inhibitors, have been developed with the aim
of mitigating hematotoxicity while maintaining therapeutic efficacy [140]. Depleting CD47
in GBM cells has shown a significant increase in macrophage phagocytosis and inhibition
of GBM tumor growth [141]. This underscores the therapeutic potential of targeting the
CD47/SIRPα axis in GBM patients. Preclinical studies utilizing humanized anti-CD47
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antibodies have demonstrated promising antitumor effects in pediatric glioma patient-
derived xenograft models [142]. Significant research efforts have been directed towards
the discovery and optimization of small molecule CD47 inhibitors over the past years.
For example, a virtual screening campaign resulted in the identification of Azelnidipine
(Figure 8) as a CD47/SIRPα inhibitor and potent in vivo inhibitory activity against the
growth of CT26 tumors [116]. NCGC00-138783 (Figure 8) is another example of a small
molecule that directly binds CD47 and blocks CD47/SIRPα interaction [143]. The discovery
of NCGC00-138783 was made possible based on the implementation of a homogenous
CD47/SIRPα cell-based, ligand-based assay [143]. Moreover, RRx-001 (Figure 8) is an
anticancer drug candidate in phase III clinical trials, which inhibits CD47 expression and
polarizes tumor-associated macrophages from a low phagocytic M2 phenotype to a high
phagocytic M1 phenotype [144].
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3.5. CSF-1/CSF-1R

The colony-stimulating factor-1 receptor (CSF-1R), also identified as the macrophage
colony-stimulating factor (M-CSF) receptor, is a transmembrane tyrosine kinase receptor
located on the cell surface of various cell types, including microglial cells, bone-marrow-
derived macrophages, monocytes, osteoclasts, and dendritic cells [145]. The CSF-1/CSF-
1R axis plays a crucial role in governing the survival, proliferation, differentiation, and
functions of mononuclear phagocytes [145]. In human high-grade gliomas, there is an
overexpression of the cytokine CSF1 and its corresponding receptor CSF1R in microglia and
macrophages [146]. Using the immunocompetent GBM preclinical mode, CSF-1R inhibition
improved the response to radiotherapy, validating its potential as a therapeutic strategy to
maximize radiotherapy-induced antitumor immune responses [147]. In past years, there has
been a notable surge in efforts focused on the discovery of small molecule CSF-1R inhibitors,
fueled in part by the approval of pexidartinib in 2019 for treating tenosynovial giant cell
tumors [148]. This increased activity is evident in both the publication of journal articles and
the filing of patent applications centered around small molecule inhibitors of CSF-1R [148].
A remarkable aspect of this research is the unexpected diversity of chemical classes that
have demonstrated potency and selectivity as CSF1-R inhibitors [147]. Furthermore, these
inhibitors have shown promise in addressing a wide range of disease states, including
cancer, arthritis, and conditions associated with ‘cytokine storm’ syndromes [148].

3.6. IL-6/IL-6R

Interleukin-6 (IL-6) is a cytokine overexpressed during inflammation as an acute-phase
response and signals through binding its unique receptor alpha subunit, IL-6Rα, located on
the plasma membrane [149]. It has been documented that IL-6 signaling plays a critical role
in a variety of cancers, as demonstrated by the elevated expression levels of IL-6 mRNA
and protein in colorectal, prostate, breast, ovarian, pancreatic, and cervical cancer [149].
Multiple studies indicate a correlation between the expression of IL-6 and glioma tumor
grade, as well as overall patient survival [150]. Specifically, the mRNA expression of IL-6
was notably higher in GBM patient samples compared to samples from individuals with
lower histopathological grades [150]. IL-6 signaling plays a pivotal role in promoting
various activities that support gliomagenesis, including cell invasion and migration. This
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contributes to the invasive nature of glioblastoma, leading to reduced treatment efficacy
and high rates of recurrence. Studies have demonstrated that STAT3 activation, induced
by IL-6 signaling, specifically promotes cell invasion and migration in U251 and T98G
glioblastoma cells [151]. Remarkably, an antibody cocktail-based immunotherapy that
combines checkpoint blockade with dual-targeting of IL-6 and CD40 resulted in the ex-
tension of animal survival in two syngeneic GBM mice models [152]. The extensive focus
on the discovery and preclinical evaluation of small molecule IL-6 inhibitors in recent
years [153–155] holds promise for the future of small molecule-based IL-6/IL-6R inhibition
in GBM treatment.

4. Conclusions

The current clinical landscape of small molecule immunomodulators underscores their
pivotal role in reshaping therapeutic approaches. In Table 1, we provide a summary of key
small molecule immunomodulators discussed in this article. These compounds, designed
to intricately influence immune responses, are currently at various stages of preclinical
and clinical testing. However, the journey from laboratory success to clinical application
poses significant challenges. Fine-tuning these small molecules to ensure precise immune
modulation without adverse effects faces various hurdles. Issues related to bioavailability,
pharmacokinetics, and potential off-target effects necessitate meticulous consideration.
Overcoming these challenges is crucial for unlocking the full therapeutic potential of small
molecule immunomodulators, paving the way for innovative and targeted interventions in
the realm of immunotherapy.

Table 1. Summary of small molecule immunomodulators discussed in this review.

Compound Target Mechanism

BMS202 PD-L1 Directly binds PD-L1 and induces PD-L1 dimerization [91]

INCB086550 PD-L1 Induces PD-L1 dimerization and internalization, resulting in blocking
PD-L1/PD-1 [93]

A-41 TIM-3 Directly binds TIM-3 and blocks TIM-3/ligand interaction [102]
SA-15 LAG-3 Directly binds LAG-3 and blocks key LAG-3 interactions [105]

Compound 1 CTLA-4 Inhibits CTLA-4 gene expression [110]

Compound 12 CTLA-4 and PD-L1 Suppresses CTLA-4 and PD-L1 gene expression as well as protein expression on cell
surface [110]

III VISTA Binds VISTA and blocks key VISTA interactions [119]
AG-120 ICOS Binds near the ICOS/ICOSL interface and inhibits the interaction [120]

K284 CHI3L1 Binds CHI3L1 and prevents the binding of CHI3L1 to its receptor [133]
G721-0282 CHI3L1 Decreases the chronic unpredictable mild stress-elevated levels of CHI3L1 [134]

Azelnidipine CD47 and TIGIT Dual inhibitor of CD47/SIRPα and TIGIT/PVR interactions [116]
NCGC00-138783 CD47 Blocks CD47/SIRPα interaction in cell-based assay [143]

RRx-001 CD47 Decreases the expression levels of CD47 and SIRPα on tumor cells and
monocytes/macrophages, respectively [144]

GBM poses persistent challenges to effective treatment despite extensive efforts in mul-
timodal therapies. While immunotherapy has emerged as a promising avenue, its success is
hampered by the intricate and highly immunosuppressive microenvironment within GBM.
A pivotal focus on immunomodulation, particularly targeting immune checkpoints and
TAMs, offers potential by transitioning the microenvironment from immunosuppressive to
anti-tumor. However, the BBB presents a key obstacle, necessitating the development of
small molecules capable of selectively targeting GBM while crossing the BBB. Current clini-
cal trials, notably with kinase inhibitors, are yielding varied results, underscoring the need
for further research in this domain. Overcoming off-target effects and enhancing BBB pene-
tration are critical for the successful development of small molecule immunomodulators as
potential therapies for GBM. Navigating the intricate landscape of GBM treatment requires
a comprehensive understanding of the immunosuppressive microenvironment and ad-
vancements in small molecule therapeutics. This review discussed the ongoing challenges
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and opportunities, emphasizing the importance of continued research to uncover novel
strategies for combating GBM. We highlighted key checkpoints and TAM-related targets
that were subject to small molecule drug discovery research. The discussion involved our
recently reported first-in-class small molecule inhibitors of various checkpoints. These ex-
amples represent promising starting points to develop small molecule immunomodulators
for GBM.
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