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Simple Summary: The use of AI on medical images (CT, MRI, PET) has become a primary clinical
and research interest. The main issues of these applications are strictly related to the reconstruction of
imaging, the segmentation of tissues acquired, the selection of features, and the proper data analyses.
Different approaches of AI have been proposed as the machine and deep learning, which utilize
artificial neural networks inspired by neuronal architectures. Further validation of AI models for
diagnosis and monitoring responses will be necessary to assess as MRI and PET/CT might provide a
personalized treatment-response prediction superior to current methods.

Abstract: The lack of early detection and a high rate of recurrence/progression after surgery are
defined as the most common causes of a very poor prognosis of Gliomas. The developments of
quantification systems with special regards to artificial intelligence (AI) on medical images (CT,
MRI, PET) are under evaluation in the clinical and research context in view of several applications
providing different information related to the reconstruction of imaging, the segmentation of tissues
acquired, the selection of features, and the proper data analyses. Different approaches of AI have
been proposed as the machine and deep learning, which utilize artificial neural networks inspired
by neuronal architectures. In addition, new systems have been developed using AI techniques to
offer suggestions or make decisions in medical diagnosis, emulating the judgment of radiologist
experts. The potential clinical role of AI focuses on the prediction of disease progression in more
aggressive forms in gliomas, differential diagnosis (pseudoprogression vs. proper progression), and
the follow-up of aggressive gliomas. This narrative Review will focus on the available applications
of AI in brain tumor diagnosis, mainly related to malignant gliomas, with particular attention to
the postoperative application of MRI and PET imaging, considering the current state of technical
approach and the evaluation after treatment (including surgery, radiotherapy/chemotherapy, and
prognostic stratification).

Keywords: artificial intelligence; gliomas; magnetic resonance imaging; positron emission tomography

1. Introduction

Gliomas are the most frequent intra-axial primary neoplasms of the central nervous
system (CNS) [1]. Despite the variety of subtypes, also according to the molecular and
genetic characteristics [2], some, such as the glioblastoma multiforme (GBM), have a very
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scarce prognosis, partially due to poor significant advancements in early diagnosis, and
from a frequent occurrence of recurrence/progression after surgical and radio chemother-
apy treatment [3,4]. The development of diagnostic imaging might help the management
of gliomas by evaluating morphological and functional features for more accurate tumor
characterization in vivo; to guide biopsy, surgery, and radiotherapy; for evaluation of
disease extension; to assess relapsing disease; and for prognostic stratification.

In the past years, visual assessment represented the unique possibility of analyzing
medical images to detect, characterize, and monitor diseases. Technological advances will
allow visualization of the lesion with high resolution using morphological and functional
imaging, also considering other derived features, to increase the possible multiparametric
evaluations of gliomas significantly in a quantitative way [5–7]. Nowadays, the use of new
quantification systems and the developments of radiomics on medical images have become
crucial in research and clinical contexts. The main issues regarding the quantification
workflow are strictly related to the reconstruction of imaging, the tissue segmentation, the
selection of features, and the proper data analyses [8].

The advancements in radiomics analysis permit an accurate diagnostic and prognostic
evaluation of the tumors, but its value in gliomas is still undetermined. Several articles
have reported the potential association between tumor array and radiomic characteristics,
allowing the acquisition of crucial shreds of evidence never assessed before [9,10]. Diagno-
sis, disease extension, vascularization, differentiation among tumor grading, and definition
of tumor progression remain the main issues in neuro-oncology imaging applications. AI
represents a computational model that parallels human performances on tasks, usually with
automatic programming, to improve the accuracy of imaging for clinical and diagnostical
management of brain tumor patients. Different classes of AI were proposed as the machine
(ML) and deep learning (DL), which utilize artificial neural networks (NN) inspired by
neuronal architectures [11]. Finally, new systems have been developed using AI techniques
to offer suggestions or make decisions in medical diagnosis, emulating the judgment of
radiologist experts [12]. It is essential to validate Artificial Intelligence (AI) on magnetic
resonance imaging (MRI) and positron emission tomography (PET) techniques, which are
increasingly utilized in clinical and research capacities to help define the disease and predict
tumor types [13–16]. The potential advantages also rely on detecting the progression in
more aggressive forms of diffuse gliomas, differentiation of pseudoprogression from actual
progression, and the follow-up of aggressive gliomas [17,18].

We will focus on the available application of AI in brain tumor diagnosis, mainly
related to malignant gliomas, with particular attention to the postoperative application
of MRI and PET imaging, considering the current state of technical approach and the
evaluation after treatment, including surgery, radiotherapy/chemotherapy, and prognostic
stratification.

2. Materials and Methods
Research Strategy

A comprehensive search strategy was used based on SCOPUS and PubMed databases
for the indication terms: AI *OR artificial intelligence *AND glioma *OR brain tumors,
along with their derivatives, with the corresponding MESH (Medical Subject Heading)
terms. The search was conducted on the literature before March 2023, comprising only
articles with English full text, although the research strategy did not strictly follow the
criteria for a systematic review. Two authors (P.A. and I.G.V.) performed a first selection
of the articles corresponding to the topic of the present review. In addition, an exhaustive
study of the reference section of each article included herein was carried out. Then, all
articles initially selected were checked independently by the coauthors. The reference
lists of relevant papers were inspected for further studies that could fit the inclusion
criteria. Using an iterative process among authors, we summarized what is known based
on available case series, and retrospective and prospective studies. Considering the extreme
heterogeneity and the limited amount of available information in the literature, we excluded
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the possibility to strictly and adequately perform a systematic review; data will be presented
as a comprehensive (narrative) review.

3. Results
3.1. AI in MR Imaging

MRI represents the standard imaging for the characterization of glioblastoma, widely
utilized in the diagnosis and post-treatment management of patients with glioblastoma.
MRI sequences in this field include native T1-weighted (T1w) and contrast-enhanced
(T1CE), T2-weighted (T2w), T2- Susceptibility Weighted Imaging (SWI), T2-fluid-attenuated
inversion recovery (T2-FLAIR) sequences, and diffusion-weighted imaging (DWI), pro-
viding critical clinical information about various processes in the tumor environment.
In the last decade, further MRI sequences have been developed to further characterize
glioblastomas more comprehensively. These include multiparametric MRI sequences, such
as dynamic susceptibility contrast (DSC), dynamic contrast enhancement (DCE), higher
order diffusion techniques such as diffusion tensor imaging (DTI), and MR spectroscopy
(MRS). In addition, further advantages have been reported with the availability of large
field strength MRI and relative improvements in contrast-to-noise and resolution images
(Table 1).

Table 1. AI application for MRI-based imaging in gliomas.

Authors Imaging
Technique Clinical Setting AI Methods Main Findings Sample

Garcia Ruiz
et al. [9] MR Prognosis

stratification

The 3D distance transform
of the volume of interest
(VOI). Radiomics
extraction was performed
with Pyradiomics v2.1.2
for Python

The prognostic value of
several imaging and
clinical data was studied
both individually and
combined to estimate the
survival outcomes,
demonstrating that the
residual enhancement
thickness and radiomics
signatures complemented
clinical data for prognosis
stratification.

144 GBM

Liu et al. [10] MR Prediction of
recurrence

(LASSO) regression model
for data dimension
reduction, feature
selection, and radiomics
feature analysis—MIM
system and MatLab

A prediction radiomics
model that may guide the
therapy management was
assessed, leading to the
identification of features
that potentially could help
in discriminating
recurrence from
recurrence-free.

129 patients

Ingrish
et al. [19] MR Prognosis

stratification

Tumor segmentation
using the Medical Image
Interaction Toolkit.
Automated feature
extraction pipeline with
Python.

Baseline
contrast-enhanced
T1-weighted MR includes
hidden prognostic
information, which can be
used to build prognostic
models by radiomic
analysis with random
survival forests.

66 GBM
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Table 1. Cont.

Authors Imaging
Technique Clinical Setting AI Methods Main Findings Sample

Zhang
et al. [8] MR Prediction of

treatment response

Image normalization and
segmentation with
3D-Slicer 4.10.2 platform.
Radiomics model
developed with R-4.0.3

Radiomics models applied
to preoperative
multiparametric MR
images have a potential
role in predicting the
response to concurrent
radiotherapy and
chemotherapy in patients
with residual glioma.
These models may
support the
personalization of
treatments, especially to
help patients initially
predicted to be
treatment-insensitive
avoid the toxicity of
chemoradiotherapy.

84 patients

Kim
et al. [20] MR (DWI-PWI)

Differentiation
between pseudo-
progression and
true progression

Texture analysis
(162 features). selected
after training and external
validation sets

Incorporating DWI and
PWI images into a
radiomics model
improved diagnostic
performance to
differentiate
pseudoprogression from
early tumor progression.

61 GBM

Elshafeey
et al. [21] MR (PWI)

Differentiation
between pseudo-
progression and
true progression

Support Vector Machines
with linear kernel and
C5.0 models were
constructed using the
features selected by the
MRMR analysis

Radiomics information
extracted from PWI
images could be used to
build a clinically-relevant
predictive model to
discriminate
pseudoprogression from
true progression.

98 GBM

Akbari
et al.[22]

MR multipara-
metric

Prediction of
recurrence

GLISTR software image
analysis technique
incorporating probabilistic
imaging and biophysical
models

A multidimensional
machine model adopting
co-registration of areas of
GBM recurrence to
preoperative MR was
proposed, determining
predictions of early
recurrence with sensitivity
91% and specificity 93%.

31 GBM

Rathore
et al. [23]

MR multipara-
metric

Prediction of
recurrence

GLISTR software image
analysis.
Multidimensional pattern
classifier trained on
features of the voxels of
N-ROI and F-ROI using
support vector machines

This study presents a
model for estimating
peritumoral edema
infiltration using
radiomics signatures,
reaching about 90%
accuracy.

31 GBM

A new method of quantification of the residual tumor using multi-sequence MRI
scans using automatic recording and subtraction of T1-weighted images to select the
enhancing areas from inflammatory/fibrotic variations has been proposed [9]. Other stud-
ies defined a multivariate prognostic model, considering tumor remnants quantification,
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perfusion, radiomics, and clinical variables to improve the prognostic performance of resid-
ual tumor enhancement: the evaluation of these parameters, integrated into a predictive
model to estimate the survival outcomes, was demonstrated to be an optimal method by
Garcia Ruiz et al. [9].

The prediction of recurrence is one of the main issues in glioma patients, of particular
interest for risk stratification and therapy management. Liu et al. identified the MRI
radiomics features as potentially able to predict recurrence in glioma patients [10]. The
analysis of the radiomics feature shows a value to differentiating relapsing patients from
recurrence-free ones, demonstrating adequate discrimination in the training cohort and
subsequent improvement in the evaluation of the validation cohort.

MR accurately assesses heterogeneous sub-regions of GBM. Ingrisch et al. presented
a preoperative GBM radiomics study that analyzed the enhancing region of the tumor
on T1CE [19]; other radiomics studies defined the prognostic value of multiparametric
sub-regional glioblastomas [24–27]. The prognostic purpose associated all these studies by
integrating radiomics with conventional clinical and genetic models with significant added
value in predicting survival outcomes [28]. In this setting, ML model analysis on preopera-
tive MRI images resulted in promising performances for predicting IDH mutation, MGMT
methylation, and 1p/19q codeletion in glioma, considering the role of these key metabolic
features in the differential diagnosis of brain tumors, with potential translational diagnostic
and therapeutic impact [29]. ML model optimization represents a noninvasive, objective
tool able to get molecular information of crucial importance for clinical management [12].

A potentially Mp-MRI-based radiomics application may be used for predicting re-
sponse to chemotherapy in patients with postoperative residual gliomas and support
clinical and therapy management. Zhang and coauthors selected 851 radiomics features
and then applied four multivariate logistic regression models (T1 + T2 + CET1-w) to predict
chemoradiotherapy response by neoplastic remnants [8].

The differential diagnosis between pseudoprogression and tumor progression is still a
diagnostic issue for identifying which AI methods are well suited. Many studies in this field
have successfully evaluated DWI (44,45) and dynamic susceptibility-weighted contrast
enhancement measures after radiation therapy and temozolomide [30,31]. ML approaches
with support vector machines (incorporating multiple measures from DWI and dynamic
susceptibility-weighted contrast enhancement) similarly successfully predicted pseudo-
progression [32,33]. Kim and coworkers combined structural DWI-PWI MRI, generating
a radiomics model using 12 features to define pseudoprogression, obtaining an AUC of
0.85 [20]. Elshafeey et al. obtained similar results (AUC, 0.89) using a classifier of sixty
radiomic features from multicentric PWI data [21].

One of the main issues for gliomas is the differentiation of infiltration margins from
edema by applying conventional approaches. The ML-based definition of infiltrating tissue
might guide surgical removal, biopsy procedures, and radiotherapy planning. With a voxel-
wise logistic regression model, FLAIR and apparent diffusion coefficient maps appear
sufficient to empower a computational model to predict recurrent disease [34]. The groups
of Akbari [22] and Rathore [23] proposed a vector machine model, considering radiomics
features derived from conventional and advanced MRI modalities throw a co-registration
of areas of GBM recurrence to preoperative MRI. The results of such a model are some
spatial maps predictive of infiltrated peritumoral tissue with a cross-validation accuracy
of 90%.

3.2. AI in PET Imaging

The role of PET in oncology has risen substantially in the last few years. The oncol-
ogy field’s most widely used radiopharmaceutical agent is F-18-labeled glucose analog
2-[18F] fluoro-2-deoxy-D-glucose (18F-FDG). This tracer has a limited clinical value in
neuro-oncology for the lack of differentiation between tumor and normal brain tissue
uptake. Therefore, radiolabeled amino-acids have been introduced, such as [11C]-methyl-
L-methionine (11C-MET), O-(2-[18F]fluoroethyl)-L-tyrosine (18F-FET), 3,4-dihydroxy-6-
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[18F]-fluoro-L-phenylalanine (18F-FDOPA), or 18F-fluciclovine (18F-FACBC), to increase
the diagnostic value of PET as neurooncological imaging modality [35–37] (Table 2).

Table 2. AI in PET imaging of Gliomas.

Authors Imaging
Technique Clinical Setting AI Methods Main Findings Sample

Lohmann
et al. [18] FET PET

Differentiation
between pseudo-
progression and
true progression

Radiomics feature
extraction with
Pyradiomics. Validation
using 5-fold
cross-validation and
Machine Learning
model Tree-based
Pipeline Optimization
Tool (TPOT)

The radiomics model
correctly diagnosed all
patients with
pseudoprogression in
an independent test
cohort without the
need for dynamic FET
PET scans.

34 GBM

Paprottka
et al. [38] FET PET/MRI

Differentiation
between pseudo-
progression and
true progression

SRI24 atlas space and
resampled using a rigid,
mutual
information-driven
registration with the
open-source ANTs
software. BraTS Toolkit
and subsequent Random
Forest classifier

ML model combining
data from FET PET
and advanced MRI
imaging techniques in
a random forest
approach assessed the
disease progression
with sensitivity 91%
and specificity 70%.

66 patients

Hotta et al. [39] MET PET

Differential
diagnosis between
radionecrosis and
recurrent tumors

Image analysis using the
LIFEx package. Machine
learning with Random
Forest classifier—10-fold
cross validation

MET PET radiomics
signatures
outperformed T/N
ratio evaluation:
sensitivities of 90.1%
and 60.6%, and
specificities of 93.9%
and 72.7%,
respectively.

44 brain lesions
(gliomas and
metastases)

Wang et al. [40] FDG PET, MET
PET and MRI

Differential
diagnosis between
radionecrosis and
recurrent tumors

In-house texture
analysis software, called
AnalysisKit. least
absolute shrinkage and
selection operator
(LASSO) method for
features selection and
10-fold cross validation.
glmnet” package on
R-Studio Software

A logistic regression
model combining
clinical (patient age)
and derived imaging
information (the
radiomics signatures,
the TBRmean of FDG
PET and the TBR
maximum of MET
PET) provided a good
discrimination
between radionecrosis
and recurrent tumors
with an AUC of 0.988.

160 gliomas

Russo
et al. [17] MET PET

Diagnosis
assessment (tumor
grading)

LIFEX for segmentation.
A mixed
descriptive-inferential
sequential approach for
feature selection and
subsequent machine
learning model based on
discriminant analysis

An ML model based
on discriminant
analysis was proposed
with the aim of
reducing intra- and
inter- user variability:
the best result was
related to a VOI
obtained using an
automatic
thresholding method.

66 patients
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Neural cellular absorption of these radiopharmaceuticals is associated with the op-
eration of system L amino acid transporters (LAT1 and LAT2), governing the tissue load
through distinctive metabolic pathways [41]. The concentration of LAT expression on the
cellular membrane surface correlates with amino acid PET tracer absorption [41]. This
mechanism is remarkably specific to neoplastic cells, and as a result is predominantly
unaffected by brain-blood barrier (BBB) treatment-induced alterations and, consequently,
yielding outstanding tumor-to-background contrast [41].

Numerous investigations have illustrated the additional value of amino acid PET
and collaborative efforts, such as the RANO Working Group, the European Association of
Neuro-Oncology (EANO), the European Association of Nuclear Medicine (EANM), and
the Nuclear Medicine and Molecular Imaging Society (SNMMI), have outlined guidelines
endorsing the utilization of amino acid PET for distinct diagnosis, treatment strategizing,
and distinguishing tumor recurrence from treatment-associated modifications [37,42]. The
RANO also put forth further suggestions for employing PET imaging to devise and oversee
radiotherapy in gliomas [43].

Lohmann and coworkers evaluated the use of 18F-FET PET textural features to dis-
criminate between pseudoprogression and true progression [18]. The authors included
34 GBM patients with suspicious tumor progression after chemoradiation (12 weeks). An
ML model on four selected radiomics features from static and dynamic PET images showed
70% accuracy in the test dataset, correctly identifying all patients with pseudoprogression
(AUC, 0.74; sensitivity, 100%; specificity, 40%; p = 0.017).

The potential use of multiparametric 18F-FET PET/MRI and AI has been assessed by
Paprottka et al., describing a totally automated model, from longitudinal tumor segmenta-
tion and features extraction to classification [38]. The study included 66 patients analyzed
by integrating information from 18F-FET PET, DSC-derived CBV maps of PWI MRI, and
amide proton transfer-weighted (APTw) MRI imaging. An ML model was adopted for
modeling data in a random forest approach. Disease progression was assessed with ROC
analysis resulting in an AUC of 0.85 and an accuracy of 0.86 (sensitivity 0.91, specificity
0.70) [38]. Hotta and coauthors applied a random forest classifier, in discriminating between
radionecrosis and recurrent tumors, presenting a radiomics assessment of 11C-MET PET
on 44 brain lesions (gliomas and metastases) [39]. Utilizing this approach, the radiomics
demonstrated markedly superior sensitivity, specificity, and accuracy (90.1%, 93.9%, and
92.2%, respectively) compared to conventional tumor/background ratio (TBR) assessment,
which yielded a sensitivity of 60.6%, specificity of 72.7%, and accuracy of 63.6% (with a
designated cut-off value of 2.83).

More recently, textural features extracted from postoperative 18F-FDG PET, 11C-MET
PET, and MRI scans were also evaluated using radiomics-based models by Wang and
coauthors [44] in 160 glioma patients, to test the performance of discrimination between
tumor recurrence and radionecrosis. The integration of clinical and derived imaging
information was proposed using a logistic regression model. Finally, the age, TBR mean of
18-FDG PET, TBRmax of 11C-MET PET, and other twelve textual features were significant
contributors to the discrimination of tumor recurrence and RN (p < 0.001) both in primary
and validation cohorts.

Russo et al. demonstrated the feasibility of a new statistical methodology for selecting
significant descriptors, using a solid statistical classifier (discriminant analysis-DA), to
propose a model of prediction of tumor grading (low versus high grade) on 11C-MET PET
studies [17]. Although the study was performed for diagnosis assessment, the application
of this model might be translated into the post-treatment evaluation. The innovation of this
study is the use of discriminant analysis [45] as an ML set of rules adopting a k-fold strategy
and comparing two different segmentation algorithms for tumor identification. The final
aim was to avoid intra- and inter-user variability that may occur with manual delineation:
(i) a VOI obtained using an automatic thresholding method, and (ii) a fixed ROI of 81 voxels
centered on the SUVmax voxel to eradicate the dependency on the volume. The highest
performance was obtained using the VOI, demonstrating no particular advantages via
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a homogeneous fixed ROI rather than a segmentation algorithm that obtains different
volumes among patients’ studies.

11C-MET PET was used to detect recurrent brain tumors and differentiate them from
radiation necrosis by a radiomics approach. Hotta et al. extracted forty-two PET features of
forty-four brain lesions using a random forest classifier and the diagnostic performance
evaluation with a 10-fold cross-validation scheme [39]. Radiomics and T/N (tumor/noise)
ratio evaluation showed sensitivities of 90.1% and 60.6% and specificities of 93.9% and
72.7%, with areas under the curve of 0.98 and 0.73, respectively. Gray level co-occurrence
matrix dissimilarity was the most pertinent feature for diagnosis. 11CMET PET radiomics
generated an outstanding outcome for discerning relapsing tumors from radiation necrosis,
which outperformed the T/N ratio assessment.

To develop an integrated model for discriminating recurrence from radionecrosis,
Wang et al. highlighted integrated 18F-FDG PET, 11C-MET PET, and MRI images [44]. The
study defined 15 features significantly associated with tumor recurrence. This combined
model considered the radiomics signature, the mean TBR of 18F-FDG, the maximum
TBR of 11C-MET PET, and patient age, demonstrating practical insight of recurrences
(AUC of 0.988, 95% CI of 0.975–1.000). Application in the validation cohort showed good
differentiation (AUC of 0.914 and 95% CI of 0.881–0.945). Decision curve analysis showed
that this integrated model was clinically valuable.

Some applications of ML on PET imaging were also performed for the study of attenu-
ation correction (AC) and low-count image reconstruction [40]. The research development
in this field regards generating synthetic CT from MR or non-AC PET for PET AC and
direct conversion from non-AC PET to AC PET [40,46]. Despite the recent advances of
integration of AI in the new workstation and systems commercially available, the clinical
impact of these AI methods has to be confirmed by many datasets and prospective studies,
considering all potential bias that may occur in these analyses and the reproducibility and
real added value on clinical outcome.

4. Discussion

Despite the rapid diffusion of AI processes, serious technical difficulties in using these
sophisticated algorithms in clinical practice have been reported in the literature. Firstly, the
software must be combined with the radiologist’s workflow features. Additionally, a lot of
segmentation and radiomic models need much processing time, manual intervention, and
a variety of in-house pipelines. Due to the absence of specific guidelines on image segmen-
tation, the current pioneering status induced the researchers to develop some methods with
good performance, for example, wavelet analysis and transformation, neural networks,
or genetic algorithms [47]. After surgery, MRI with paramagnetic contrast agents is the
standard method to evaluate neoplastic growth and therapy response [48]. Classically, the
Response Assessment for Neuro-Oncology (RANO) and Macdonald criteria for GBM assess-
ment take into consideration the product of the two maximum diameters of the enhancing
tissues [49]. The heterogeneity of glioma pathogenesis and its aggressiveness with lack of
therapy responses in most patients raises the need to classify effective treatments using the
available surveillance tools accurately. Compared to linear methods, volumetric MRI has
demonstrated good performance in determining the neoplasm dimensions. Furthermore,
the volumetric analysis of tumor was recognized as the best predictor of outcome than
linear-based techniques, as demonstrated by Dempsey et al. [50]. In addition, another study
that proposed a semi-automatic approach to assess the brain tumor size was able to reduce
inter-observer variability [51], demonstrating the added value on the delineation of size
and quantification of the tumor [52]. The last years have assisted a widespread application
of radiomics in prognostic stratification of GBMs before therapy, given the capability of
this method to permit quantifiable analysis of radiological images, then converting this
information into a large number of standardized features [53]. In clinical practice, the extent
of resection should be evaluated with an early postoperative MRI scan and also PET scan, as
complementary imaging, to improve the differentiation between inflammatory reparative
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changes and residual tumors. Quantitative evaluation of the residual tumor to obtain more
continuous variables than dichotomous values (qualitative assessment) may help identify
the best therapy and prognosis approach, considering the potential reproducibility and
comparability in multicenter studies. Therefore, identifying additional prognostic values
using advanced image analyses of the tumor remnants at the postoperative MRI and PET
is becoming essential.

ML foresees the mining of quantitative features with different degrees of complexity
based on the adopted statistical approach applied to images, such as histogram- and
texture-based features, fitted biophysical models, spatial patterns, and DL features, to
predict information on the tumor-infiltrating boundaries, molecular markers, and also
prognosis, of vital interest for patients’ management. On the other hand, neuro-oncological
radiomics DL methods generally require less domain-specific data than the explicitly
engineered features for traditional ML, thus permitting them to make predictions without
explicit feature selection or reduction steps [54].

Empowering these methods based on AI permits computers to make decisions au-
tomatically. From a translational point of view, DL methods mirroring the human visual
cortex neural networks, applied to neuroimaging, have been related to an improvement in
neurosurgical management [55,56]. Some potential applications proposed are associated
with diagnosis, tumor grading and staging, outcome predictors, and (even if still under
evaluation in radiogenomics) associating genetics with imaging features [12].

Many ML models are developed in supervised forms, consisting of algorithms trained
on different diagnostic and prognostic applications (e.g., survival estimation, grading,
tumor enhancement, or necrosis). These models need adequate samples of the various
applications to “learn” and categorize different data. Supervised ML methods include lo-
gistic regression, support vector machines, random forests, and others software potentially
useful in clinical settings [57].

Generally, the traditional supervised approaches are applied after feature reduction to
minimize model complexity and avoid overfitting (i.e., memorizing the training sample
cases rather than learning the relevant pattern). Despite the power of these approaches,
extensive, domain-specific, expert knowledge about the underlying biologic basis of the
process is necessary. Some studies focused on unsupervised ML algorithms as k-means
clustering, which can provide new groups of categories from complex data sets [54].

The development of computer systems in terms of electronic power, graphical pro-
cessor, and mathematical optimization methods provided new advancements in neural
network models to contain many intermediate layers, thus differentiating DL from out-
moded neural networks. The introduction of iterative processes permits the improvement
of model weights (“back-propagation”) to accurately recognize low/intermediate level
image information, determining a maximization of the classification performance. In the
case of image-based problems, a subclass of feed-forward neural networks, namely the
feed convolutional (CNNs), have been used. Compared to the traditional ML approaches,
DL models can dash and do not require much manual intervention, but a large quantity of
labeled training data is necessary [54].

Potentially able to discriminate patterns by incorporating relevant multimodal imaging
with clinical/pathology/molecular information that humans cannot assess, AI methods
represent a promising tool for the future of radiology in the precision medicine era. AI’s
objective in brain tumors focuses on the potential advantage of generating a patient-
tailored prediction about molecular markers (precision diagnostics), prognosis, and specific
treatment recommendations (precision therapeutics). Using a fully automated system
might also help the treatment monitoring and therapy management with more precise
quantitative reporting tools to promptly track changes in conventional and advanced
imaging parameters and patterns derived, for example, from DL. To give substantial
advantages to patients’ clinical and diagnostic evaluation, a complete synergy between
humans and computers will be necessary to interpret information correctly from images,
AI tools, and health records [54]. The first objective of this research line is to improve
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clinical outcomes for patients affected by brain tumors through progress in diagnostic,
monitoring, and therapy management. AI methods merging medical, radiomic, and
genomic information into predictive models might have an impact on monitoring tailored
therapies. However, many challenges still exist, and further efforts are necessary for a
translational application.

Despite the potential ability of AI diagnostic resources in the clinical and diagnostic
setting, these systems still require substantial human oversight and supervision because
they cannot always understand the clinical context and related clinical questions.

Additionally, as data specialists, radiologists must provide continual, real-time feed-
back to update the AI system [58], serving as part of the “checks and balances” between
humans and machines. Early prototypes of generalized AI have been proposed in the
literature [59]. While AI is still far from generalized effectiveness, it holds promise to
one day improve neuroimaging at all levels, from processing and diagnosis to education
and management [11]. Further validation of AI models for monitoring responses will be
necessary to assess as MRI and PET/CT might provide a personalized treatment-response
prediction superior to current methods.

5. Conclusions

Future AI applications will focus on developing systems able to perform imaging
quantification and incorporate the multi-omics information deriving from radiology, nu-
clear medicine, electrophysiology, laboratory findings, and clinical data and eventually
create a comprehensive clinical-radiology report, and support the clinical decisions in
multi-disciplinary discussions, integrating different AI systems trained on a vast wealth of
neurological settings. Future physicians will have to be trained in the appropriate use of AI
to integrate its use into daily practice during the coming years.
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