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Simple Summary: Current means of bladder cancer diagnosis are invasive or lack sensitivity. Dysbio-
sis of the urinary microbiome has been implicated in the development of bladder cancer, though its
potential as a diagnostic tool is unknown. This study attempts to characterize bladder cancer-specific
dysbiosis of the urinary microbiome to explore its diagnostic potential. Numerous species were
observed to be differentially abundant between the urine samples of patients with bladder cancer
and healthy individuals. Specific immune modulations were observed with respect to these species,
as was the enrichment of select pathways known to be implicated in the progression of bladder
cancer. The study suggests that the urinary microbiome may reflect dysregulations of the tumor
microenvironment. Further investigation may reveal the potential of the identified species as urinary
biomarkers of this disease. In this way, the urinary microbiome may allow for the noninvasive and
earlier detection of bladder cancer, regardless of stage or subtype.

Abstract: There are a total of 82,290 new cases and 16,710 deaths estimated for bladder cancer
in the United States in 2023. Currently, urine cytology tests are widely used for bladder cancer
diagnosis, though they suffer from variable sensitivity, ranging from 45 to 97%. More recently, the
microbiome has become increasingly recognized for its role in human diseases, including cancers.
This study attempts to characterize urinary microbiome bladder cancer-specific dysbiosis to explore
its diagnostic potential. RNA-sequencing data of urine samples from patients with bladder cancer
(n = 18) and matched controls (n = 12) were mapped to bacterial sequences to yield species-level
abundance approximations. Urine samples were analyzed at both the population and species level
to reveal dysbiosis associated with bladder cancer. A panel of 35 differentially abundant species
was discovered, which may be useful as urinary biomarkers for this disease. We further assessed
whether these species were of similar significance in a validation dataset (n = 81), revealing that
the genera Escherichia, Acinetobacter, and Enterobacter were consistently differentially abundant. We
discovered distinct patterns of microbial-associated immune modulation in these samples. Several
immune pathways were found to be significantly enriched with respect to the abundance of these
species, including antigen processing and presentation, cytosolic DNA sensing, and leukocyte
transendothelial migration. Differential cytokine activity was similarly observed, suggesting the
urinary microbiome’s correlation to immune modulation. The adherens junction and WNT signaling
pathways, both implicated in the development and progression of bladder cancer, were also enriched
with these species. Our findings indicate that the urinary microbiome may reflect both microbial
and immune dysregulations of the tumor microenvironment in bladder cancer. Given the potential
biomarker species identified, the urinary microbiome may provide a non-invasive, more sensitive,
and more specific diagnostic tool, allowing for the earlier diagnosis of patients with bladder cancer.
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1. Introduction

In the U.S., 82,290 new cases and 16,710 deaths were reported for bladder cancer in
2023, with a 5-year survival rate of 77.9% [1]. These cancers are known to disproportionately
affect older, male populations, with the median age at diagnosis being 73 [1]. Veterans are
particularly susceptible to developing these diseases due to an increased risk of exposure
to chemicals implicated in their pathogenesis, largely Agent Orange [2,3]. Increased usage
of tobacco products, as observed in these populations, is also known to increase these
individuals’ risk of developing bladder cancer [4,5].

Bladder cancers are classified as either muscle-invasive or non-muscle-invasive, with
treatment options varying considerably between these two groups [6,7]. In the treatment of
these patients, clinicians will often select a combination of transurethral resection, adjuvant
intravesical therapy, radical cystectomy, and neoadjuvant chemotherapy depending on the
subtype [6,7]. However, a delayed diagnosis will result in worse prognoses irrespective of
interventions [8]. As such, the early detection of bladder cancer is crucial toward improving
the outcome of patients with this disease. Of the current means of diagnosis, cystoscopies
are often performed when patients become symptomatic, typically presenting with urinary
bleeding [9,10]. In these cases, however, the cancers have likely already reached more
advanced stages, making treatment more difficult [8]. Moreover, smaller lesions may
be overlooked [11,12]. For the early detection of bladder cancer, numerous biomarker
screening tests have been developed and implemented [13]. Urine cytology tests, the BTA
stat test, and the NMP22 test are commonly used, though they suffer from poor sensitivities
in less advanced cancers [13–16]. Hence, the development of a means to diagnose bladder
cancers regardless of their stages or subtypes would provide significant clinical benefit.

The progression from non-muscle-invasive to muscle-invasive bladder cancer has been
heavily associated with epithelial–mesenchymal transition (EMT) [17–19]. This transition
is characterized by a decrease in cell adhesion, by which epithelial cells gain mesenchymal
traits [20]. The disruption of this pathway has been associated with increased cell motility
and proliferation rates, ultimately promoting the acquisition of muscle-invasive bladder
cancer [17–19]. The WNT/β-catenin signaling pathway has also been implicated in this
transition [21,22]. Mutations in this pathway have been linked to tumorigenesis and the
development of drug resistance by inducing a cancer stem cell phenotype [21]. Numerous
genetic factors have been identified for their importance in EMT and WNT/β-catenin
signaling, including the dysregulation of select transcriptional factors and the differential
activation of associated receptors [22,23]. Epigenetic factors are less explored, though the
human microbiome has been shown to indirectly regulate both EMT and WNT/β-catenin
signaling [24,25].

The human microbiome is a collection of microorganisms that populate the gastroin-
testinal system [26]. The microbiome has become increasingly implicated in human dis-
eases, including inflammatory bowel disease, psoriasis, and diabetes, among others [27,28].
The microbiome is thought to influence an array of biological pathways, largely through
metabolite-mediated immune modulation [29,30]. As such, studies have also characterized
the microbiome for its implication in various cancers, particularly colorectal cancers [31–34].
Less is known regarding the microbiome’s influence beyond the gastrointestinal system,
though microbial species are known to exist outside of the gut. Although previously con-
sidered sterile, the bladder has been shown to harbor a diverse population of microbiota,
creating potential for the urinary microbiome to influence urological diseases [35]. In fact,
studies have shown select genera to be enriched in the urine samples of patients with
bladder cancer [36,37]. Urinary tract infections, too, have been shown to increase the risk
of bladder cancer mortality [38]. Nonetheless, the exact mechanisms by which the urinary
microbiome may mediate bladder cancer remain unknown. We have previously demon-
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strated the importance of the intratumoral microbiome to EMT in bladder cancer [39]. We
hypothesize that by investigating the urinary microbiome for similar dysbiosis, we may
identify additional microbial influences of this disease. Further, by exploring this dysbiosis
for its implications in immune modulation, EMT, and WNT/β-catenin signaling, we may
better understand the human microbiome’s relevance to the transition between bladder
cancer subtypes. With the discovery of microbial biomarkers, we may be more equipped
for the early diagnosis of bladder cancers, regardless of stage or subtype.

To test our hypothesis, RNA-sequencing data of bladder cancer (n = 18) and normal
(n = 12) urine samples were first downloaded from the NCBI BioProject Database. Se-
quences were mapped to bacterial sequences to yield species-level abundance approxima-
tions. Both population-level and species-level variations were explored, as were microbial-
associated immune dysregulations and the microbial-associated enrichment of EMT and
WNT/β-catenin signaling. Several species that were differentially abundant between the
bladder cancer and normal samples were found to be of similar significance in a validation
dataset. By assessing the urinary microbiome for its relation to these factors, we hope to
demonstrate the importance of biomarker microbiota in the early diagnosis of bladder
cancer.

2. Materials and Methods
2.1. Data Acquisition

RNA-Seq data were downloaded from the NCBI BioProject Database (https://www.
ncbi.nlm.nih.gov/gds (accessed on 25 July 2023)) of bladder cancer (n = 18) and normal
(n = 12) urine samples from three studies (PRJNA657414, PRJNA872870, and PRJNA723026).
For validation, RNA-Seq data were similarly downloaded from the Genome Sequencing
Archive (https://ngdc.cncb.ac.cn/gsa/ (accessed on 3 January 2024)) of bladder cancer
(n = 62) and normal (n = 19) urine samples (PRJCA003781).

2.2. Bacterial Read Mapping

Sequences were mapped to bacterial species using the Pathoscope 2.0 software [40],
with reference sequences sourced from the NCBI Nucleotide Database (https://www.ncbi.
nlm.nih.gov/nucleotide/ (accessed on 28 July 2022)). Bacterial reads were targeted for
quantification, and human reads were filtered. Standard parameters were chosen.

2.3. Gene Read Mapping

Sequences were mapped to the hg38 reference genome using the STAR 2.7.10a
software [41], with reference sequences sourced from the NCBI Nucleotide Database
(https://www.ncbi.nlm.nih.gov/nucleotide/ (accessed on 28 July 2022)). Standard param-
eters were chosen.

2.4. Cross Study Normalization

Median Absolute Deviation (MAD) normalization was performed to increase the
validity of cross-study comparisons. In this technique, the median expression value of a
gene is subtracted from each individual sample’s expression of that gene. The resultant
values are then divided by the MAD of that gene to yield relative expression values in
each sample. This technique was similarly performed on species abundance values. MAD
normalization assumes an equal median and distribution across samples and is resilient to
outliers. MAD normalization has been shown to be robust in gene expression experiments
compared to other standard normalization tools [42]. Principle coordinate analysis (PCoA)
was conducted to confirm the effectiveness of this technique using Euclidean distance.

https://www.ncbi.nlm.nih.gov/gds
https://www.ncbi.nlm.nih.gov/gds
https://ngdc.cncb.ac.cn/gsa/
https://www.ncbi.nlm.nih.gov/nucleotide/
https://www.ncbi.nlm.nih.gov/nucleotide/
https://www.ncbi.nlm.nih.gov/nucleotide/
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2.5. Microbial Contamination Correction

There is potential for contaminant species to be introduced upon sample collection
and sequencing [43]. Across all samples, noncontaminant species are expected to be of
greater abundance in samples of a greater total abundance of taxa. Contaminant species
are likely introduced in a fixed amount and will not display this behavior. Spearman’s
correlations were computed between each species and the total abundance of all species in
a sample. Species that did not show a significant correlation to the total abundance of taxa
were deemed contaminants and excluded from subsequent analyses.

2.6. Global Indicator Analyses

The microbiome R package was used to perform PCoA using Euclidean distance. This
package was also used to calculate alpha and beta diversity values.

2.7. Differential Abundance Analyses

The Kruskal–Wallis test was used to identify species differentially abundant between
bladder cancer and normal samples (p < 0.05). A hypergeometric test was used to de-
termine whether a significant number of genera were common to both the original and
validation datasets.

2.8. Gene Set Enrichment Analyses

The clusterProfile R package was used to assess immune, adherens junction, and
WNT signaling pathway enrichment [44]. Twenty-two immune-associated gene sets were
sourced from the KEGG PATHWAY Database (https://www.genome.jp/kegg/pathway.
html (accessed on 3 August 2023)). The enrichplot R package was used to visualize
enrichment results.

2.9. Expression Correlation Analyses

Spearman’s correlations were calculated relating species’ abundances to cytokine
expression. This analysis was similarly performed to relate species’ abundances to the
expression of the genes of the adherens junction and WNT signaling pathways. Only
differentially abundant species were analyzed.

3. Results
3.1. Cross-Study Normalization and Contamination Correction

Bacterial abundance and gene expression counts were extracted from bladder cancer
(n = 18) and normal (n = 12) urine samples spanning three studies (Figure 1A). MAD
normalization was performed to increase the comparability of samples for subsequent
analyses (see Section 2). PCoA was conducted to visualize the samples’ bacterial abundance
and gene expression profiles by study both before (Figure 1B) and after (Figure 1C) MAD
normalization. After normalization, the samples showed closer proximity, and thus greater
similarity in their expression and abundance profiles, confirming the effectiveness of the
chosen normalization technique and demonstrating the comparability of the samples’
abundance and expression profiles for subsequent analyses.

To identify and exclude potential contaminant species, Spearman’s correlations were
computed between each species and the total abundance of all species in a sample (see
Section 2). Species that did not show a significant correlation to the total abundance of
taxa were deemed contaminants and excluded from subsequent analyses. This procedure
was performed on bladder cancer and normal samples collectively. A phylogenic tree was
created to visualize the distribution of contaminant species by class or phylum (Figure 1D).

https://www.genome.jp/kegg/pathway.html
https://www.genome.jp/kegg/pathway.html
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contained in the second panel. Figures should be placed in the main text near to the first time they
are cited. A caption on a single line should be centered.

Table 1. This is a table caption. Tables should be placed in the main text near to the first time they
are cited.
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Entry 1 Data Data
Entry 2 Data Data 1

1 Tables may have a footer.

The text continues here (Figure 2, Figure 3, Figure 4, Figure 5, Figure 6 and Table 2). 64

Figure 1. Analysis overview. (A) Overview schematic. (B) PCoA plots of unnormalized bacterial
abundance (top) and gene expression (bottom) profiles by study. Points represent samples, with a
closer proximity indicating greater similarity in the samples’ bacterial abundance or gene expression
profiles. (C) PCoA plots of normalized bacterial abundance (top) and gene expression (bottom)
profiles by study. MAD normalization was performed. Points represent samples, with a closer
proximity indicating greater similarity in the samples’ bacterial abundance or gene expression
profiles. Samples show greater comparability after normalization. (D) Phylogenic tree and bar chart
of contaminant species by class or phylum.

3.2. Global Urinary Microbiome Dysbiosis

PCoA was conducted to characterize the samples’ bacterial abundance profiles by
their disease states (Figure 2A). This analysis attempts to simplify the abundance values of
all microbial features in each sample into several arbitrary dimensions. In these dimensions,
the proximity of one sample to another describes wholistically the samples’ similarities in
microbiome composition. Bladder cancer samples occupy a distinct region of the plot from
normal samples, suggesting the presence of a wholistic variation in urinary microbiome
composition between these disease states.

Measures of alpha and beta diversity were further computed in each sample (Figure 2B).
Absolute and relative diversity were found to be significantly lesser in bladder cancer
samples, while Shannon diversity was significantly greater (Figure 2C). It is unclear what
factors may have influenced the observed difference in direction. Nonetheless, these
metrics suggest the presence of global dysbiosis in the urinary microbiome of bladder
cancer patients.
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Figure 2. This is a wide figure.Figure 2. Global indicator dissimilarity. (A) PCoA plots of bacterial abundance by disease state. Points
represent samples, with a closer proximity indicating greater similarity in the samples’ bacterial
abundance profiles. Bladder cancer samples occupy a distinct region of the plot as compared to normal
samples, suggesting global dissimilarity in their urinary microbiome compositions. (B) Heatmap
of alpha and beta diversity measures across samples. Rows represent samples. Cell values are
relative, and units are arbitrary. (C) Boxplots of alpha diversity measures by disease state. Absolute,
relative, and Shannon diversity indicators are significantly altered between bladder cancer and
normal samples. * p < 0.05.

3.3. Differentially Abundant Species

The Kruskal–Wallis test was used to compare individual species’ abundances between
bladder cancer and normal samples. A total of 35 species were found to be differentially
abundant between these disease states (p < 0.05) (Figure 3A). Most notably, Caldanaerobacter
subterraneus was significantly enriched in the urine samples of patients with bladder cancer.
Among others, the abundance of Burkholderia ambifaria, Staphylococcus xylosus, and Klebsiella
pneumoniae was significantly lesser in these samples. The significance (Figure 3B) and fold-
change (Figure 3C) distributions of species were plotted. A phylogenic tree was created to
visualize the distribution of differentially abundant species by class or phylum (Figure 3D).
A majority of the differentially abundant species were of the classes Betaproteobacteria and
Gammaproteobacteria.
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Figure 3. Differential abundance. (A) Volcano plot showing differential abundance of species
between bladder cancer and normal samples. Points represent microbes. Thirty-five species were
determined to be differentially abundant. (B) Histogram showing the significance distribution of
species. (C) Histogram showing the fold-change distribution of species. (D) Phylogenic tree and bar
chart of differentially abundant species by class or phylum.

3.4. Microbe-Associated Immune Dysregulation

Gene set enrichment analysis was conducted to determine whether select immune-
associated pathways were enriched with respect to individual species’ abundances. Twenty-
two KEGG immune pathways were assessed for enrichment with each of the 35 differen-
tially abundant species above (see Section 2). Nominal enrichment scores (NESs) and test
statistics were calculated for each species–pathway combination. Several immune path-
ways show significant enrichment with respect to one or more of these species (Figure 4A),
including antigen processing and presentation, cytosolic DNA sensing, and leukocyte
transendothelial migration. Notably, samples with greater abundances of Pseudomonas
fluorescens and Pseudomonas putida corresponded to the positive enrichment of these path-
ways. These species were less abundant in bladder cancer samples, with lesser abundance
correlating to the downregulation of these pathways.

Spearman’s correlations were further computed to assess these differentially abundant
species for their implications in cytokine dysregulation. Correlation coefficients and test
statistics were calculated of each species–cytokine combination. Pseudomonas fluorescens
and Pseudomonas aeruginosa were significantly positively correlated to these cytokines’
expressions, particularly for CCL3L1, IL1A, and IL4R (Figure 4B). Among others, numerous
significant correlations were also observed of the species Cutibacterium acnes, Cupriavidus
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metallidurans, and Stenotrophomonas maltophilia to the expression of CCL3L1, IL1A, IL1B,
IL1RAP, and IL4R.
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Figure 4. Microbial-associated immune dysregulation. (A) Scatter plots showing microbial-associated
enrichment of select immune pathways. Nominal enrichment scores (NESs) and p-values are plotted.
Each point represents a microbe–pathway combination. Only differentially abundant microbes were
chosen for analysis. (B) Strip chart of microbe–cytokine correlations. p-values are plotted. Each
point represents a microbe–cytokine combination, with sizes and colors indicating their correlation
coefficients (R-value). Only differentially abundant microbes were chosen for analysis. Cytokines
show positive correlation to a vast majority of the differentially abundant species.

3.5. Microbe-Associated Adherens Junction and WNT Signaling Enrichment

Due to their implications in the transition from non-muscle-invasive to muscle-
invasive bladder cancer, EMT and the WNT signaling pathway were assessed for en-
richment with respect to each of the 35 differentially abundant species above. The adherens
junction KEGG pathway is composed of genes involved in intercellular adhesion interac-
tions. It is closely associated with the genes involved in EMT, and thus was chosen to model
this pathway [45]. Enrichment plots were created to visualize the running enrichment score
of the 10 differentially abundant species of the greatest significance (Figure 5A). These
pathways show positive enrichment with respect to a majority of these species, includ-
ing Pseudomonas fluorescens and Pseudomonas putida. These species were less abundant
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in bladder cancer samples, with lesser abundance correlating to the downregulation of
these pathways. Spearman’s correlations were computed to further assess differentially
abundant species for correlation to the expression of each of the genes in these pathways.
Correlation coefficients and test statistics were calculated for each species–gene combina-
tion. Numerous species were of significant correlation to these genes’ expression, with
a vast majority of these correlations being positive (Figure 5B). The greater abundance
of the species Cupriavidus metallidurans correlated to the increased expression of many of
these genes, including ACTN1, CSNK2A1, NECTIN1, PTPRF, and RAC3 of the adherens
junction pathway and CCND2, C2NKA1, FZD5, LRP6, RAC2, and RAC3 of the WNT
signaling pathway.
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Figure 5. Microbial-associated adherens junction and signaling pathway dysregulation. (A) Enrich-
ment plots showing the running enrichment score of select microbes to the adherens junction (top)
and WNT signaling (bottom) pathways. Lines represent microbes. Only the ten microbes of the
greatest significance in differential abundance are shown. Both pathways are positively enriched
with respect to a majority of the microbes analyzed. (B) Strip charts of microbe–gene set correlations.
Genes of the adherens junction (top) and WNT signaling (bottom) pathways are shown. p-values are
plotted. Each point represents a microbe–gene combination, with sizes and colors indicating their
correlation coefficients (R-value). Only differentially abundant microbes were chosen for analysis.
Gene sets show positive correlation to a vast majority of the differentially abundant species.

3.6. Validation of Differential Abundance

We further attempted to validate whether the differentially abundant species identified
above were of similar significance in a fourth dataset. After performing contamination
correction (see Section 2), the Kruskal–Wallis test was again used to identify species that
were of significantly altered abundance between the bladder cancer and normal urine
samples. In total, 12 species were differentially abundant between these disease states
(p < 0.05) (Figure 6A). Hypergeometric testing was used to quantify the extent of overlap
between these 12 species and the 35 identified in the original datasets. At the genus-level,
seven of these features were common to both datasets (Figure 6B). This yielded a test
statistic of 7.86 × 10−7, indicating a significant amount of overlap between the datasets. We
present the following common genera for their potential as microbial urinary biomarkers of
bladder cancer: Escherichia, Acinetobacter, and Enterobacter. Species of the genera Escherichia
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and Acinetobacter were consistently of lesser abundance in bladder cancer samples, and
species of the genus Enterobacter were of greater abundance in bladder cancer samples.
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Figure 6. This is a wide figure.Figure 6. Validation of differentially abundant species by genus. (A) Volcano plot showing differential
abundance of species between bladder cancer and normal samples. Points represent microbes.
Twelve species were determined to be differentially abundant. (B) Venn diagram showing the
number of differentially abundant species common to both the original datasets and the validation
dataset. Species of the genera Escherichia, Acinetobacter, and Enterobacter were commonly differentially
abundant. Hypergeometric testing revealed a significant amount of overlap between these datasets,
with 35 species identified in the original datasets, 12 species identified in the validation dataset, and
602 noncontaminant species present in both datasets collectively.

4. Discussion

At a global level, bacterial abundance was found to vary significantly between bladder
cancer and normal urine samples. Absolute and relative diversity values were generally
lesser in the urine samples of patients with bladder cancer. A similar decrease in microbial
diversity with bladder cancer has been reported previously, though studies lack consis-
tency [46–48]. Through PCoA, we observed a global variation in microbiome composition
between the urine samples of patients with bladder cancer and those of healthy individ-
uals. Dysbiosis of the gut microbiome is known to be implicated in numerous human
diseases [27,28], largely through differential immune modulation and metabolic interac-
tions [29,30]. However, the extent to which this is true of the urinary microbiome is unclear.
Regardless of the causal or resultant nature of this dysbiosis, the observed variations in the
urinary microbiome may be highly useful in the diagnosis of bladder cancer. The detection
of a urinary microbial profile distinct for patients with bladder cancer may provide an
accurate, non-invasive means of diagnosis.

At a species level, we observed the differential abundance of specific taxa in blad-
der cancer urine samples. In total, 35 species were found to be differentially abundant
between the samples’ urinary microbiomes. A majority of these species were of the phyla
Proteobacteria, Actinobacteria, Firmicutes, and Cyanobacteria. The differential abundance
of these phyla has been identified by other studies of the urinary microbiome in bladder
cancer [46–48]. At a genera level, we observed several consistencies in differential abun-
dance, as well. Numerous species of the genus Escherichia were of lesser abundance in the
bladder cancer samples. We also discovered a consistency in the enrichment of Cupriavidus
in bladder cancer samples [47], and a decreased abundance of the genus Acinetobacter. After
validation, we ultimately discovered that species of the following genera were consistently
differentially abundant between bladder cancer and normal samples: Escherichia, Acineto-
bacter, and Enterobacter. Through further investigation, we may determine whether these
genera and others are clinically relevant. We suspect that these genera may prove highly
useful as biomarkers for this disease. Additional research on a greater number of patients
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is needed to confirm the implications of these genera and to determine their potential for
use in a noninvasive diagnostic approach.

Alternatively, these findings might suggest the utility of microbial-based cancer thera-
pies. The gut microbiome has been shown to influence the efficacy of many cancer therapies,
including immunotherapy, chemotherapy, radiation therapy, and even surgery [49]. Studies
have demonstrated the ability of fecal transplants and dietary interventions to increase a
patient’s likelihood of responding to anti-cancer treatments [50]. These interventions are
designed to modulate the gut microbiome, and less is known regarding how they might
affect the urinary microbiome. Nonetheless, these approaches prove highly promising.
Given the relevance of the urinary microbiome as demonstrated above, additional research
into microbial-based cancer therapies may similarly be of use for bladder cancers.

We further discovered the enrichment of specific immune pathways with respect to
the differentially abundant species identified. Among others, Pseudomonas fluorescens and
Pseudomonas putida consistently correlated to the enrichment of antigen processing and
presentation pathways. These species were of decreased abundance in bladder cancer
samples, corresponding to decreased antigen processing and presentation. Cancer cells are
known to exhibit this trait as means of immune evasion, by which a reduction in antigen
presentation prevents the activation of a host’s immune response [51,52]. In this way,
the reduced abundance of these species may contribute to a cancer’s evasion of immune
recognition. Similarly, cytosolic DNA sensing pathways were enriched with these species. A
reduction in their abundance values in bladder cancer samples corresponded to a reduction
in DNA sensing. The suppression of this pathway is also a known mechanism of immune
evasion exhibited by cancer cells [53,54]. The lesser abundance of Pseudomonas fluorescens
and Pseudomonas putida, as observed in bladder cancer samples, may provide cancer cells a
greater means of evading immune recognition, ultimately promoting tumorigenesis. The
microbial-associated enrichment of these pathways may act as a mechanistic link between
the human microbiome and the pathogenesis of bladder cancer. Further investigation of
these taxa and their specific metabolic interactions may prove useful toward understanding
their implications in this disease.

As expected, these species were also found to correlate to differential cytokine ex-
pression. Among others, numerous significant correlations were observed between the
species Cutibacterium acnes, Cupriavidus metallidurans, and Stenotrophomonas maltophilia and
the cytokines CCL3L1, IL1A, IL1B, IL1RAP, and IL4R. Cytokine dysregulation is known to
alter a local immune landscape through the differential recruitment of immune cells and
the promotion of an inflammatory response [55]. The dysregulation of cytokine activity
is heavily implicated in oncogenesis [55] and may mediate the effect of the urinary micro-
biome on bladder cancer development or progression. Through the immune modulatory
relations demonstrated, the urinary microbiome may be implicated in the pathology of
bladder cancers, with dysbiosis ultimately promoting a bladder cancer’s development
and progression.

EMT has been shown to be characteristic of the transition from non-muscle-invasive to
muscle-invasive bladder cancer [17–19]. The genes involved in EMT are heavily associated
with a decrease in cell adhesion, with many of them also being integral to the adherens
junction pathway [20]. The destabilization of the adherens junction pathway is associated
with increased cellular motility and metastasis resultant of decreased intercellular adhe-
sion [56,57]. We observed the enrichment of the EMT pathway with respect to several
microbial species. The decreased abundance of Pseudomonas fluorescens and Pseudomonas
putida corresponded to decreased pathway activity, and thus decreased intercellular ad-
hesion in bladder cancer samples. The observed decrease in these species’ abundances
may suggest their relation to EMT and to the pathology of bladder cancer as a whole. The
adherens junction pathway has been previously implicated in many other cancer types,
including colorectal cancer, breast cancer, and lung cancer [58–62]. Moreover, dysbiosis
of the gut microbiome has also been shown to contribute to epithelial dysregulation [63].
We propose that the urinary microbiome may play a similar role in this pathway’s regula-
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tion within the bladder. Functional metabolic analyses may further elucidate the urinary
microbiome’s implications in the adherens junction pathway and EMT.

The WNT pathway, too, has been shown to play an oncogenic role in bladder can-
cers [21,22]. It is thought to be involved in the transition from non-muscle-invasive to
muscle-invasive bladder cancer and has been used as an important diagnostic and prog-
nostic biomarker [21,22]. This pathway plays a central role in regulating cell differentiation,
providing a suitable explanation as to its implications in cancer growth and metastasis [64].
We also observed the consistent upregulation of the WNT pathway with respect to several
species’ abundances. Pseudomonas fluorescens and Pseudomonas putida were of decreased
abundance in bladder cancer samples, corresponding to the decreased activity of this path-
way. These species may contribute to this pathway’s dysregulation, ultimately yielding the
decreased regulation of cell differentiation in bladder cancer samples. Various species have
been implicated in the molecular alteration of the WNT glycoproteins, ultimately destabi-
lizing its components [65]. Bacterial virulence factors, too, have been shown to modulate
this pathway through an array of mechanisms, including the repression of WNT inhibitors,
the blocking of WNT–Fzd ligands, and the dysregulation of WNT ligands’ expressions [65].
We propose that the urinary microbiomes may dysregulate this pathway through similar
means, consequently promoting cancer development and progression. Further metabolic
analyses may confirm these hypotheses.

Moreover, the microbial-associated dysregulation of the adherens junction and WNT
signaling pathways may mutually influence one another. Many genes are common be-
tween these pathways, perhaps explaining the observed similarities in their dysregulation.
Genes of the WNT signaling pathway are known to interact with the β-catenin protein
of the adherens junction cascades, resulting in the detachment of E-cadherin from a cell’s
cytoskeleton [66]. In this way, the microbial-associated dysregulation of these pathways
may cyclically influence one another, driving a cancer toward the muscle-invasive subtype.

5. Conclusions

Ultimately, we have observed significant dysbiosis in the urinary microbiome of pa-
tients with bladder cancer. We discovered microbial-associated enrichment of immune
pathways and cytokine activity, suggesting the potential immune modulatory relation
of these species. The dysregulation of EMT and WNT/β-catenin signaling was also ob-
served with these species, suggesting that the observed decreases in their abundances in
bladder cancer samples may reflect the transition from the non-muscle-invasive to the
muscle-invasive subtype. With these considerations, we may better understand the urinary
microbiome for its implications in bladder cancer and for its implications in the acquisition
of the muscle-invasive subtype. By further exploring the species that relate to this acquisi-
tion, we may be more equipped to develop urinary biomarker tests that are more capable
of detecting less-advanced bladder cancers. Ultimately, the creation of a panel of urinary
biomarker species may prove highly useful toward the non-invasive diagnosis of bladder
cancer, ideally providing precision regardless of a cancer’s stage or subtype.

In summary, our results suggest that the urinary microbiome may provide a non-
invasive diagnostic tool of significant sensitivity and specificity, allowing for the earlier
diagnosis of bladder cancer. Our results are limited due to the correlational nature of
this study. We are unable to claim a causal relationship between dysbiosis of the urinary
microbiome with bladder cancer pathogenesis. Due to the limited number of samples
investigated, these results are further limited. Additional samples are necessary to confirm
whether the differentially abundant species identified are clinically relevant, as is a greater
variation in the disease progression of patients. Moreover, we acknowledge that potentially
confounding variables might be present among these samples, including differences in
the patients’ types of bladder cancer, the patients’ subtypes, the patients’ genders, and
the urine collection methods used [67]. This information was not available for each of the
chosen datasets, preventing us from further stratifying our results. The sample collection
and sequencing procedures used by these studies also inherently differed. We attempted



Cancers 2024, 16, 394 13 of 15

to mitigate these differences through the above normalization procedures, though the
potentially confounding effects should be noted. Lastly, species-level profiling performed
with the use of a reference sequence database will only capture culturable species and may
omit species otherwise present. This is common in most microbiome studies that employ
direct sequence alignment.
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46. Hrbáček, J.; Tláskal, V.; Čermák, P.; Hanáček, V.; Zachoval, R. Bladder cancer is associated with decreased urinary microbiota
diversity and alterations in microbial community composition. Urol. Oncol. 2023, 41, 107.e15–107.e22. [CrossRef]

47. Liu, F.; Liu, A.; Lu, X.; Zhang, Z.; Xue, Y.; Xu, J.; Zeng, S.; Xiong, Q.; Tan, H.; He, X.; et al. Dysbiosis signatures of the microbial
profile in tissue from bladder cancer. Cancer Med. 2019, 8, 6904–6914. [CrossRef]

48. Mansour, B.; Monyók, Á.; Makra, N.; Gajdács, M.; Vadnay, I.; Ligeti, B.; Juhász, J.; Szabó, D.; Ostorházi, E. Bladder cancer-related
microbiota: Examining differences in urine and tissue samples. Sci. Rep. 2020, 10, 11042. [CrossRef]

49. Zhao, L.Y.; Mei, J.X.; Yu, G.; Lei, L.; Zhang, W.H.; Liu, K.; Chen, X.L.; Kołat, D.; Yang, K.; Hu, J.K. Role of the gut microbiota in
anticancer therapy: From molecular mechanisms to clinical applications. Signal Transduct. Target. Ther. 2023, 8, 201. [CrossRef]

50. Fernandes, M.R.; Aggarwal, P.; Costa, R.G.F.; Cole, A.M.; Trinchieri, G. Targeting the gut microbiota for cancer therapy. Nat. Rev.
Cancer 2022, 22, 703–722. [CrossRef]

51. Dhatchinamoorthy, K.; Colbert, J.D.; Rock, K.L. Cancer Immune Evasion through Loss of MHC Class I Antigen Presentation.
Front. Immunol. 2021, 12, 636568. [CrossRef]

52. Kim, S.K.; Cho, S.W. The Evasion Mechanisms of Cancer Immunity and Drug Intervention in the Tumor Microenvironment.
Front. Pharmacol. 2022, 13, 868695. [CrossRef]

53. Chen, Q.; Sun, L.; Chen, Z.J. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat. Immunol. 2016,
17, 1142–1149. [CrossRef]

54. Kwon, J.; Bakhoum, S.F. The Cytosolic DNA-Sensing cGAS-STING Pathway in Cancer. Cancer Discov. 2020, 10, 26–39. [CrossRef]
[PubMed]

55. Lan, T.; Chen, L.; Wei, X. Inflammatory Cytokines in Cancer: Comprehensive Understanding and Clinical Progress in Gene
Therapy. Cells 2021, 10, 100. [CrossRef] [PubMed]

56. Knights, A.J.; Funnell, A.P.; Crossley, M.; Pearson, R.C. Holding Tight: Cell Junctions and Cancer Spread. Trends Cancer Res. 2012,
8, 61–69. [PubMed]

57. Le Bras, G.F.; Taubenslag, K.J.; Andl, C.D. The regulation of cell-cell adhesion during epithelial-mesenchymal transition, motility
and tumor progression. Cell Adh. Migr. 2012, 6, 365–373. [CrossRef]

58. Kinugasa, T.; Akagi, Y.; Ochi, T.; Tanaka, N.; Kawahara, A.; Ishibashi, Y.; Gotanda, Y.; Yamaguchi, K.; Shiratuchi, I.; Oka, Y.; et al.
Increased claudin-1 protein expression in hepatic metastatic lesions of colorectal cancer. Anticancer Res. 2012, 32, 2309–2314.

59. Martin, T.A.; Mansel, R.E.; Jiang, W.G. Loss of occludin leads to the progression of human breast cancer. Int. J. Mol. Med. 2010, 26,
723–734. [CrossRef]

60. Elloul, S.; Bukholt Elstrand, M.; Nesland, J.M.; Tropé, C.G.; Kvalheim, G.; Goldberg, I.; Reich, R.; Davidson, B. Snail, Slug, and
Smad-interacting protein 1 as novel parameters of disease aggressiveness in metastatic ovarian and breast carcinoma. Cancer
2005, 103, 1631–1643. [CrossRef]

61. Soini, Y. Tight junctions in lung cancer and lung metastasis: A review. Int. J. Clin. Exp. Pathol. 2012, 5, 126–136.
62. Kundu, S.T.; Gosavi, P.; Khapare, N.; Patel, R.; Hosing, A.S.; Maru, G.B.; Ingle, A.; Decaprio, J.A.; Dalal, S.N. Plakophilin3

downregulation leads to a decrease in cell adhesion and promotes metastasis. Int. J. Cancer 2008, 123, 2303–2314. [CrossRef]
63. Allam-Ndoul, B.; Castonguay-Paradis, S.; Veilleux, A. Gut Microbiota and Intestinal Trans-Epithelial Permeability. Int. J. Mol. Sci.

2020, 21, 6402. [CrossRef] [PubMed]
64. Sato, N.; Meijer, L.; Skaltsounis, L.; Greengard, P.; Brivanlou, A.H. Maintenance of pluripotency in human and mouse embryonic

stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat. Med. 2004, 10, 55–63. [CrossRef]
[PubMed]

65. Silva-García, O.; Valdez-Alarcón, J.J.; Baizabal-Aguirre, V.M. Wnt/β-Catenin Signaling as a Molecular Target by Pathogenic
Bacteria. Front. Immunol. 2019, 10, 2135. [CrossRef] [PubMed]

66. Basu, S.; Cheriyamundath, S.; Ben-Ze’ev, A. Cell-cell adhesion: Linking Wnt/β-catenin signaling with partial EMT and stemness
traits in tumorigenesis. F1000Research 2018, 7, 1488. [CrossRef]

67. Pohl, H.G.; Groah, S.L.; Pérez-Losada, M.; Ljungberg, I.; Sprague, B.M.; Chandal, N.; Caldovic, L.; Hsieh, M. The Urine
Microbiome of Healthy Men and Women Differs by Urine Collection Method. Int. Neurourol. J. 2020, 24, 41–51. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1089/omi.2011.0118
https://www.ncbi.nlm.nih.gov/pubmed/22455463
https://doi.org/10.1074/jbc.M211304200
https://www.ncbi.nlm.nih.gov/pubmed/12665527
https://doi.org/10.1016/j.urolonc.2022.09.018
https://doi.org/10.1002/cam4.2419
https://doi.org/10.1038/s41598-020-67443-2
https://doi.org/10.1038/s41392-023-01406-7
https://doi.org/10.1038/s41568-022-00513-x
https://doi.org/10.3389/fimmu.2021.636568
https://doi.org/10.3389/fphar.2022.868695
https://doi.org/10.1038/ni.3558
https://doi.org/10.1158/2159-8290.CD-19-0761
https://www.ncbi.nlm.nih.gov/pubmed/31852718
https://doi.org/10.3390/cells10010100
https://www.ncbi.nlm.nih.gov/pubmed/33429846
https://www.ncbi.nlm.nih.gov/pubmed/23450077
https://doi.org/10.4161/cam.21326
https://doi.org/10.3892/ijmm_00000519
https://doi.org/10.1002/cncr.20946
https://doi.org/10.1002/ijc.23797
https://doi.org/10.3390/ijms21176402
https://www.ncbi.nlm.nih.gov/pubmed/32899147
https://doi.org/10.1038/nm979
https://www.ncbi.nlm.nih.gov/pubmed/14702635
https://doi.org/10.3389/fimmu.2019.02135
https://www.ncbi.nlm.nih.gov/pubmed/31611869
https://doi.org/10.12688/f1000research.15782.1
https://doi.org/10.5213/inj.1938244.122

	Introduction 
	Materials and Methods 
	Data Acquisition 
	Bacterial Read Mapping 
	Gene Read Mapping 
	Cross Study Normalization 
	Microbial Contamination Correction 
	Global Indicator Analyses 
	Differential Abundance Analyses 
	Gene Set Enrichment Analyses 
	Expression Correlation Analyses 

	Results 
	Cross-Study Normalization and Contamination Correction 
	Global Urinary Microbiome Dysbiosis 
	Differentially Abundant Species 
	Microbe-Associated Immune Dysregulation 
	Microbe-Associated Adherens Junction and WNT Signaling Enrichment 
	Validation of Differential Abundance 

	Discussion 
	Conclusions 
	References

