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Simple Summary: Accurate diagnosis of early-stage choroidal melanoma, the most commonly
occurring malignancy of the eye, is extremely important yet highly challenging. Unfortunately, due to
challenges in obtaining adequate sampling and the risk of vision loss, intraocular melanoma remains
largely a clinical diagnosis, which can be subjective. Most of the existing tools and diagnostic methods
lack definitive discriminative features, leading to uncertainties in clinical diagnoses. In this work,
we present and evaluate a novel, contrast-free ultrasound-based method for quantitative assessment
of microvascular characteristics of choroidal tumors, aiming at distinguishing malignant lesions
based on the complex and irregular microvessel formations within them. Using this method, we
visualize intratumoral microvascular networks, estimate their morphological features using objective
quantitative metrics, and perform statistical analyses demonstrating differences between lesions
based on their malignancy status. The results of this preliminary study show promise for further
assessment of the method as a complementary diagnostic tool for ocular tumors.

Abstract: Angiogenesis has an essential role in the de novo evolution of choroidal melanoma as well
as choroidal nevus transformation into melanoma. Differentiating early-stage melanoma from nevus
is of high clinical importance; thus, imaging techniques that provide objective information regarding
tumor microvasculature structures could aid accurate early detection. Herein, we investigated the fea-
sibility of quantitative high-definition microvessel imaging (qHDMI) for differentiation of choroidal
tumors in humans. This new ultrasound-based technique encompasses a series of morphological
filtering and vessel enhancement techniques, enabling the visualization of tumor microvessels as
small as 150 microns and extracting vessel morphological features as new tumor biomarkers. Distri-
butional differences between the malignant melanomas and benign nevi were tested on 37 patients
with choroidal tumors using a non-parametric Wilcoxon rank-sum test, and statistical significance
was declared for biomarkers with p-values < 0.05. The ocular oncology diagnosis was choroidal
melanoma (malignant) in 21 and choroidal nevus (benign) in 15 patients. The mean thickness of
benign and malignant masses was 1.70 ± 0.40 mm and 3.81 ± 2.63 mm, respectively. Six HDMI
biomarkers, including number of vessel segments (p = 0.003), number of branch points (p = 0.003), ves-
sel density (p = 0.03), maximum tortuosity (p = 0.001), microvessel fractal dimension (p = 0.002), and
maximum diameter (p = 0.003) exhibited significant distributional differences between the two groups.
Contrast-free HDMI provided noninvasive imaging and quantification of microvessels of choroidal
tumors. The results of this pilot study indicate the potential use of qHDMI as a complementary tool
for characterization of small ocular tumors and early detection of choroidal melanoma.
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1. Introduction

Uveal melanoma is the most common primary intraocular malignancy in adults,
with 90% occurrence in choroid. These malignancies can arise from preexisting choroidal
nevus or de novo [1,2]. Distinguishing early-stage choroidal melanoma from nevus can be
challenging as they share similar ophthalmoscopic appearances when small [3]. Heretofore,
no single modality can successfully discriminate between these two entities. Biopsy for
histopathologic diagnosis is often unhelpful due to challenges in obtaining adequate
sampling and the risk of vision loss [4,5]. Consequently, multimodal imaging—including
ultrasound (US), optical coherence tomography (OCT), OCT-angiography (OCTA), and
fundus autofluorescence (FA)—is the most frequently employed diagnostic approach, but
its interpretation still requires the clinical judgement of an expert ocular oncologist [6].
Furthermore, diagnosis remains somewhat subjective.

Angiogenesis is essential to the development and progression of uveal melanoma [7].
Malignant transformation of an existing nevus is also accompanied by the formation of
new, aberrant, and structurally abnormal vessels [8,9]. Currently, no imaging modality can
directly assess tumor angiogenesis-related morphological changes as biomarkers for cancer
detection, as the available imaging modalities do not have the sensitivity or resolution to
characterize tumor microvessel structural abnormalities.

The report of the first experience of using echo color Doppler with an echographic
contrast agent demonstrated the enhancement of Doppler signals in ocular tumors in
different degrees [10]. Color Doppler ultrasound is helpful for differentiating a solid tumor
from retinal detachment; however, it is not sensitive to slow flows and does not reveal
tumor microvessels [11]. The limitations of OCTA include motion artifacts and the need for
extensive image processing. Clinical studies using contrast-enhanced ultrasound [12] and
preclinical studies of super-resolution ultrasound and ultrasound localization microscopy
(ULM) [13] are ongoing research areas for the detection of choroidal melanoma. However,
none of these methods offer quantification of tumor microvessel morphology. Furthermore,
careful use of ultrasound contrast agents is warranted to avoid damage to the ocular
vasculature [14].

To address these research gaps, a contrast-free ultrasound-based technology named
quantitative high-definition microvasculature imaging (qHDMI) was developed to visualize
microvessels as small as 150 µm [15]. This technique is equipped with a series of image
processing operations, morphological filtering, and vessel enhancement to extract and
quantify vessel morphological parameters as quantitative vessel biomarkers [15–17] and
has been tested for diagnosis of various cancers [18–23].

The present work comprises an assessment framework to differentiate choroidal
melanoma from a choroidal nevus. We hypothesize that the proposed contrast-free qHDMI
provides quantitative biomarker information regarding morphological features of tumor
microvessels and has the potential to objectively classify early-stage small choroidal
melanomas from benign nevi, thus rendering this method operator-independent and
eliminating the observer/reader variability for reliable clinical use.

2. Materials and Methods
2.1. Ethical Statement

This prospective study was Health Insurance Portability and Accountability Act–
compliant and approved by the institutional review board (IRB#22-001824). Each partici-
pant signed an IRB-approved written informed consent with permission for publication.
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2.2. Participants

This pilot study consisted of 36 participants with choroidal melanocytic lesions re-
cruited consecutively from November 2022 through August 2023. The inclusion and
exclusion criteria are detailed in the study flow chart shown in Figure 1. The investigative
team was blinded to the clinical assessments during the analysis, and the diagnosing
ocular oncologist was blinded to the imaging results until after the diagnosis was rendered.
Clinical assessment by a fellowship-trained ocular oncologist with multimodal ophthalmic
imaging served as the diagnostic reference standard. All participants completed our re-
search imaging examination before any treatment. Figure 1 indicates the flow diagram of
the participants enrolled in this study.
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2.3. Clinical Multimodal Imaging

All participants enrolled in this study had clinical multimodal imaging examinations,
including conventional ultrasonography, fundus autofluorescence (FA), OCT, and OCTA,
as part of their clinical care. Risk factors predictive of the transformation of a choroidal
nevus into melanoma were clinically considered [6]. These risk factors include tumor
thickness > 2 mm, basal diameter > 5 mm, subretinal fluid, symptoms of visual acuity loss
to 20/50 or worse, orange pigment, ultrasonographic features such as hollowness or low
internal reflectivity, and largest basal diameter greater than 5 mm. Choroidal melanoma
was diagnosed clinically at initial presentation if large with features of acoustic hollowness
and subretinal fluid, or, for small lesions, was diagnosed after documented growth of
0.1 mm or greater within a period of 6 months or less. Patients with a choroidal nevus had
documented stability of at least 1 year prior to study inclusion.

2.4. High-Definition Microvasculature Imaging and Vessel Extraction

All imaging studies were performed using a research ultrasound platform, Verasonics
Vantage 128 scanner equipped with a linear array transducer, L22vXLF with a center
frequency of 16.5MHz (Verasonics, Inc., Kirkland, WA, USA). Participants were scanned
while seated in a reclining examination chair. Two sonographers with more than 10 years
of experience conducted the research US study. Using Genteal gel over the eyelid, the
ultrasound transducer was placed over the eyelid and participants were asked to look
in a direction that allowed for the best visualization of the tumor on the B-scan. Ocular
lesions were first identified using plane-wave B-mode ultrasound. Ultrafast ultrasound
imaging via 3-angle coherent plane-wave compounding was performed at an effective
frame rate of 1000 Hz over a one-second time span [24]. No contrast-enhancing agent
was used. Data were downloaded from the machine and all processing was performed
offline using MATLAB, RRID:SCR_001622 (Mathworks, Natick, MA). Microvasculature
images were generated through post-processing of the data using a series of clutter filtering,
denoising, and vessel enhancement steps [15,25].

2.5. HDMI Quantification and Quantitative Biomarkers

For each choroidal tumor, a region of interest (ROI) was defined based on the B-mode
ultrasound images. The segmented lesion ensured that all vessel quantification steps were
limited to the specified ROI. The HDMI image was converted to a binary image, and the
full skeleton of the microvessel network was constructed for morphological parameter
quantification [16], as shown in Figure 2.

The methods for obtaining HDMI images and quantitative biomarkers have been
previously described [15–17]. Briefly, vessel density (VD) was defined as the proportion
of vessel area with blood flow over the total area measured [16]. Additional biomarkers
included the number of vessel segments (NV), the number of branch points (NB) defined
as a common point connected to three or more vessel segments [15,16], and vessel diameter
(D) [16]. Vessel tortuosity (τ) was defined as the ratio between the actual path length of a
meandrous vessel and the linear distance between the two endpoints. Murray’s deviation
(MD) indicates a diameter mismatch, defined as the deviations from Murray’s Law, detailed
in [17]. Microvessel fractal dimension (mvFD) is a unit-less geometrical feature indicating
the structural complexity of a vascular network [17,26]. Bifurcation angle (BA) was defined
as the angle between two daughter vessels and has also been used as a distinguishing
biomarker of malignancy [17]. For tortuosity, D, MD, and BA, we considered both the
mean and maximum of all measures for a given participant (i.e., τmean, τmax, Dmean, Dmax,
MDmean, MDmax, BAmean, and BAmax).
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image, (C) skeleton showing the network of vessels, and (D) overlay of the skeleton on the binary 
vessel image with identified branching points. The extracted biomarkers are used to differentiate 
malignant melanoma from benign nevus. Brief descriptions and calculations of four important 
quantitative biomarkers—τ, MD, mvFD, and BA—are shown. 
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Figure 2. HDMI image formation and processing steps to prepare HDMI image for quantification:
(1) Microvasculature image formation of a malignant choroidal melanoma processing steps; (A) out-
put microvessel image of HDMI. (2) HDMI morphometric analysis with morphological filtering and
vessel segmenting steps that leads to (B) conversion of the microvasculature image into a binary
image, (C) skeleton showing the network of vessels, and (D) overlay of the skeleton on the binary
vessel image with identified branching points. The extracted biomarkers are used to differentiate
malignant melanoma from benign nevus. Brief descriptions and calculations of four important
quantitative biomarkers—τ, MD, mvFD, and BA—are shown [14–16].

2.6. Statistical Analysis Methods

Quantitative variables were summarized as mean ± standard deviation (SD) and
ranges, while nominal variables were summarized as counts and percentages. A non-
parametric Wilcoxon rank-sum test was used to test differences in distributions of quantita-
tive biomarkers between malignant and benign tumors. A two-sided p-value < 0.05 was
considered statistically significant, and reported p-values were left unadjusted for multiple
testing. For corresponding measures of discrimination, we additionally estimated the area
under the receiver operating characteristic curve (AUC) and corresponding 95% confi-
dence interval (CI). In the case of MDmean, MDmax, BAmean, and BAmax, there is potential
structural missingness for individuals for whom there were no vascular branch points to
calculate these biomarkers (i.e., NB = 0). To jointly analyze associations of both quantitative
values and measurability, multivariable Firth logistic regression models were applied with
the linear predictor defined as β0 + β1X1 + β2X1X2, where X1 is the binary indicator of
measurability (0 = missing, 1 = observed) and X2 is the quantitative biomarker value. Note
that β2 only applies when the measurement is observed; thus, X2 can be arbitrarily defined
for instances of missing values. The effects β1 and β2 were jointly assessed per biomarker
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using 2 degree-of-freedom likelihood ratio tests (LRT). Previously mentioned statistical
analyses were performed using RStudio version 6.0.421 (Boston, MA, USA) with R version
4.3.0 (R Core Team, Vienna, Austria). Pearson’s correlations among HDMI biomarkers
were estimated using Python version 3.10.12 (Wilmington, DE, USA), and only pair-wise
complete data were included in this analysis.

3. Results

Out of the 36 choroidal tumors from 36 participants (21 male and 15 female), 21
(58%) were malignant choroidal melanomas and 15 (42%) were benign choroidal nevi. The
diagnosis was made by a fellowship-trained ocular oncologist using clinical examination
and multimodal ophthalmic imaging. Among the twenty-one male participants, fourteen
had malignant melanomas and seven had benign nevi; among the fifteen females, seven had
malignant melanomas and eight had benign nevi. Participant age was 60.48 ± 15.75 years
(range: 30 to 86) in the malignant participant group and 67.47 ± 14.31 (range: 34 to 89)
among participants with benign masses. All participants were of non-Hispanic white race
and ethnicity. Table 1 summarizes the demographic characteristics and clinical imaging
features of all participants.

Table 1. Participant demographics, clinical and lesion characteristics, included in this study.

Characteristics Malignant (21) Benign (15)

Demographics
Sex (male) 14 (67%) 7 (47%)

Sex (female) 7 (33%) 8 (53%)
Age (years) 60.48 ± 15.75 67.47 ± 14.31

White non-Hispanic (race and ethnicity) 21 (100%) 15 (100%)

Clinical multimodal imaging features

Tumor thickness, mm (US) 3.81 ± 2.63 1.70 ± 0.40
Tumor basal diameter, mm (US) 10.45 ± 3.82 7.78 ± 1.50

Vascular irregularity over lesion (OCTA) 5 (24%) 9 (60%)
Low internal reflectivity (US) 10 (48%) 5 (33%)

Subretinal fluid (US) 5 (24%) 0 (0%)
Orange pigment (FA) 15 (71%) 8 (53%)

3.1. Clinical Multimodal Ophthalmic Imaging Features

Tumor thicknesses for malignant melanoma and benign nevus were 3.81 ± 2.63 mm
(range: 0.91 mm to 11.3 mm) and 1.70 ± 0.40 mm (range: 1.20 mm to 3.19 mm), respectively,
with a p value of 0.0005. Clinical ultrasound features such as low internal reflectivity and
subretinal fluid were reported in ten and five malignant melanomas, respectively. Vascular
irregularity was reported in clinical OCTA of five melanomas and nine nevi. The FA of
tumors showed orange pigment in fifteen melanomas and eight nevi.

3.2. Microvessel Visualization and Quantification

We present two sets of small benign and malignant choroidal melanocytic tumors
(nevus and melanoma) based on the most important clinical ultrasound tumor dimension,
tumor thickness, for visual comparison along with metric values of quantitative biomarkers
of HDMI (Figure 3). In group I, the conventional B-mode ultrasound and HDMI images
with their corresponding HDMI quantitative biomarkers are shown in Figure 3A–D. The
thicknesses of the tumors in this set are approximately 1.99 mm and 1.24 mm for the
malignant choroidal melanoma and benign nevus, respectively. As seen in Figure 3B,D,
HDMI provided high-resolution images of tumor microvessels without the use of contrast
agents, which is evident under visual inspection, showing hypervascularity with increased
complexity in choroidal melanoma compared to benign choroidal nevus with noticeably
fewer microvessels and a less complex morphology. All quantified HDMI biomarkers
shown on the side of this group indicate higher values in choroidal melanoma compared to
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benign nevus. The thicknesses of the tumors in group II are approximately 0.91 mm and
1.18 mm for the malignant choroidal melanoma and benign nevus, respectively. Choroidal
melanoma, shown in Figure 3E,F, is the transformation of a previously known choroidal
nevus. Complexity and increased vascularity in visual inspection, as well as higher values
in HDMI metrics, are seen in melanoma compared to nevus.
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images (A,C) and HDMI images (B,D). In this group, (A,B) are images from a 34-year-old male
participant with diagnosis of choroidal melanoma with tumor thickness of 1.99mm; (C,D) images
from a 52-year-old female participant with choroidal nevus with tumor thickness 1.24mm; the
corresponding quantified HDMI biomarkers are indicated on the right side of the figure. Group II:
B-mode images (E,G) and HDMI images (F,H). In this group, (E,F) are images for choroidal melanoma
of a 63-year-old male participant with choroidal melanoma with thickness of 0.91mm; (G,H) images
from a 72-year-old female participant with choroidal nevus with tumor thickness 1.18 mm. Tables
including the corresponding quantified HDMI biomarkers are indicated on the right side of the figure.

Figure 4 presents a set of two larger choroidal tumors with thicknesses of malignant
melanoma (thickness: 4.90 mm) and benign hemangioma (3.19 mm). While benign he-
mangioma is excluded from the analysis because of the focus of the study on choroidal
melanoma vs. nevus, we selected hemangioma for a case comparison because of the size
and hypervascular nature of this tumor. Visually, hypervascularity with comparable vessel
density can be seen in both melanoma and hemangioma. However, higher values of other
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HDMI morphological metrics—tortuosity, NB, NV, NB, MD, mvFD, and BA—are seen in
malignant melanoma compared to benign hemangioma.
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Figure 4. B-mode (A,C) and HDMI (B,D) images for choroidal melanoma and hemangioma. In
this group, (A,B) are images from a 30-year-old female participant with a diagnosis of choroidal
melanoma with tumor thickness of 4.90mm; (C,D) are images from of a 63-year-old female participant
with benign choroidal hemangioma with a tumor thickness of 3.19mm. The corresponding quantified
HDMI biomarkers are shown on the right side of the figure.

3.3. Statistical Analysis

Tables 2 and 3 summarize the quantitative HDMI biomarkers’ distributions and
analysis results. Out of the eight quantitative HDMI biomarkers analyzed using the
Wilcoxon rank-sum test, six (75%) showed significantly higher values in the malignant
choroidal melanomas compared to the benign nevi, including NV (AUC = 0.79, 95%
CI = [0.47,0.93]; p = 0.003), NB (AUC = 0.78, 95% CI = [0.39,0.94]; p = 0.003), τmax (AUC = 0.82,
95% CI = [0.64,0.95]; p = 0.001), Dmax (AUC = 0.71, 95% CI = [0.50,0.88]; p = 0.003), VD
(AUC = 0.72, 95% CI = [0.51,0.88]; p = 0.03), and mvFD (AUC = 0.81, 95% CI = [0.63,0.95];
p = 0.001). Similarly, the logistic regression analyses accounting for structural missingness
identified significant associations with BAmean (LRT p = 0.002), BAmax (p = 0.002), MDmean
(p = 0.002), and MDmax (p = 0.002). These HDMI biomarkers (MDmean, MDmax, BAmean,
and BAmax) each had seven missing values for the benign group (47%) due to the absence
of a branch. No missing values were reported for the malignant group.

Figure 5 depicts the boxplots for the significant HDMI biomarkers. All HDMI biomark-
ers demonstrated higher median values in the malignant group compared to the be-
nign group.
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Figure 5. Boxplots of the distributions of significant HDMI biomarkers for benign and malignant
choroidal tumors. (a) Vessel density (VD), (b) number of vessel segments (NV), (c) microvessel
fractal dimension (mvFD), (d) number of branch points (NB), (e) maximum diameter (Dmax), and
(f) maximum tortuosity (τmax) (plotted on a log scale). A two-sided p-value < 0.05 was considered
statistically significant. Benign (n = 15); malignant (n = 21).

In Figure 6, we present the Pearson correlation matrix to assess the interrelationships
among the HDMI biomarkers. mvFD was found to be strongly correlated with VD (ρ = 0.75),
NB (ρ = 0.78), and NV (ρ = 0.82), indicating that as mvFD increases, VD, NB, and NV
increase as well. Tortuosity values (τmean,τmax) were weakly correlated with all the other
parameters, indicating that they may represent independent biomarker information.

Table 2. Quantitative HDMI biomarkers for benign and malignant choroidal tumors and their
corresponding p-values.

HDMI
Biomarkers Malignant n = 21 Benign n = 15 p-Value AUC [95% CI]

VD 0.20 ± 0.11 0.12 ± 0.09 0.03 0.72 [0.51, 0.88]
Dmean(µm) 459.89 ± 174.46 381.83 ± 176.38 0.39 0.59 [0.39, 0.78]
Dmax(µm) 908.56 ± 359.09 624.32 ± 341.80 0.003 0.71 [0.50, 0.88]

NV 16.57 ± 11.84 6.73 ± 5.74 0.003 0.79 [0.47, 0.93]
mvFD 1.32 ± 0.11 1.14 ± 0.16 0.002 0.81 [0.63, 0.95]

NB 8.90 ± 8.33 3.07 ± 3.81 0.003 0.78 [0.39, 0.94]
τmean 1.14 ± 0.21 1.05 ± 0.03 0.14 0.65 [0.45, 0.83]
τmax 1.91 ± 1.81 1.18 ± 0.21 0.001 0.82 [0.64, 0.95]

Note: VD, D, NV, mvFD, NB, and τ refer to vessel density, diameter, number of vessel segments, fractal dimension,
number of branch points, and tortuosity, respectively.
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Table 3. Quantitative HDMI biomarker for benign and malignant choroidal tumors for branching-
based biomarkers and their corresponding p-values.

HDMI
Branching-Based

Biomarkers.
Malignant n = 21 Benign n = 15 p-Value

N w/NB > 0 (%) Mean ± SD * N w/NB > (%) Mean ± SD *
BAmean (◦) 21 (100%) 99.53 ± 17.72 8 (53%) 99.74 ± 32.92 0.002 †
BAmax (◦) 21 (100%) 141.25 ± 28.57 8 (53%) 140.28 ± 35.24 0.002 †
MDmean 21 (100%) 0.40 ± 0.18 8 (53%) 0.40 ± 0.18 0.002 †
MDmax 21 (100%) 0.70 ± 0.26 8 (53%) 0.66 ± 0.22 0.002 †

Note: † These p-values were obtained from the likelihood test of the multivariable logistic regression analysis. BA
and MD refer to bifurcation angle and Murray’s deviation, respectively. * Mean+-SD are based on a subset of
observations with observed values.

One potential confounding factor in our data is tumor thickness, as malignant lesions
were significantly thicker than benign lesions (Wilcoxon p = 0.0005). To assess the robustness
of our results, we performed sensitivity analyses restricted to tumors with thicknesses
of 2.5 mm or less (including all fifteen benign lesions and seven malignant lesions). We
found no significant difference in size between this subgroup of melanoma and the nevi
group (p = 0.778). However, among the six previously significant qHDMI parameters,
five remained significantly different by malignancy status in this tumor subset (Table 4,
Figure 7).



Cancers 2024, 16, 395 11 of 15

Table 4. Quantitative HDMI biomarkers for a subset of tumors with thickness of 2.5 mm or less and
their corresponding p-values.

Malignant n = 7 Benign, n = 15 p-Value

Tumor thickness 1.74 ± 0.45) 1.70 ± 0.41 0.778

HDMI biomarkers

VD 0.27 ± 0.11 0.12 ± 0.09 0.007
Dmean (µm) 405.48 ± 254.82 381.83 ± 176.38 >0.99
Dmax (µm) 752.63 ± 499.35 624.32 ± 341.80 0.724

NV 15.29 ± 9.27 6.73 ± 5.74 0.037
mvFD 1.32 ± 0.10 1.14 ± 0.16 0.017

NB 8.14 ± 6.04 3.07 ± 3.81 0.025
τmean 1.07 ± 0.04 1.05 ± 0.03 0.622
τmax 1.31 ± 0.20 1.18 ± 0.21 0.048

Note: VD, D, NV, mvFD, NB, and τ refer to vessel density, diameter, number of vessel segments, fractal dimension,
number of branch points, and tortuosity, respectively. p-values in bold indicate statistical significance.
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vessel segments (NV), (c) microvessel fractal dimension (mvFD), (d) number of branch points (NB),
and (e) maximum tortuosity (τmax). A two-sided p-value < 0.05 was considered statistically significant.
Benign (n = 15); malignant (n = 7).

4. Discussion

This study investigated the discriminatory potential of the quantitative biomarkers
of contrast-free qHDMI between a malignant choroidal melanoma and benign choroidal
nevus. Our findings show that qHDMI biomarkers VD, NV, NB, maximum diameter
(Dmax), maximum tortuosity (τmax), and mvFD showed significant distinctions between the
malignant choroidal melanoma and benign nevus groups. Another important finding of
this study is that qHDMI was able to separate very small melanomas, as small as 0.91 mm,
from small nevi, as shown in Figure 3. One potential confounding factor in our study is
the tumor thickness, as malignant lesions were significantly thicker than benign lesions
(Wilcoxon p = 0.0005). While the diagnosis of large choroidal melanomas thicker than
5 mm is less challenging, they metastasize at this later stage. However, the ultimate goal
is to distinguish choroidal melanomas from nevi at an early stage as they share similar
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ophthalmoscopic appearances when small. In a subset size analysis, our study found
no significant difference in size for early-stage melanomas 2.5 mm or less in thickness
(Wilcoxon p = 0.778). However, five of the qHDMI biomarkers remained significantly
different by malignancy status for this subset of small lesions. Therefore, our findings
underscore the potential effectiveness of quantitative HDMI biomarkers in distinguishing
early-stage melanomas from nevi (smaller than 3mm in thickness), which is in agreement with
previous studies on detecting very small and early-stage breast and liver cancers [18–20,23].

Malignant transformation of an existing nevus as well as de novo cases of choroidal
melanoma are accompanied by the formation of new aberrant and complex vessels [7]. Such
newly formed tumor vessels are structurally abnormal, showing an increased diameter,
abnormal branching pattern, irregularity, and complexity [9]. Currently, there are no nonin-
vasive tools for imaging and quantifying angiogenesis in choroidal melanoma. A previous
study using a contrast-enhanced color Doppler aimed to assess the tumor vasculature in
uveal melanomas, but was unable to differentiate normal vessel structures from those of
the tumor [27]. The current study, however, provided high-resolution images of tumor
microvessels without the use of contrast agents and, more importantly, the quantitative
morphological biomarkers were differentiable between a malignant uveal melanoma and
a nevus.

Until now, only preclinical studies using ULM have been explored for imaging
microvessels of choroidal melanoma [28]. In the current study, HDMI provided high-
resolution images of the microvessel network of choroidal tumors, and the majority of quan-
titative HDMI biomarkers showed significant differences between choroidal melanoma and
a nevus. The most important finding in our study is that qHDMI was able to capture and
quantify the microvasculature features in early-stage choroidal melanomas. Distinguishing
choroidal melanoma at an early stage from a nevus can be challenging, as they share similar
clinical appearances when small [3]; thus, early detection and treatment is perhaps the most
effective way to prevent metastasis in a cancer where approximately 50% of patients will
ultimately develop metastatic disease [29]. However, standard-of-care treatments using
radiotherapy carry a high risk for vision loss, leading to frequent observation in cases
of indeterminate choroidal melanocytic lesions to watch for documented growth prior
to treatment [30]. This practice, driven by the somewhat subjective nature of choroidal
melanoma diagnosis, even amongst ocular oncologists, could lead to treatment delays and
increased metastatic risk. Thus far, there is no single or objective modality to successfully
distinguish a choroidal nevus from melanoma; so, the technique described in this study
has the potential to make an important clinical impact.

In the current study, higher values of VD, NV, and NB in malignant melanomas
compared to benign nevi are supported by similar findings observed in cancer detection
for patients with tumors in the breast [18], liver [23], thyroid nodules [22], and lymph
nodes [21]. Also, maximum tortuosity and maximum diameter showed higher values
in the malignant group compared to the benign group and empirically exhibited higher
discrimination than mean tortuosity and mean diameter. Our findings are supported by
the fact that increased tortuosity and vessel diameter are more prevalent on the periphery
compared to the center of the growing malignant tumor. This fact suggests that the use
of maximum vessel diameter and tortuosity may provide a better diagnostic value than
averaging the diameter of the vessels [9].

We found higher values of mvFD in malignant choroidal melanoma, which is consis-
tent with the fact that microvessel complexity measured by mvFD is higher in malignant
tumors and its measurement may provide important diagnostic and prognostic informa-
tion [26,31]. The present study also found vessel density to be higher in malignant tumors.
Similar findings have been reported with the use of contrast agents [13]. Vessel density
was found to be an important prognostic factor for survival in patients with choroidal
melanoma, indicating that higher vessel density in choroidal melanoma is associated with
hepatic metastasis and higher mortality rates [32–34].
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The current study had limitations that warrant mention. The sample size was in-
sufficient to employ more sophisticated multivariable statistical analyses and for the de-
velopment of predictive models. Plans for future studies will include a larger cohort of
participants to evaluate the performance of HDMI biomarkers more precisely for early
detection of choroidal melanomas while additionally controlling for potential confounding
factors (e.g., tumor thickness). There is also the possibility of data degradation due to volun-
tary and involuntary eye movement during data acquisition. The future plan will include
utilizing and expanding the motion correction algorithms [35,36] to reduce potential mo-
tion artifacts or to use deep learning methods [37,38] for the correction of motion artifacts.
Lastly, future work should include complementary quantitative three-dimensional HDMI
imaging [20] to overcome the limitations of our 2D imaging for morphological features.

5. Conclusions

In conclusion, our study demonstrated the feasibility of quantitative HDMI for differen-
tiation of choroidal melanoma and choroidal nevus in tumors with a thickness smaller than
2mm, indicating the potential of this technique for early detection of choroidal melanoma.
In the future, we will focus more on the detection of early-stage choroidal melanoma and
treatment monitoring as well as investigating the possibility of discriminating between
other types of ocular tumors.

6. Patents

US Patent 11,213,278 and EP 3 634 238 B1, JP 7139357 B2.
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