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Simple Summary: Lymphovascular invasion (LVI) serves as a crucial predictor in gastric cancer,
indicating an increased likelihood of lymph node spread and poorer patient outcomes. Detecting
LVI(+) within gastric cancer histopathology presents challenges due to its elusive nature, leading
to the proposal of a deep learning-based detection method using H&E-stained whole-slide images.
Remarkably, both the classification and detection models demonstrated superior performance, and
their ensemble exhibited outstanding predictive capabilities in identifying LVI areas. This innovative
approach holds promise in precision medicine, potentially streamlining examinations and reducing
discrepancies among pathologists.

Abstract: Lymphovascular invasion (LVI) is one of the most important prognostic factors in gastric
cancer as it indicates a higher likelihood of lymph node metastasis and poorer overall outcome
for the patient. Despite its importance, the detection of LVI(+) in histopathology specimens of
gastric cancer can be a challenging task for pathologists as invasion can be subtle and difficult to
discern. Herein, we propose a deep learning-based LVI(+) detection method using H&E-stained
whole-slide images. The ConViT model showed the best performance in terms of both AUROC
and AURPC among the classification models (AUROC: 0.9796; AUPRC: 0.9648). The AUROC and
AUPRC of YOLOX computed based on the augmented patch-level confidence score were slightly
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lower (AUROC: −0.0094; AUPRC: −0.0225) than those of the ConViT classification model. With
weighted averaging of the patch-level confidence scores, the ensemble model exhibited the best
AUROC, AUPRC, and F1 scores of 0.9880, 0.9769, and 0.9280, respectively. The proposed model is
expected to contribute to precision medicine by potentially saving examination-related time and
labor and reducing disagreements among pathologists.

Keywords: digital pathology; artificial intelligence; gastric cancer; lymphovascular invasion

1. Introduction

Gastric cancer is the most common type of cancer, accounting for 12% of all cancer
cases in Korea according to data from the National Cancer Center in 2018 [1]. In 2020,
more than 1 million (1,089,103) new cases of gastric cancer were estimated worldwide,
resulting in 768,793 deaths [2]. Lymph node metastasis is the most significant prognostic
factor for patients with gastric cancer, and the presence of lymphovascular invasion (LVI)
is the most significant risk factor for lymph node metastasis [3–6]. LVI is defined as the
invasion of vessel walls by tumor cells and/or the presence of tumor emboli within an
endothelial-lined space [7]. Predictive value and prevalence of LVI are highly dependent on
the type of cancer, and the presence of LVI is a recognized prognostic factor in a variety of
solid malignancies, including breast cancer, urothelial carcinoma, and colorectal cancer [8].
Since the proclamation of LVI as an important factor in the prognosis of gastric cancer
by Talamonti et al. [9], the American Joint Committee on Cancer has recommended the
evaluation of LVI [10]. According to the current Japanese guidelines, LVI in gastric cancer is
not clinically useful information except for predicting the possibility of curative endoscopic
resection. LVI is the most significant risk factor associated with lymph node metastases in
individuals with early gastric cancer [6,11–13]. The rate of lymph node metastasis observed
in patients exhibiting LVI (25.7–32.1%) was much higher compared to that in those without
LVI (1.5–2.3%) [6,11,13,14]. In addition, Fusikawa et al. showed that a significant difference
was observed between the values of 79.8% in the LVI(–) group and 67.2% in the LVI(+)
group in advanced cancer [7]. The five-year survival rate of advanced cancers with nodal
metastases is 76.7% in the LVI(–) group and 60.9% in the LVI(+) group [7]. Therefore, LVI
is an independent prognostic marker in gastric cancer and tends to worsen the prognosis,
particularly in cases of advanced malignancy with lymph node metastasis.

The recognition of lymphatic tumor emboli in microscopic sections is dependent on the
pathologist [15]. There is potential for significant inter-observer variations in the diagnosis
of LVI amongst pathologists [16]. Inter-observer disagreement can be expected in the
diagnosis of LVI as retraction artifacts that isolate tumor aggregates can be caused by tissue
shrinkage during fixation, which are easily confused with true tumor emboli during routine
examination of hematoxylin and eosin (H&E) stained sections [17,18]. Tumors may be
artefactually displaced into vessels during specimen cut up or processing [19]. For instance,
Gilchrist et al. noted that when three surgical pathologists were told to assess for LVI in
a pT1-2 N0 M0 histological mastectomy case, all three concurred in only 12 of 35 breast
cancer cases [15,16]. Several attempts have been made to overcome these limitations. The
monoclonal D2-40 antibody can selectively detect lymphatic vessels as it is expressed
in the lymphatic endothelium but not in blood vessels, and D2-40 staining is reportedly
more sensitive than H&E staining for detecting lymphatic invasion (LI) [17,20,21]. Elastin
staining may also be used for a clearer recognition of blood vessels as it identifies the
elastic fibers of blood vessels [22–25]. Inter-observer agreement in the diagnoses of LVI was
improved by adding ancillary D2-40 and elastin staining, regardless of the experience of
the pathologists [4]. However, the assessment of LVI by pathologists is inherently limited
owing to human errors. Examining large areas of tumors for LVI is time-consuming and
challenging because the foci of LVI can be small and subjective. Nonetheless, the presence
of LVI can have a marked impact on disease management, and the identification of a
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genuine single focus is sufficient to label a case as LVI(+). This automated identification of
possible LVI(−)indicating lesions may have significant clinical utility [19].

Digital pathology defines the creation of whole-slide images (WSI) from a histology
slide that can be viewed on a screen to form a diagnostic report [26]. Traditionally, histolog-
ical diagnosis and pathological staging by pathologists have been evaluated using glass
slides and microscopes [26]. Digital pathology is now increasingly being implemented in
laboratories around the world, and digital support management is seen as a key component
of health service planning aimed at improving efficiency, network operation, and qual-
ity [26]. There is great potential for using artificial intelligence (AI) to assist pathologists
and derive new biological insights into disease biology, even in areas imperceptible to
human observers [27]. However, the majority of AI medical devices that have received
FDA approval and have been introduced to the market thus far are primarily focused on
radiology. In contrast, only a limited number of devices have been approved for use in
the field of pathology [28]. Moreover, it is important to explore the potential of these AI
technologies as many pathology departments do not have enough pathologists.

AI algorithms that utilize convolutional neural networks (CNNs) for image analysis
have already shown significant promise in the pathological evaluation of various solid
tumors, including prostate cancer screening in prostate biopsies [29,30], leading to new
evaluations of clinical outcomes, providing [31,32] or predicting the presence of muta-
tions [33] or molecular subtypes [34] in H&E-stained sections. The usefulness of these
algorithms in identifying small regions of prognostic significance in digital WSI has pre-
viously been demonstrated in the context of identifying metastatic breast cancer within
lymph nodes [35,36]. In addition, the AI model can automatically find LVI in the WSI of
testicular cancer [19]. AI model can identify LVI foci better than a human expert (recall
score: 0.68 vs. 0.56).

In this study, we developed an algorithm to identify LVI foci related to the prognosis of
gastric cancer. The image classification and detection models were trained and validated at
both the patch and WSI levels. The ensemble approach was used to combine the predictions
of these sub-models to improve the overall performance of the model. The sub-models were
trained on a dataset of WSI of gastric cancer, with annotations of vascular and lymphatic
vascular invasion. A conceptual diagram of the LVI prediction model is shown in Figure 1.
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Figure 1. Schematic of the LVI Net. Panel (A) portrays the preprocessing step and annotations, while
Panel (B) illustrates the workflow of the LVI Net. The patch image is input into both the classification
and detection models. Subsequently, the prediction outcomes from these models conducted weighted
averaging, resulting in the computation of the final confidence level (referred to as the ensemble
confidence). This ensemble confidence is then utilized to predict the ultimate diagnosis of LVI(+) or
LVI(−).
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2. Methods
2.1. Patients and Tumor Samples

Gastric adenocarcinoma slides were obtained from 88 patients who underwent endo-
scopic submucosal dissection, subtotal gastrectomy, or total gastrectomy at the Chonnam
National University Hwasun Hospital from 2018 to 2021. The availability of adequate tissue
and the histological diagnosis of gastric cancer were the inclusion criteria. One hundred
WSI were collected from these patient samples. Clinical information was collected from the
electronic medical records maintained in the electronic database of the hospital. This study
was approved by the Institutional Review Board (IRB) of the Chonnam National University
Hwasun Hospital (CNUHH-2021-197) and conducted in accordance with the Declaration
of Helsinki. Informed consent from patients was waived with IRB approval.

2.2. Datasets

The slides were scanned using a Leica-Aperio GT450 Scanner (Leica Biosystems) using
an 40× objective. Using QuPath 0.3.0 tools, the LVI(+) regions were annotated by two
board-certified pathologists. The examples of LVI(+) and LVI(−) are depicted in Figure 2.
We performed CD34 and D2-40 immunohistochemical staining on all slides to confirm
LVI(+) foci and to increase the accuracy of marking LVI(+) foci. For training, validation,
and test splitting, we randomly selected WSI with a 6:2:2 ratio. We patchified WSIs using
conventional digital pathology image analysis (Figure 1, preprocessing panel). LVI(+) foci
were generated based on LVI(+) annotations. The sliding windowing approach generated
LVI(−) patches from the remaining WSI. Without any overlap, we visited all WSI regions
that did not include LVI(+) foci. To handle class imbalances and remove redundancy in
LVI(−) patches, one-third was sampled from all LVI(−) patches. The LVI(+) and LVI(−)
patches were generated at 20×-level (0.5 µm/pixel) with 512 × 512 pixels.
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To conduct external validation, we utilized a publicly accessible classification dataset
that contained patch images pertaining to lymphatic invasion [37]. Comprising 48 WSIs
sourced from 27 patients, this external validation dataset comprised 302 positive instances
and 671 negative instances. The patch images were captured at a 5×-level magnification
(2 µm/pixel) with dimensions of 512 × 512 pixels. Notably, this external validation dataset
was acquired using a distinct scanner (Leica-Aperio AT2) and originated from a different
hospital setting.
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2.3. Model Development

We fine-tuned the image classification and detection models to identify the LVI foci in a
given patch image. The following analysis was conducted using Python 3.8, Pytorch 1.13.1,
and a single A100 GPU.

2.4. Classification Models

We defined the classification problem as a binary classification. The ResNet 50 [38],
EfficeientNet B3 [39], and ConViT (Small) [40] models were fine-tuned on the LVI datasets.
The parameters of the selected image classification models ranged from 20 to 30 M. In an
empirical study, we found that large parameters converged into overfitting because of our
limited dataset volume. We utilized ImageNet [41] pretrained weights with entire layers
that can be updated by considering the modality gap between a conventional RGB and
digital pathology images. Image augmentations were applied, including affine transform,
elastic transform, blurring, brightness, and color jittering. Balanced weight-sampling
methods were applied during training to alleviate data imbalance. The image classification
models were trained using the Adam optimizer (learning rate: 1 × 10−4), cosine annealing
learning rate scheduler, and automated mixed precision.

2.5. Detection Models

The detection model was utilized to classify and localize the desired object in the entire
image simultaneously. A regression operation was applied to localize the object using a
bounding box. We utilized a one-stage object detection model called the YOLO model [42].
YOLO detection uses the concept of an anchor box. The anchor box has a predefined shape
and ratio of the bounding box that is utilized in the bounding box location prediction. For
example, human objects commonly exhibited square shapes with long heights and short
widths. In contrast, the dog objects had square shapes with short heights and log widths.
Anchor-based methods have been actively utilized to ease the prediction performance.
However, in terms of LVI, the shape of LVI was arbitrary; several LVI foci assumed a square
shape, and the others assumed a rectangular shape with variants of size. To compare the
impact of the anchor box assumption on LVI foci detection, we trained both an anchor box
assumption-based detection model (YOLO v3) [43] and detection model without the anchor
box assumption (YOLOX) [44]. To match the number of parameters, the medium size of
YOLOX was selected. The hyperparameters and data augmentations followed the recom-
mendations of each framework. The detection model could detect as many LVI(+) regions
as possible. Therefore, unlike a classification model, a single-patch image can have multiple
prediction confidence scores. To aggregate multiple confidence scores, we computed the
augmented confidence score of each patch image using the maximum operator.

2.6. Ensemble Model

The ensembled confidence score (Cens) is calculated as the weighted average of the
confidence score of the classification model (Ccl f ) and the augmented confidence score of
the detection model (Cdet), according to Equation (1):

Cens =

(
wcl f × Ccl f + wdet × Cdet

)
2

, (1)

where wcl f and wdet denote weighted factors of classification and detection models, re-
spectively. Considering the performances of each model, we empirically set the wcl f to
1.0 and wdet to 1.0, respectively. The ensembled confidence score was treated as a final
confidence score.

2.7. Evaluation Metrics

Generally, to evaluate the classification performance, the true positive (TP), false
positive (FP), false negative (FN), and true negative (TN) are computed by comparing the
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prediction confidence that a model returns and the ground truth. Furthermore, the TP, FP,
FN, and TN, accuracy score, recall (sensitivity), precision (positive predicted value, PPV), F1
score, AUROC, AUPRC are obtained. The detection performance was evaluated based on
the intersection over union (IOU) of the bounding box predicted by the model and ground
truth bounding box. With the IOU threshold, we could determine whether the model
prediction was true or false. Using the precision and recall scores, we can summarize the
detection performance as an average precision (AP) score [45]. The AP50 score corresponded
to the AP score at the IOU threshold of 50%. The classification performance of the detection
model was computed based on the augmented confidence score that aggregated multiple
prediction outputs.

3. Results
3.1. Patient Characteristics

All the patients were LVI(+). The mean age of the patients was 69.6 years (±10.2), and
the majority were men (73.0%) (Table 1). Poorly differentiated tumors comprised 46.0% of
the cases. Despite being LVI(+), 10 patients (18.2%) did not exhibit LNM. The number of
lymph node involvement was 12.0 (±13.7). Perineural invasion was observed in 39 (61.9%)
patients. The clinicopathological features of the cases are summarized in Table 1.

Table 1. Baseline characteristics of the study population.

Variable Total (N = 63)

Age 1 69.6 (10.2)
Sex 2

Male 46 (73.0%)
Female 17 (27.0%)

Lauren Classification 2

Intestinal 36 (57.1%)
Diffuse 12 (19.0%)
Mixed 15 (23.8%)

Grade 2

Well differentiated 3 (4.8%)
Moderately differentiated 31 (49.2%)
Poorly differentiated 29 (46.0%)

T Staging 2

pT1a 2 (3.2%)
pT1b 17 (27.0%)
pT2 5 (7.9%)
pT3 13 (20.6%)
pT4a 23 (36.5%)
pT4b 3 (4.8%)

N Staging 2

pN0 10 (18.2%)
pN1 6 (10.9%)
pN2 13 (23.6%)
pN3a 8 (14.5%)
pN3b 18 (32.7%)

LN Involvement 1 12.0 (13.7)
Perineural Invasion 2

Present 39 (61.9%)
Not identified 24 (38.1%)

IHC Expression of C-erb B2 2

0 36 (57.1%)
1+ 11 (17.5%)
2+ 6 (9.5%)
3+ 7 (11.1%)
Not available 3 (4.8%)

LN, Lymph Node; IHC, Immunohistochemistry. 1 Mean (S.D.); 2 Number of items (Percentage).
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3.2. Patch-Level Analysis

With WSI-level splitting, each WSI was randomly allocated as a training, valid, or
test dataset. Each WSI image had a different prognosis for LVI. Therefore, the number of
LVI foci and patch images was heterogeneous. The dataset configurations are presented
in Table 2. The patch-level analysis was components: classification, detection, and an
ensemble of both classification and detection. Figure 3 illustrated the example outputs of
ground truths, classification focused areas, and detection outputs.

Table 2. Dataset configuration.

# of WSI # of Positive
Per WSI 1

# of Negative
Per WSI 1

Train set 64 68.77 (90.04) 159.23 (87.54)
Valid set 16 28.50 (25.61) 161.12 (60.69)
Test set 20 105.3 (91.73) 201.4 (102.48)

WSI, Whole slide image; 1 Mean (S.D.).
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Figure 3. The output of classification and detection model. The summarization of the classification
and detection results for the same patch image is presented. Panel (A) displays the original image,
while panels (B,C) showcase the classification and detection results, respectively. The heatmap
generated using Grad-CAM highlights the areas of focus by the classification model, with red areas
indicating greater attention. This visual representation indicates that the classification model exhibits
a relatively focused perspective. Conversely, the detection model predicts the object’s location by
enclosing it within a bounding box and provides the confidence level for each prediction. It is evident
that the detection model successfully identifies various dispersed regions within the image.

3.3. Patch-Level Analysis: Classification Models

The patch classification results were outstanding for all classification models without
any considerable performance gap. The ConViT model showed the best performance in
terms of both the area under the receiver operating characteristics (AUROC) and area under
the precision-recall curve (AUPRC) in the classification models (AUROC: 0.9796; AUPRC:
0.9648). The accuracy, precision, recall score, and F1 score were computed with a confidence
score threshold of 0.5.

3.4. Patch-Level Analysis: Detection Models

In detection, the YOLOX model outperformed the YOLO v3 model in both detection
(AP50) and classification metrics. The AP50 of YOLOX and YOLO v3 were 0.55 and 0.66,
respectively. The AUROC and AUPRC values of YOLOX were higher than those for YOLO
v3 (0.9666 vs. 0.9702 for the AUROC and 0.9423 vs. 0.9302 for the AUPRC). However, the
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AUROC and AUPRC of YOLOX computed based on the augmented patch-level confidence
score were slightly lower (AUROC: −0.0094; AUPRC: −0.0225) than those of the ConViT
classification model. In the detection models, the accuracy, precision, recall score, and F1
score were computed with an augmented patch-level confidence score threshold of 0.7.
The threshold was adjusted to be stricter than the value utilized in the image classification
model to mitigate the heavy false positives that could occur during detection.

3.5. Patch-Level Analysis: Ensemble Model

Notably, the YOLOX model exhibited an outstanding F1 score (+0.0039 points com-
pared with that of ConViT) in all benchmark models. Considering the AUROC, AUPRC,
and F1 scores, we attempted to mix the best-performing models in an ensemble approach.
With simple averaging of the patch-level confidence scores, the ensemble model showed
the best AUROC, AUPRC, and F1 scores of 0.9880, 0.9769, and 0.9280, respectively. The
performances are summarized in Table 3.

Table 3. Performance of trained model using the patch images.

Method Model AUROC AUPRC Accuracy F1 Score

Classification

ResNet50 0.9762
(0.9726–0.9798)

0.9593
(0.9447–0.9739)

0.9319
(0.9254–0.9384)

0.8992
(0.8895–0.9089)

EfficientNetB3 0.9731
(0.9693–0.9769)

0.9551
(0.935–0.9752)

0.9281
(0.9217–0.9345)

0.8929
(0.8827–0.9031)

ConViT 0.9796
(0.9765–0.9827)

0.9648
(0.9592–0.9704)

0.9348
(0.9288–0.9408)

0.9025
(0.8935–0.9115)

Detection
YOLOv3 0.9666

(0.9623–0.9709)
0.9302

(0.9203–0.9401)
0.927

(0.9196–0.9344)
0.8977

(0.8868–0.9086)

YOLOX 0.9702
(0.9648–0.9756)

0.9423
(0.9323–0.9523)

0.9353
(0.9278–0.9428)

0.9064
(0.8962–0.9166)

Ensemble 0.988
(0.9852–0.9908)

0.9769
(0.9717–0.9821)

0.9514
(0.9459–0.9569)

0.928
(0.9198–0.9362)

Mean (95% confidence interval).

3.6. WSI-Level Analysis

The WSI consists of multiple patch images, allowing for aggregation of these patches
at the WSI level. The conceptual diagram of WSI-level analysis is shown in Figure 4. Each
patch prediction result was aggregated at the WSI-level, and the WSI-level prediction result
was aggregated once more in the entire test dataset. The WSI-level prediction performance
is summarized in Table 4. The performance was consistent with the results of the patch-
level prediction (Table 3). We adjusted the threshold such that the positive and negative
could be determined as the medium points (0.5); however, this threshold could be rescaled
depending on the interests of the researcher. In our dataset, WSIs generally included
multiple LVI regions. Therefore, we concluded that the benefit of reducing false positives
was more significant. If the LVI region is small, such as in patients with early-stage cancer,
a strategy can be adopted to reduce false negatives by lowering the threshold.

Table 4. Performance of trained model using the whole slide images.

Method True Negative
Rate 1

False Positive
Rate 1

False Negative
Rate 1

True Positive
Rate 1

ConViT 96.63 (0.03) 3.37 (0.03) 11.88 (0.09) 88.12 (0.09)
YOLOX 94.99 (0.03) 5.01 (0.03) 10.88 (0.12) 89.12 (0.12)

Ensemble 97.56 (0.02) 2.44 (0.02) 10.21 (0.07) 89.79 (0.07)
1 Mean (S.D.).
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magnified view of the area identified as LVI(+), presenting the respective judgments made by both
the classification model and the detection model.

3.7. External Validation

To measure the efficacy of the ensemble approach, we conducted an external validation
using a preexisting dataset. Employing this classification dataset facilitated the application
of our model to ascertain positive or negative LVIs [37]. The ensemble model demonstrated
superior performance compared to both classification and object detection models (Table 5).
Specifically, the AUROC of the ensemble model exhibited improvements of 0.025 (2.8%) and
0.052 (5.9%) in contrast to the classification and detection models, respectively. Furthermore,
the AUPRC of the ensemble model saw enhancements of 0.044 (5.1%) and 0.081 (9.8%),
respectively. Analogous to the internal validation dataset, the ensemble model exhibited
robustness when compared to the classification and detection-only models.

Table 5. Performance of trained model using the external validation dataset.

Method Model AUROC AUPRC Accuracy F1 Score

Classification ConViT 0.9184
(0.8975–0.9393)

0.869
(0.8338–0.9041)

0.8674
(0.8465–0.8883)

0.7896
(0.7543–0.8248)

Detection YOLOX 0.8915
(0.8638–0.9192)

0.8319
(0.7876–0.8763)

0.8592
(0.8364–0.882)

0.7934
(0.7577–0.8291)

Ensemble 0.9438
(0.9258–0.9619)

0.9132
(0.8875–0.939)

0.8983
(0.879–0.9175)

0.8358
(0.8035–0.8681)

Mean (95% confidence interval).

4. Discussion

In this study, we present a deep-learning model for predicting gastric LVI from the
patch images from WSI. Two models were developed: image classification and detec-
tion. The ConViT (classification) and YOLOX (detection) models showed comparable
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performances. The final ensemble model showed outstanding performance in predicting
gastric LVI.

In a previous study, Ghosh et al. demonstrated that a deep-learning model could
predict LVI foci in testicular LVI [36]. They applied the semantic segmentation-based model
(DeeplabV3) [46] to predict the mask of LVI foci; however, the number of LVI(+) foci to train
and evaluate a semantic segmentation model were small. Therefore, the model performance
can be further improved. With few samples of LVI foci included in the test dataset (34 foci),
it could be difficult to determine the generalized performance of LVI prediction.

One of the primary tasks of digital pathology is the detection of mitosis, which often
employs a two-stage framework comprising object detection and classification [47]. This
approach is preferred due to the small size of mitotic objects, which makes the model
predictions highly susceptible to false positives and false negatives. Initially, candidate
regions are identified through object detection, and subsequently refined using classification
techniques. While the sequential application of this two-stage framework may not pose
significant challenges in studies based on limited benchmark datasets, it can prove time-
consuming in typical medical scenarios. Therefore, to address this issue, we propose an
ensemble approach that combines the advantages of the two-stage model while enabling
parallel processing.

In our experimental setting, the classification model ConViT exhibited an outstanding
performance among the candidate classification models. The ConViT model attempted to
fuse the outstanding performance of transformer-based architectures with the advantages
of CNN. The ability of the transformer to focus on global information and the ability of
CNNs to focus on local patterns boosted the prediction performance. The LVI foci had het-
erogeneous shape and size characteristics. In addition, it is essential to determine whether
the LVI is located in the lymph node site or blood vessels. The most common false positives
occurred in detachment artifacts owing to the failure to interpret peripheral contexts.

The detection model also showed comparable performance in detecting LVI foci. The
anchor-free assumption-based model YOLOX was more appropriate because of the varying
sizes and shapes of the LVI foci. The YOLOX model exhibited a comparable performance
with regard to the AUROC and AUPRC than the ConViT model. However, it exhibited
a slightly better performance with regard to the F1 score. The ensemble model exhibited
improved AUROC, AUPRC, and F1 scores compared with the classification and detection-
only model (improved gain: 0.0084, AUROC; 0.012, AUPRC; 0.022, F1 score). Additionally,
the improvement of the ensemble model was also found in the external validation (AUROC:
2.8%; AUPRC: 5.1%).

Our model predicted LVI foci in WSI; in other words, it identified whether LVI foci
existed. However, LVI is essentially a histological finding that suggests the possibility of
metastasis to the lymph nodes. Previous studies have reported models to predict LNM
from pathological slide images of solid tumors, such as breast, colorectal, bladder, and
prostate cancers. Although LNM is one of the most important prognostic factors, a model
for predicting LNM in gastric cancer has not yet been reported. Wang et al. reported a
model for predicting the prognosis of gastric cancer using the histopathology of resected
lymph nodes; however, this was not a model for predicting metastasis to the lymph nodes.
This algorithm, which detects LVI(+) foci, is expected to significantly help pathologists
at the actual reading site, However, predicting LVI(+) in the clinical field is not sufficient
to predict the prognosis of a patient. It is necessary to conduct additional studies on
the association of the LVI(+) foci identified by this algorithm with the number of lymph
node metastases and patient survival prognosis, and thus, further investigation into this
is anticipated.

In addition, semi-supervised and active learning pipelines for generating LVI focal
labeling more easily need to be further developed. Our YOLOX model can predict the LVI
foci using a bounding box. Therefore, we can assume that the prediction results of YOLOX
are newly annotated LVI foci in the other datasets. With the supervision of human experts
who reject or accept newly annotated LVI foci (active learning), the labeled dataset expands
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rapidly. Additionally, in this study, we hypothesized that detection would be sufficient
to predict LVI foci. However, a previous study utilized semantic-segmentation-based
modeling for testicular LVI foci detection. LVI foci share similar patterns despite differences
in organs, such as tumors surrounded by blood vessels or lymph nodes. Therefore, in the
future, we aim to expand our work to compare semantic segmentation, object detection,
and classification models to predict the LVI foci.

Our study has several limitations. First, a number of LVI(+) foci imbalances may exist
for each slide. This data imbalance problem may cause distortion in the learning process.
We applied WSI-level data splitting to resolve the LVI(+) foci imbalance problem. The best
option for data splitting involves splitting the patient-level data. However, we encountered
varying LVI(+) foci depending on the patient status. Furthermore, of the multiple sections
of slides that may be present in a single gastric cancer tissue, we selected no more than five
slides from the same patient. Therefore, patient-level data splitting can be coupled with
a heavy class imbalance that is harmful to supervised learning procedures. To mitigate
this issue, we alternately selected WSI-level splitting. Second, LVI(+) foci always contain
the possibility of false positives or negatives. To reduce false-positive or false-negative
foci marks at the annotation step, we confirmed CD34 and D2-40 immunohistochemical
staining on all slides. In addition, LVI(+) confirmation was performed by two pathologists.
However, annotation marking for foci may be missed because LVI(+) is a relatively small
lesion within the WSI. This results in missed marking annotations for some LVI(+) foci
and marked LVI(+) foci for some artifacts. Similarly, when the trained algorithmic model
predicts LVI(+) positive foci, it may be a false positive. To discriminate false positives, all
areas predicted to be LVI(+) positive foci were individually checked by two pathologists.
Through this process, we were able to improve the accuracy of the model in predicting
LVI(+) foci. Spatial heterogeneity is a crucial factor that must be taken into account in
studies on artificial intelligence learning in digital pathology. Stomach cancer is specifically
recognized as a type of cancerous tissue that exhibits significant and pronounced spatial
heterogeneity within the tissue. Nevertheless, spatial heterogeneity was not a significant
factor that needed to be taken into account for this project. LVI is histopathologically
defined by the presence of tumor emboli within lymphatic/vascular channels and exhibits
morphological features that are rather homogeneous. For instance, the presence of LVI is
not exclusive to stomach cancer but is also observed in various other forms of cancer. These
findings indicate that the scope of this research extends beyond stomach cancer and has
potential for further application to other types of cancer.

5. Conclusions

This research presents an ensemble deep-learning model for detecting vascular and
lymphatic vascular invasion in WSI of histopathology of gastric cancer. The ensemble deep-
learning model has been demonstrated as more robust and accurate than single models,
and it can be used as a valuable tool for pathologists in diagnosing gastric cancer and may
help improve the accuracy of diagnosis and prognosis of the disease. This approach can
be considered an alternative to traditional methods and as a step toward computer-aided
diagnotic systems in histopathology.
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