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Simple Summary: Pancreatic ductal adenocarcinoma (PDAC) is often diagnosed at advanced stages,
resulting in limited treatment options and poor survival rates. To address this challenge, we con-
ducted a comprehensive analysis of pyroptosis-related genes using advanced algorithms. Our study,
involving 1273 PDAC cases, identified 357 pyroptosis-related genes. Notably, BHLHE40, IL18, BIRC3,
and APOL1 were found to be related to unfavourable PDAC outcomes and were validated through
experiments and multiple datasets. We developed a novel model and an accessible nomogram to
predict PDAC prognosis. Our research enhances our understanding of PDAC and has significant
implications for both research and clinical practice.

Abstract: Pancreatic ductal adenocarcinoma (PDAC) is often diagnosed at late stages, limiting
treatment options and survival rates. Pyroptosis-related gene signatures hold promise as PDAC
prognostic markers, but limited gene pools and small sample sizes hinder their utility. We aimed to
enhance PDAC prognosis with a comprehensive multi-algorithm analysis. Using R, we employed
natural language processing and latent Dirichlet allocation on PubMed publications to identify
pyroptosis-related genes. We collected PDAC transcriptome data (n = 1273) from various databases,
conducted a meta-analysis, and performed differential gene expression analysis on tumour and
non-cancerous tissues. Cox and LASSO algorithms were used for survival modelling, resulting in
a pyroptosis-related gene expression-based prognostic index. Laboratory and external validations
were conducted. Bibliometric analysis revealed that pyroptosis publications focus on signalling
pathways, disease correlation, and prognosis. We identified 357 pyroptosis-related genes, validating
the significance of BHLHE40, IL18, BIRC3, and APOL1. Elevated expression of these genes strongly
correlated with poor PDAC prognosis and guided treatment strategies. Our accessible nomogram
model aids in PDAC prognosis and treatment decisions. We established an improved gene signature
for pyroptosis-related genes, offering a novel model and nomogram for enhanced PDAC prognosis.

Keywords: pancreatic cancer; bibliometric analysis; LDA analyses; machine learning; pyroptosis

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers, often diag-
nosed at an advanced metastatic stage [1–3]. Despite significant advancements in treatment
modalities, such as surgery, chemotherapy, and targeted therapies, the 5-year overall sur-
vival rate for PDAC patients in 2022 remained dishearteningly low at 11% [4]. This bleak
prognosis primarily arises from 90% of PDAC cases being identified in advanced stages,
extending beyond the pancreas and spreading systemically, with over 50% developing
metastases [4]. This dire situation underscores the urgent need for new biomarkers to assist
in PDAC risk assessment and to identify novel therapeutic targets.

Recent studies have shed light on the detrimental effects of first- and second-line
chemotherapeutic drugs, which induce pyroptosis and exacerbate the progression and
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chemoresistance of PDAC [5]. Consequently, pyroptosis-related gene signatures have
emerged as valuable tools for predicting prognosis in PDAC [6–9]. Pyroptosis, a relatively
newfound form of inflammatory caspase-induced lytic programmed cell death, is notably
activated in infected cells to eliminate pathogenic niches, incite inflammation, and attract
immune cells [10]. Characterised by cell swelling, membrane rupture, the release of
cellular contents, and initiation of a potent inflammatory response [11,12], pyroptosis is
initiated by inflammatory caspases-1/4/5/11, which cleave and activate gasdermin D
(GSDMD) to execute the process. The active N-terminal fragment of GSDMD binds to
membrane lipids, disrupting membrane integrity and forming pores, ultimately causing
changes in cell osmotic pressure, cellular swelling, and membrane rupture [13]. This
cascade of events includes the maturation and secretion of numerous proinflammatory
cytokines like IL-18 and IL-1β, which activate active and passive immunity, fostering a
robust inflammatory response [14].

Pyroptosis plays a pivotal role in the immune response against infections, especially
viral ones like HIV and COVID-19 [15,16]. However, its role in cancer development
and treatment is complex, influenced by factors such as tumour heterogeneity, biological
behaviours, and epigenetic characteristics [17]. Studies have shown that pyroptosis can con-
tribute to the inflammatory microenvironment of tumours, promoting tumour cell growth
and invasion [14]. Conversely, pyroptosis has been demonstrated to activate the immune re-
sponse and enhance the effectiveness of immunotherapy. Moreover, various chemotherapy
agents, such as decitabine (DAC), iron oxide, and glucose oxidase, have shown promise
in inducing pyroptosis in cancer cells, thus triggering antitumour immunotherapeutic
responses [17]. Nevertheless, our understanding of the function of pyroptosis in PDAC,
particularly its impact on prognosis, remains limited. In this study, we harnessed natural
language processing (NLP) to analyse the pyroptosis-related literature within the PubMed
database comprehensively.

Our investigation focused on identifying research hotspots and extracting pertinent
genes related to pyroptosis. Subsequently, we performed a meta-analysis using publicly
available PDAC sequencing data, explicitly targeting pivotal genes involved in pyroptosis.
Building upon this analysis, we developed a prognostic risk model based on the upreg-
ulation of four leading candidate pyroptosis-related genes to predict PDAC prognosis
more accurately. Ultimately, our research underscores the significant role of heightened
pyroptosis in PDAC prognosis.

2. Materials and Methods
2.1. Retrieval and Downloading of Pyroptosis-Related Publications

To access publications related to “Pyroptosis”, we employed the pubquery package
in R (version: 4.2.1). This package facilitated the retrieval and downloading of pertinent
PubMed publications. A comprehensive record of search results in XML format, span-
ning publications until 31 December 2022, was obtained. Excel (Microsoft Corporation,
Redmond, WA, USA) and R were primarily used for visualisation.

2.2. Natural Language Processing (NLP) and Latent Dirichlet Allocation (LDA)

To extract detailed publication data, including publication year, region, abstract, and
research type, the Python programming language (version 3.11.1), known for its efficiency
in object-oriented programming, was employed. The LDA technique was utilised to discern
research topics covered in the publications. For this analysis, we set the number of identified
topics to 50, considering factors such as appropriate perplexity, redundancy, and legibility.

Using the LDA algorithm, we computed topic probabilities for each article and as-
signed a topic to each publication based on these probabilities. Heatmaps were generated
to visually represent research topics and publication dates [18,19]. For cluster analysis and
the creation of thematic networks to discern relationships between themes, we employed
the Louvain algorithm within Gephi software (version 0.9.2).
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To establish connections between themes, we identified the two topics with the high-
est attribution probability in each article and counted their co-occurrences within each
document. The codes used for the LDA analysis are described (Supplemental Material:
Supplemental Information S1).

2.3. Patient Clinical Information, Transcriptome Data, and Immunohistochemistry Acquisition

The RNA-sequencing data (FPKM values) and corresponding clinical data from PDAC
patients were sourced from the following databases: TCGA database (n = 177; https://www.
cancer.gov/tcga (accessed on 9 January 2024)), ICGC data portal including the PACA-AU
project for PDAC (n = 91; https://dcc.icgc.org/projects/PACA-AU (accessed on 9 January
2024)), ICGC-PACA-CA (n = 213; https://dcc.icgc.org/projects/PACA-CA (accessed on 9
January 2024)), GEO database (https://www.ncbi.nlm.nih.gov/geo/ (accessed on 9 January
2024)) with the datasets GSE85916 (n = 79), GSE71729 (n = 105), GSE62452 (n = 66), GSE57495
(n = 63), and GSE21501 (n = 192), and E-MTAB database (n = 287; https://www.ebi.ac.uk/
biostudies/arrayexpress/studies/E-MTAB-6134 (accessed on 9 January 2024)), totalling
1273 patients. Data normalisation was performed using the log2 transformation, and
analysis was conducted using R and R Bioconductor software packages (R version number
4.1.1., R Bioconductor is an open source package) (Supplemental Material: Table S2 contains
all included datasets). Immunohistochemistry (IHC) staining of PDAC patient tissues was
obtained from the Human Protein Atlas (TCIA) database (https://www.proteinatlas.org/
(accessed on 9 January 2024)) [20].

2.4. Retrieval and Acquisition of Pyroptosis-Related Genes

To compile a comprehensive list of pyroptotic-related genes, the Genes and Expression
section of the NIH National Library of Medicine (https://www.ncbi.nlm.nih.gov/guide/
genes-expression/ (accessed on 9 January 2024)) was utilised to identify gene symbols.
Abstracts of relevant publications were retrieved. All genes and gene names appearing in
these abstracts were extracted, and their frequency of occurrence was recorded. Additional
verification was conducted to ensure data integrity and establish a correlation between the
genes and pyroptosis, referencing databases such as GSEA (https://www.gsea-msigdb.
org/gsea/index.jsp (accessed on 9 January 2024)), Genecards (https://www.genecards.org/
(accessed on 9 January 2024)), and KEGG (https://www.genome.jp/kegg/ (accessed on
9 January 2024)). Inclusion criteria: Publications must have abstracts containing gene
names or gene symbols. Exclusion criteria: Our researchers manually examined each
identified gene, requiring explicit evidence in papers demonstrating the gene’s association
with pyroptosis. This association should originate from (1) molecular biology experiments,
including but not limited to RT-qPCR at the transcriptional level and protein-level detection
represented by Western blot. (2) Sequencing data suggesting correlation. (3) At least two
authors agreed that this gene is related to pyroptosis. A union of pyroptosis-related genes
was created by consolidating information from all these databases.

2.5. Meta-Analysis of Prognostic Implications of Pyroptosis-Related Core Genes in PDAC

To assess the overall survival (OS) implications of pyroptosis core genes in PDAC, we
computed the hazard ratio (HR) for each gene using the log-rank test in R. If no significant
heterogeneity was observed (I2 < 50% and p > 0.05), we pooled the HRs of each pyroptosis
gene from different bulk sequencing-based cohorts using a fixed-effects model. The Meta
package in R (https://cran.r-project.org/web/packages/meta/index.html (accessed on 9
January 2024)) was used for conducting the meta-analysis, and Graphpad (https://www.
graphpad.com/, Version 9, (accessed on 9 January 2024)) was used for visualisation. The
meta-analysis included all transcriptional data mentioned above in point Section 2.3.

2.6. Identification of Differentially Expressed Pyroptosis-Related Genes

We retrieved pyroptosis-related genes, as described above in point Section 2.3, result-
ing in 357 genes for analysis. Four different datasets were selected: GSE15471 (adjacent tis-
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sue = 36, tumour tissue = 36), GSE62452 (adjacent tissue = 61, tumour tissue = 69), GSE71729
(adjacent tissue = 46, tumour tissue = 145), and GSE102238 (adjacent tissue = 50, tumour
tissue = 50). These datasets included 193 adjacent tissue samples and 300 tumour tissue
samples. To identify differentially expressed genes (DEGs), we used the “limma” package
in R software version 4.1.2, applying the criteria of p-value < 0.05 and |log2FC| > 0.58. The
final set of differentially expressed genes was obtained through intersection analysis.

2.7. Cell Culture

Established human PDAC cell lines, including MIA-PaCa2 (RRID: CVCL_0428), BxPc-
3 (RRID: CVCL_0186), PANC-1 (RRID: CVCL_0480), and AsPC-1 (RRID: CVCL_0152),
and the non-malignant pancreatic ductal cell line CRL-4023 (RRID: CVCL_C466) were
obtained from the American Type Culture Collection (ATCC, Manassas, VA, USA). PDAC
cells were cultured at 37 ◦C in high-glucose DMEM (Sigma, Deisenhoffen, Germany), 10%
FBS (Sigma), and 25 mmol/L HEPES (Thermo Fisher, Dreieich, Germany). CRL-4023
cells were cultured in a glucose-free mixture of 75% DMEM, 2 mM L-glutamine, 1.5 g/L
sodium bicarbonate, and 25% M3 basal medium (Incell Corporation LLC, San Antonio, TX,
USA). Monthly testing using PlasmoTest™ (InvivoGen, San Diego, CA, USA) confirmed
the absence of mycoplasma contamination in these cell lines. Additionally, all cell lines
underwent recent validation through single-nucleotide polymorphism (SNP) analysis
conducted by Multiplexion (Heidelberg, Germany).

2.8. mRNA Extraction and RT-qPCR

The RNeasy Mini Kit (QIAGEN, Hilden, Germany) was used for mRNA extraction.
Following the instructions of the manufacturer, reverse transcription was performed using
the High-Capacity RNA-to-DNA™ Kit (Thermo Fisher Scientific, Dreieich, Germany). RT-
qPCR was conducted using the PowerUp™ SYBR™ Green Master Mix (Thermo Fisher
Scientific, Germany). Primer sequences are available (Supplemental Materials: Table S3)
and were synthesised by Eurofinsgenomic (Ebersberg, Germany). The primer concentration
used was 500 nM. Gene expression levels were normalised to the housekeeping gene
glycerinaldehyde-3-phosphate-dehydrogenase (GAPDH). The qPCR conditions involved
denaturation at 95 ◦C for 15 s, annealing at 60 ◦C for 15 s, and extension at 72 ◦C for 1 min,
repeated for 40 cycles. The results are expressed as relative expression values, calculated
using the 2-∆∆Ct method [21].

2.9. Identification of Key Prognostic Genes and Establishment of a Scoring System for
Pyroptosis-Related Genes Prognostic Index

We performed a univariate Cox regression analysis to assess the survival significance of
pyroptosis-related genes, considering a significance threshold of p < 0.05. Subsequently, we
employed the least absolute shrinkage and selection operator (LASSO) regression analysis
to narrow the selection of candidate genes. The LASSO regression helped determine
the optimal penalty parameter (λ) based on the minimum parameter. Subsequently, we
calculated the regression coefficients of these selected pyroptosis-related genes, and a
multivariate Cox regression analysis was performed to construct a scoring system. The
following formula represents the scoring system:

Risk Score =
n

∑
k=1

coef
(

Genek
)
∗ expr

(
Genek

)
In this formula, each gene is denoted as Genek, where k represents the gene index. Coef

(Genek) corresponds to the regression coefficient of Genek obtained from the multivariate
Cox regression analysis, while expr(Genek) represents the expression level of Genek. The
risk score for an individual is calculated by summing the product of each gene’s coefficient
and expression level.
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2.10. Validation of the Pyroptosis-Related Genes Prognostic Index Scoring System

We conducted a series of analyses to validate the effectiveness of our prognostic index
scoring system based on pyroptosis-related genes. First, we generated receiver operating
characteristic (ROC) curves for 1-year, 3-year, and 5-year survival using the “survivalROC”
package (Version: 1.0.3.1). By calculating the corresponding area under the curve (AUC),
we assessed the predictive accuracy of our scoring system. Furthermore, we categorised all
patients into low-risk and high-risk groups using the optimal cut-off value of the risk score
obtained from the “extra value” package. We utilised Kaplan–Meier survival curves to
confirm the prognostic difference between these two groups. Considering the importance
of external validation for prognostic features, we employed the ICGC-PACA-CA datasets
(available at https://dcc.icgc.org/projects/PACA-CA (accessed on 9 January 2024)) to
validate the prognostic value of our scoring system.

2.11. Evaluation of Predictive Value and Construction of a Nomogram Prediction Model

To further assess our risk groupings’ predictive value, we performed univariate and
multivariate Cox regression analyses using the TCGA and ICGC-CA datasets. These
analyses aimed to determine the association between risk groupings and the prognosis
of PDAC patients. Additionally, we constructed nomograms for the TCGA and ICGC-
CA datasets using the “rms” R package (open source package). These nomograms were
designed to predict the survival probabilities of individuals with PDAC at 1, 3, and 5 years.
Calibration curves were created to assess the accuracy of the nomogram predictions.

2.12. Statistical Analysis

The RT-qPCR data are presented as mean values and standard deviations from a
minimum of three independent experiments. Statistical analysis was performed using R
Studio (version: 2023.12.0+369) and Excel (version: 2019). A significance level of p < 0.05
was considered statistically significant. In GSEA, a false discovery rate (FDR) of 5% was
adjusted to account for multiple tests. All p-values were calculated based on two-sided sta-
tistical tests, with results with a p-value of less than 0.05 considered statistically significant.
Significance levels are * p < 0.05, ** p < 0.01, and *** p < 0.001.

3. Results
3.1. Study Design

We employed data mining and NLP to analyse pyroptosis-related literature from the
PubMed database (Figure 1). Our study aimed to identify key research trends, hotspots,
and relevant genes to pyroptosis. In the discovery phase, we undertook a meta-analysis
using public PDAC sequencing data, focusing on genes closely related to pyroptosis. In
the training phase, we built a prognostic risk model based on the upregulation of four
major pyroptosis-related genes to refine PDAC prognosis prediction. In the validation
phase, we tested our model on new data to gauge its accuracy. We confirmed the model’s
effectiveness in predicting PDAC prognosis using tests like ROC and survival curves.

3.2. Identification of Pyroptosis-Relateted Genes through Bibliometric Analysis

We undertook a bibliometric analysis to pinpoint manuscripts discussing genes re-
lated to pyroptosis. Our assessment encompassed 4970 publications up to 31 December
2022. Through evaluating the relationship between publication year (x) and number of
publications (y), we discerned that the function y = 1.615e0.39x could represent the data.
This exponential correlation suggests a swift surge in publication volume. By the close of
2022, publications tallied up to 2584, but this figure is projected to ascend to 3810 by the
culmination of 2023, showcasing a marked upward trend (Figure 2A).

https://dcc.icgc.org/projects/PACA-CA


Cancers 2024, 16, 372 6 of 17Cancers 2024, 16, 372 6 of 17 
 

 
Figure 1. Study design and flowchart. The study unfolds in three phases, delineated by color-coded 
sections. Pink signifies text mining and natural language processing; using R, we extracted 4970 
pyroptosis-related articles from PubMed after thorough filtering. Bibliometric and LDA analyses 
pinpointed research trends. Yellow highlights model discovery, where meta-analysis and GSEA 
investigated pyroptosis genes, revealing their significance in PDAC. Blue represents training, 
encompassing univariate, multivariate, and LASSO regression analyses, leading to a prognostic 
model. Green represents the validation phase, which utilises methods like ROC analysis to affirm 
the model’s efficacy. The model is available at h ps://nomogram-
uniheidelberg.shinyapps.io/DynNomapp/ (accessed on 9 January 2024). 
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Figure 1. Study design and flowchart. The study unfolds in three phases, delineated by color-
coded sections. Pink signifies text mining and natural language processing; using R, we extracted
4970 pyroptosis-related articles from PubMed after thorough filtering. Bibliometric and LDA analyses
pinpointed research trends. Yellow highlights model discovery, where meta-analysis and GSEA
investigated pyroptosis genes, revealing their significance in PDAC. Blue represents training, en-
compassing univariate, multivariate, and LASSO regression analyses, leading to a prognostic model.
Green represents the validation phase, which utilises methods like ROC analysis to affirm the model’s
efficacy. The model is available at https://nomogram-uniheidelberg.shinyapps.io/DynNomapp/
(accessed on 9 January 2024).

Based on our LDA results, we earmarked prevalent themes in current pyroptosis
research. The primary topic was “Signal pathways research”, closely followed by “Disease-
related research” and “Risk and prognosis research” (Figure 2B). Within “Signalling Path-
ways Research”, key areas included “Inflammasome”, “Caspase”, and “GSDME and Ther-
apy”. In the “Disease-Related Research” domain, pivotal subjects included “IL Expression
and Regulation”, “Reperfusion Injury”, and “Pyroptosis Model”. The “Risk and Prognosis
Research” dimension covered chronic illnesses, tumours, and infections. Moreover, there is
considerable exploration around the roles of “GSDMD” and “lncRNA” in pyroptosis.

Current research focal points comprise “Signal Pathways Research”, “Inflammasome”,
“Caspase”, “IL Expression and Regulation”, and “Apoptosis and Ferroptosis”, and these
trends are expected to continue in the coming years (Figure 2C). Additionally, “Metabolism”,
“Inflammasome”, and “Genetics” emerged as the triad of most recurrently broached subjects
in pyroptosis-centric articles (Figure 2D). The search algorithm spotlighted NLRP3 as the

https://nomogram-uniheidelberg.shinyapps.io/DynNomapp/


Cancers 2024, 16, 372 7 of 17

paramount pyroptosis-linked gene, followed by GSDMD, NLRP1, AIM2, TLR2, GSDME,
STAT3, XIST, NLRC4, and HMGB1 (Figure 2E). Upon manual review of the literature,
we recognised 357 pyroptosis-relevant genes, embracing both the conventional GSDM
and caspase lineages, as well as numerous atypical pyroptosis-related genes (compare
Supplementary Material: Table S4).
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Figure 2. Bibliometric analysis and identification of 357 pyroptosis-related genes. (A) The number
of publications on pyroptosis and the fitting curves. (B) LDA algorithm identifies primary research
topics of pyroptosis research: “Signal pathways” (red), “Disease-related” (blue), and “Risk and
prognosis” (orange). (C) A heatmap tracks evolving research focuses over time, emphasising hotspots
like signal pathways, inflammasomes, caspase, IL regulation, and apoptosis/ferroptosis. (D) The
top 10 “MeSH” terms related with pyroptosis highlight metabolism, inflammasomes, and genetics.
(E) 357 pyroptosis-related genes were identified, showcasing the top 10, with NLRP3, GSDMD, and
NLRP1 as leaders.

3.3. Transcriptome Meta-Analysis Suggests an Essential Role of Pyroptosis Genes in
PDAC Prognosis

To underscore the role of pyroptosis signalling in PDAC, we carried out ssGSEA
and found a notable downregulation of the pyroptosis signalling pathway in tumour
samples compared to adjacent non-tumour tissues. The normalised enrichment score was
−1.851, supported by a false discovery rate (FDR) q-value under 0.01 (Figure 3A). To delve
deeper into the prognostic implications of the key genes driving pyroptosis—specifically
CASP1, CASP3, CASP4, CASP5, GSDMA, GSDMB, GSDMC, GSDMD, and GSDME—
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we analysed eight PDAC transcriptome datasets, totalling 1273 PDAC patient samples
(Figure 3B). A meta-analysis of these datasets indicated that higher CASP1 expression
correlated with a 12% decrease in death risk for PDAC patients, with HR = 0.88, 95% CI
0.80–0.96 (Figure 3C). In contrast, elevated expressions of GSDMC with HR = 1.13, 95% CI
1.01–1.28 (Figure 3D), and GSDME with HR = 1.15, 95% CI 1.01–1.28 (Figure 3E), correlated
to a 13% and 15% risk in PDAC-related mortality, respectively. For other pyroptotic
genes, no statistically significant prognostic relationships were found. In essence, our
data emphasise the pronounced impact of certain pyroptotic genes on the prognosis of
PDAC patients.
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Figure 3. Suppressed pyroptosis pathway and survival correlation in PDAC patients. (A) GSEA
analysis highlights pyroptosis pathway suppression in PDAC. (B) Transcriptome meta-analysis
indicates CASP1 expression is inversely linked with OS (HR = 0.88, 95% CI 0.80–0.96, p = 0.004),
as are GSDMC (HR = 1.13, 95% CI 1.01–1.28, p = 0.040) and GSDME (HR = 1.15, 95% CI 1.02–1.31,
p = 0.026). (C–E) Details of findings of the meta-analysis. In the representation, red indicates risk
factors (HR > 1), while blue signifies protective factors (HR < 1).

3.4. Differential Expression of Key Pyroptosis-Related Genes in PDAC

To identify key pyroptosis-related genes crucial to PDAC prognosis, we analysed
four datasets: GSE15471 (adjacent tissue = 36, tumour tissue = 36), GSE62452 (adjacent
tissue = 61, tumour tissue = 69), GSE71729 (adjacent tissue = 46, tumour tissue = 145),
and GSE102238 (adjacent tissue = 50, tumour tissue = 50). Our differential gene expres-
sion analysis, represented by heatmaps (Figure 4A) and volcano plots (Figure 4B), shows
differential gene expression. For instance, in GSE15471, 1968 genes exhibited higher ex-
pression in tumour tissues, while 775 genes showed lower expression in paracancerous
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tissues. Comparable patterns were observed across the other datasets. From the 357 py-
roptotic genes, we identified 11 consistently expressed genes across all datasets, as shown
by a Venn diagram (Figure 4C). Notably, TRIM31 (logFC = 1.14), ANXA1 (logFC = 1.05),
GBP1 (logFC = 1.01), BIRC3 (logFC = 0.99), APOL1 (logFC = 0.97), IL18 (logFC = 0.94),
ANXA2 (logFC = 0.89), BHLHE40 (logFC = 0.83), and EPHA2 (logFC = 0.75) exhibited
significant upregulation in tumour tissues. In contrast, TCEA3 (logFC = −0.99) and BNIP3
(logFC = −1.46) demonstrated higher expression in paracancerous tissues (Figure 4D).
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Figure 4. Pyroptosis gene expression variability in PDAC datasets. (A) The heat map displays varia-
tions in eleven pyroptosis genes across datasets: GSE15471, GSE62452, GSE71729, and GSE102238.
(B) Volcano plots for each dataset pinpoint significant expression contrasts between PDAC and
adjacent non-malignant tissue. (C) Intersection analysis reveals differential expression in eleven
out of 357 pyroptosis genes. (D) Of these, TRIM31, ANXA1, GBP1, BIRC3, APOL1, IL18, ANXA2,
BHLHE40, and EPHA2 are upregulated in tumours, whereas TCEA3 and BNIP3 are elevated in
adjacent tissue.

Furthermore, we evaluated mRNA levels of these genes in the established PDAC
cell lines MIA-PaCa2, BxPc-3, PANC-1, and AsPC-1 using RT-qPCR. The non-malignant
pancreatic ductal cell line CRL-4023 served as a control. Notably, BHLHE40, IL18, BIRC3,
and APOL1 had elevated expression in PDAC cells (Figure 5A). However, other genes
could not be expressed consistently in multiple datasets in PDAC cell lines, and TRIM31
was not expressed in any group of cell lines (Figure 5B). Immunohistochemical staining
from the Human Atlas Protein database revealed increased protein expression of BHLHE40,
IL18, BIRC3, and APOL1 in PDAC patient tissues (Figure 5C,D). Specifically, BHLHE40 was
expressed in 73% of tumour tissues, while IL18 was universally present in 100% of tumours.
BIRC3 was detected in 50% of tumours, and APOL1 expression in 64%. Notably, these
proteins displayed minimal expression in non-malignant pancreatic tissues. These findings
underscore the potential of these pyroptosis-related genes as prognostic biomarkers and
therapeutic targets for PDAC.
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Figure 5. Elevated BHLHE40, IL18, BIRC3, and APOL1 in PDAC tumour samples and cell lines.
(A) RT-qPCR results for BHLHE40, IL18, BIRC3, and APOL1 in PDAC cell lines MIA-PaCa2, BxPc-3,
PANC-1, and AsPC-1 and the non-cancerous pancreatic ductal cell line CRL-4023. (B) The heatmap
displays expression variations of these genes across the PDAC cell lines according to data extracted
from the GEO database. (C) According to the Human Atlas Protein database, IHC of BHLHE40, IL18,
BIRC3, and APOL1 in normal and PDAC tissue. (D) Quantitative presentation of IHC results. Data
are graphed as the mean ± SD. ns, not significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001.

3.5. Prognostic Scoring System Based on Pyroptosis-Related Genes for PDAC

We conducted a univariate Cox analysis to gauge the prognostic value of these four
candidate genes for PDAC. The results pinpointed BHLHE40 (p < 0.001, HR = 1.77, 95% CI,
1.02–1.31), BIRC3 (p < 0.001, HR = 1.41, 95% CI, 1.17–1.70), and APOL1 (p = 0.001, HR = 1.29,
95% CI, 1.11–1.50) as significant risk factors (Figure 6A,B). Leveraging LASSO regression,
we constructed a risk model incorporating all four genes (Figure 6C). The risk score was
calculated using the following formula:

Risk Score = 0.380 ∗ expr(IL18) + 0.111 ∗ expr(BHLHE40) + 0.100 ∗ expr(BIRC3) + 0.012 ∗ expr(APOL1)

Harnessing this pyroptosis-focused risk model, we divided TCGA and ICGC patient
data into low-risk and high-risk groups, accounting for 50% each (Figure 6D,E). Princi-
pal component analysis (PCA) and t-distributed stochastic neighbor embedding (tSNE)
analyses underlined a pronounced demarcation between these groups, reflecting notable
variations in disease signatures. ROC analysis vouched for the system’s sterling classifica-
tion prowess (Figure 6F,G), making the risk divisions evident.

Kaplan–Meier survival curves flagged a substantially compromised survival rate for
the high-risk faction across both TCGA and ICGC sets (Figure 6H,I). Specifically, high-
scoring TCGA patients bore a median survival span of 42.58 ± 20.74, whereas their low-
scoring counterparts had a median survival span of 61.50 ± 3.41 (p = 0.003). For the ICGC
set, the survival was 38.00 ± 5.16 for the high-scoring group and 56.08 ± 5.69 for the
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low-scoring one (p = 0.025). Together, this pyroptosis gene-centric scoring system holds
promise as a valuable prognostic tool for categorising PDAC patients, potentially guiding
clinical determinations.
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Figure 6. Prognostic index of pyroptosis-related genes in PDAC. (A) TCGA’s univariate analysis
identified BHLHE40, IL18, BIRC3, and APOL1 as PDAC risk factors with combined expression
predicting prognosis. (B) LASSO regression optimally selected gene combinations, showing log
lambda values. (C) Weight histogram for the chosen genes. (D) Patient scores from TCGA discerned
high from low risk, with principal components analysis (PCA) reinforcing the distinction. (E) Similar
scoring and PCA for the ICGC database. (F) TCGA’s ROC and t-SNE analyses validate and visualise
prognosis-based patient clustering. (G) Corresponding ROC and t-SNE analyses in ICGC. (H) Kaplan–
Meier in TCGA and (I) ICGC reveals survival differences between scoring groups.

3.6. Construction and Evaluation of a Prognostic Nomogram Based on Core Pyroptosis
Gene Expression

To evaluate the clinical significance of our scoring system, we ran a univariate analysis
on PDAC patients using the TCGA database. This encompassed age, gender, tumour
grade, N stage, T stage, and our specific score. The study yielded an HR of 2.823 (95%
CI, 1.653–4.823) for our risk score, highlighting its significance with a p-value of <0.001
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(Figure 7A). This suggests that individuals in the high-risk category face almost three
times (2.8-fold) the mortality risk compared to those in the low-risk group. Expanding
our examination, we carried out a multivariate analysis factoring in patient age, tumour
grade, and risk score. This confirmed the high-risk group as a substantial risk determinant
for PDAC, evidenced by an HR of 2.77 (1.59–4.82) and a p-value < 0.001 (Figure 7B).
A heatmap underscores the strong association between our score and diverse clinical
determinants. We then crafted a nomogram integrating these clinical parameters to offer
a precise prognosis evaluation (Figure 7C,D). To evaluate the predictive precision of our
model, we reviewed the calibration curve across both the TCGA training set and the ICGC
database, which reflected commendable accuracy. Our scoring model is open to the public
and primed for clinical application, promoting its effortless incorporation into clinical
decision-making processes. The compelling evidence from our findings implies that this
scoring paradigm is a robust prognostic instrument for PDAC. Our scoring tool is available
at: https://nomogram-uniheidelberg.shinyapps.io/DynNomapp/ (accessed on 9 January
2024), Figure 7E,F. See (Supplemental Information S2, Table S1 and Figure S1) for examples.
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Figure 7. Clinical relevance of the pyroptosis-related prognostic index. (A) Univariate analysis
showed that score is a significant risk factor for PDAC with HR = 2.82 (1.66–4.82), p < 0.001. (B) Mul-
tivariate analysis confirmed that score is a high-risk factor for PDAC with HR = 2.77 (1.59–4.82),
p < 0.001. (C) Heatmap analysis demonstrates the relationship between the scores and clinical factors.
(D) A nomogram was constructed using the scoring system and clinical factors. (E) The scoring
platform/nomogram is accessible at https://nomogram-uniheidelberg.shinyapps.io/DynNomapp/,
(accessed on 9 January 2024). (F) Calibration curves for the scoring model in TCGA and ICGC.
*, p < 0.05.
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4. Discussion

This study aimed to investigate the potential of pyroptosis-related gene expression as
a prognostic signature for treatment decision making in PDAC. We employed NLP and
LDA to screen approximately 5000 pyroptosis-related publications, thereby identifying
key research areas in the field. Through search algorithms, we identified 357 genes related
to pyroptosis. Meta-analysis confirmed a strong correlation between the expression of
pyroptosis effector genes and PDAC prognosis. We analysed multiple transcriptome
datasets to explore further the differential expression of these 357 genes in PDAC tumours
and adjacent tissues. Subsequently, utilising various algorithms, we developed a PDAC
prognosis assessment model based on the expression levels of four key pyroptosis-related
genes. This model exhibited excellent predictive capabilities for PDAC prognosis. Notably,
this study represents the first comprehensive analysis for identification of key genes among
known pyroptosis-related genes using text analysis and subsequent analysis in PDAC. We
have rigorously assessed the nomogram model and made it publicly available online for
interested users.

To comprehensively identify genes related to pyroptosis, we followed a two-step
approach. First, we downloaded all publications related to pyroptosis and used man-
ual gene retrieval methods and multiple databases. This process resulted in a total of
357 pyroptosis-related genes. We aimed to maximise the confirmation of these genes and ex-
plore their expression and functional relevance in PDAC. Previous studies that constructed
a pyroptosis-related gene signature in PDAC, such as the ones conducted by Huang et al.,
2023 [6], Li et al., 2022 [7], Song et al., 2022 [8], Zhu et al., 2023 [9], and Wang et al., 2023 [22],
primarily used the literature and reviews to identify candidate genes, confirming around
33 pyroptosis-related genes and subsequent investigations and modelling. Regardless of
the approach used for model construction, the unquestionable impact of pyroptosis-related
genes on the prognosis of PDAC remains evident. Our approach allowed us to adopt a
more comprehensive perspective to avoid missing potential candidate genes and ensure
knowledge completeness.

Additionally, we employed bibliometric analysis to assess the research landscape of
pyroptosis, utilising LDA topic modelling from machine learning to identify significant
research focuses. We found that the research on pyroptosis is still in its early stages, with
significant attention directed towards “Signalling”, followed by “Disease-related” and
“Risk and prognosis”. Furthermore, we discovered substantial gaps in pyroptosis-related
research concerning drug development and clinical applications. Our study introduces
a novel algorithm that offers a deeper research perspective than traditional bibliometric
analysis of the pyroptosis literature [23,24]. Using new NLP tools and large language
models (LLMs) like ChatGPT, our research represents a small branch of the relevant studies
and potentially provides a more detailed approach to furthering the field [25].

Our study deviated from typical modelling approaches by initially keeping the data
separate and giving priority to experimental validation. Many studies encounter difficulties
validating their findings after using mathematical or computational models to analyse and
understand a particular subject or problem. For instance, Zhao et al., 2022 [26], merged
multiple datasets to identify a lactic acid metabolism-related gene signature in lung ade-
nocarcinoma. In contrast, our study followed a straightforward approach, conducting
differential analysis for each gene across four PDAC GEO datasets. To minimise batch
effects, we refrained from merging the datasets and instead performed differential anal-
ysis individually for each gene in the four PDAC GEO datasets before intersecting the
results. Dvinge et al., 2014 [27], highlighted that even rigorous studies using the TCGA
database might mask tumour characteristics due to variations in sample processing among
different research institutions, emphasising the importance of investigating the diversity
between normal and tumour cells. Therefore, we advanced the validation of expression
differences between normal cells and tumour-related genes and employed protein analysis
from multiple standard PDAC cell lines and large-scale databases.
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Despite conducting hundreds of transcriptome sequencing and cross-validation across
multiple batches, our RT-qPCR data could not entirely obtain consistent data, which may be
because of PDAC cell line composition and tumour heterogeneity. One possible explanation
for this discrepancy is that the established cell lines we validated consist solely of PDAC
cells, while the transcriptomic data originated from PDAC tumour tissue from patients.
Spatial transcriptomic studies by Ma et al., 2022 [23], suggested that PDAC, a highly het-
erogeneous tumour, comprises a mixture of tumour cells, inflammatory cells, fibrotic tissue,
and normal pancreatic tissue. The proportion of PDAC cells can vary significantly, ranging
from 10% to 90%, while sequencing captures the entire tissue, resulting in quantitative
discrepancies [25,28]. On the other hand, our validation process successfully identified
four genes that exhibited high expression in established PDAC cell lines, and we further
confirmed their protein expression levels using the Human Atlas database. This enables
precise localisation and establishes a solid foundation for future research endeavours.

We have identified four key pyroptosis clinical roles for the first time, but the specific
mechanism of action still needs to be further explored. For instance, BHLHE40 (Basic helix-
loop-helix family member e40), also known as DEC1 or HLHB2, has been found to control
circadian rhythm and cell differentiation [29–32]. Single-cell sequencing data obtained
by Wang et al., 2023 [31], revealed that BHLHE40-driven pro-tumour neutrophils exhibit
hyperactivated glycolysis in the pancreatic tumour microenvironment, promoting adverse
outcomes in PDAC. BIRC3 (baculoviral iAp repeat containing 3), a member of the family of
inhibitors of apoptosis proteins (IAPs), regulates cell death and survival [33,34]. It possesses
both anti-apoptotic and pro-pyroptotic functions, promoting cell survival and protecting
against pyroptosis while triggering cell death through activation of caspase-1 [33]. BIRC3
is highly expressed in PDAC and may contribute to cancer progression by modulating cell
survival and death [35,36]. However, further research is necessary to elucidate its precise
mechanisms and develop targeted treatment strategies [37].

APOL1, known as apolipoprotein L1, encodes a protein involved in lysosomal degra-
dation and lipid metabolism [38,39]. The primary focus of APOL1 research has been on
kidney diseases, particularly its association with focal segmental glomerulosclerosis and
chronic kidney disease [40]. Hu et al., 2012 [38], used a mass spectrometry-based pipeline
to identify APOL1 as a novel PDAC biomarker. Xu et al., 2023 [41], employed single-cell
analysis and machine learning and discovered that elevated APOL1 levels predict PDAC
prognosis and endocrine metabolism. Furthermore, Lin et al., 2021 [42], demonstrated
that APOL1 could activate the NOTCH1 signalling pathway, promoting PDAC prolifer-
ation while inhibiting apoptosis. Our study also observed an HR of 1.29 (1.11–1.50) for
APOL1 in PDAC, revealing high expression at both mRNA and protein levels, thus further
substantiating the need for extended APOL1 research.

Interleukin-18 (IL-18) is a proinflammatory cytokine implicated in immune response
regulation and the pathogenesis of diverse diseases, including cancer and inflammation [43].
This potent cytokine modulates immune responses and inflammation in PDAC [44]. IL-18
promotes cytokine production and stimulates immune cell activation, including T cells
and natural killer cells, pivotal in the anticancer immune response [45]. However, our
findings indicate a negative prognosis association between IL-18 and PDAC across multiple
datasets [46]. Thus, we speculate that while IL-18 influences immune responses, clearance
of infections, and repair of damaged cells, its proinflammatory attributes may contribute
to disease progression. Numerous gaps remain in pyroptosis research that necessitate
further exploration.

The limitations of this study stem from the algorithm’s lack of interpretability, prevent-
ing us from further understanding the scoring criteria for evaluating the prognosis of PDAC
patients based on the four genes. Furthermore, the interrelationships among these four
genes are still unknown. We validated the four candidate genes at both the transcriptomic
and protein levels using PDAC cell lines, a factor that may potentially impact the model’s
effectiveness. Additionally, our reliance on transcriptomic profiling, as opposed to more
advanced next-generation sequencing (NGS) techniques for model construction, represents
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another limitation. However, despite these constraints, our validation across multiple
datasets demonstrated the robust performance and clinical significance of the scoring
system. Our research introduces an innovative model capable of identifying crucial genes
from a vast body of literature, leveraging extensive transcriptomic data, and employing
various machine learning algorithms. We have unveiled a clinically relevant pathway that
can guide scientific investigations.

5. Conclusions

Using machine learning, we developed a novel model that identifies key genes by
analysing vast transcriptomic data. Our result has provided significant insights into the
role of pyroptosis-related genes in PDAC prognosis. The identified gene features and our
nomogram offer a promising predictive tool for patient outcomes and treatment planning.
However, the study has limitations. It relies on public databases and needs further valida-
tion in broader clinical contexts. It is crucial to understand how these pyroptosis-related
genes affect PDAC progression and their interplay with other pathways. Future work
should focus on these genes’ functional roles in PDAC and their potential as therapeutic tar-
gets.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers16020372/s1, Supplemental Information S1: LDA core code;
Supplemental Information S2. Example of nomogram; Figure S1: Survival prediction results for
two sample patients in the nomogram; Table S1: Gene expression, risk score, and risk group for
two patients; Table S2: Links to clinicopathological data and transcriptome data acquisition; Table S3:
RT-qPCR primer sequences for RT-qPCR; Table S4: List of pyroptosis-related genes.

Author Contributions: Conceptualisation, K.W. and I.H.; methodology, K.W., S.H., L.L. and L.Z.; for-
mal analysis, K.W. and S.H.; writing—original draft preparation, K.W. and I.H.; funding acquisition,
K.W. and I.H. All authors have read and agreed to the published version of the manuscript.

Funding: This study was funded by a scholarship to K.W. from the China Scholarship Council
(202006370023). I.H. was supported by grants from the German Research Council (DFG HE 3186/15–1)
and Karsten Burmeister—BIMAG Bau- und Industriemaschinen GmbH, Rhein, Germany.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets can be accessed through the Supplementary Materials
and the main body of this manuscript. The code can be accessed through https://github.com/
mxdwangdali/2023.12.8PDACpyroptosis, (accessed on 9 January 2024). For additional queries,
please contact the corresponding author.

Acknowledgments: We would like to express our gratitude to Wen Yan, who supported the study by
programming. We thank GEO, TCGA, ICGC, and GTEx databases for providing invaluable data for
statistical analyses.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Halbrook, C.J.; Lyssiotis, C.A.; Pasca di Magliano, M.; Maitra, A. Pancreatic cancer: Advances and challenges. Cell 2023, 186,

1729–1754. [CrossRef] [PubMed]
2. Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. Cancer J. Clin. 2020, 70, 7–30. [CrossRef] [PubMed]
3. Springfeld, C.; Ferrone, C.R.; Katz, M.H.G.; Philip, P.A.; Hong, T.S.; Hackert, T.; Buchler, M.W.; Neoptolemos, J. Neoadjuvant

therapy for pancreatic cancer. Nat. Rev. Clin. Oncol. 2023, 20, 318–337. [CrossRef] [PubMed]
4. Wood, L.D.; Canto, M.I.; Jaffee, E.M.; Simeone, D.M. Pancreatic Cancer: Pathogenesis, Screening, Diagnosis, and Treatment.

Gastroenterology 2022, 163, 386–402.e1. [CrossRef]
5. Li, S.; Yue, M.; Xu, H.; Zhang, X.; Mao, T.; Quan, M.; Ma, J.; Wang, Y.; Ge, W.; Wang, Y.; et al. Chemotherapeutic drugs-induced

pyroptosis mediated by gasdermin E promotes the progression and chemoresistance of pancreatic cancer. Cancer Lett. 2023, 564,
216206. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/cancers16020372/s1
https://www.mdpi.com/article/10.3390/cancers16020372/s1
https://github.com/mxdwangdali/2023.12.8PDACpyroptosis
https://github.com/mxdwangdali/2023.12.8PDACpyroptosis
https://doi.org/10.1016/j.cell.2023.02.014
https://www.ncbi.nlm.nih.gov/pubmed/37059070
https://doi.org/10.3322/caac.21590
https://www.ncbi.nlm.nih.gov/pubmed/31912902
https://doi.org/10.1038/s41571-023-00746-1
https://www.ncbi.nlm.nih.gov/pubmed/36932224
https://doi.org/10.1053/j.gastro.2022.03.056
https://doi.org/10.1016/j.canlet.2023.216206
https://www.ncbi.nlm.nih.gov/pubmed/37120007


Cancers 2024, 16, 372 16 of 17

6. Huang, Q.; Peng, X.; Li, Q.; Zhu, J.; Xue, J.; Jiang, H. Construction and comprehensive analysis of a novel prognostic signature
associated with pyroptosis molecular subtypes in patients with pancreatic adenocarcinoma. Front. Immunol. 2023, 14, 1111494.
[CrossRef] [PubMed]

7. Li, L.; Deng, Z.; Xiao, Z.; Zou, W.; Liu, R. Analysis of Pyroptosis-Related Signature for Predicting Prognosis and Tumor Immune
Microenvironment in Pancreatic Cancer. Front. Oncol. 2022, 12, 770005. [CrossRef]

8. Song, W.; Liu, Z.; Wang, K.; Tan, K.; Zhao, A.; Li, X.; Yuan, Y.; Yang, Z. Pyroptosis-related genes regulate proliferation and invasion
of pancreatic cancer and serve as the prognostic signature for modeling patient survival. Discov. Oncol. 2022, 13, 39. [CrossRef]

9. Zhu, J.; Shi, Y.; Lan, S.; Wang, J.; Jiang, F.; Tang, C.; Cai, Y.; Pan, Z.; Jian, H.; Fang, H.; et al. Dissection of pyroptosis-related
prognostic signature and CASP6-mediated regulation in pancreatic adenocarcinoma: New sights to clinical decision-making.
Apoptosis 2023, 28, 769–782. [CrossRef]

10. Kesavardhana, S.; Malireddi, R.K.S.; Kanneganti, T.D. Caspases in Cell Death, Inflammation, and Pyroptosis. Annu. Rev. Immunol.
2020, 38, 567–595. [CrossRef]

11. Broz, P.; Dixit, V.M. Inflammasomes: Mechanism of assembly, regulation and signalling. Nat. Rev. Immunol. 2016, 16, 407–420.
[CrossRef] [PubMed]

12. Martinon, F.; Burns, K.; Tschopp, J. The inflammasome: A molecular platform triggering activation of inflammatory caspases and
processing of proIL-beta. Mol. Cell 2002, 10, 417–426. [CrossRef] [PubMed]

13. Hu, H.; Tang, N.; Zhang, F.; Li, L.; Li, L. Bioinformatics and System Biology Approach to Identify the Influences of COVID-19 on
Rheumatoid Arthritis. Front. Immunol. 2022, 13, 860676. [CrossRef] [PubMed]

14. Yu, P.; Zhang, X.; Liu, N.; Tang, L.; Peng, C.; Chen, X. Pyroptosis: Mechanisms and diseases. Signal Transduct. Target. Ther. 2021,
6, 128. [CrossRef]

15. Clark, K.M.; Kim, J.G.; Wang, Q.; Gao, H.; Presti, R.M.; Shan, L. Chemical inhibition of DPP9 sensitizes the CARD8 inflammasome
in HIV-1-infected cells. Nat. Chem. Biol. 2023, 19, 431–439. [CrossRef] [PubMed]

16. Yin, M.; Marrone, L.; Peace, C.G.; O’Neill, L.A.J. NLRP3, the inflammasome and COVID-19 infection. QJM 2023, 116, 502–507.
[CrossRef] [PubMed]

17. Zeng, S.; Chen, C.; Zhang, L.; Liu, X.; Qian, M.; Cui, H.; Wang, J.; Chen, Q.; Peng, X. Activation of pyroptosis by specific
organelle-targeting photodynamic therapy to amplify immunogenic cell death for anti-tumor immunotherapy. Bioact. Mater.
2023, 25, 580–593. [CrossRef]

18. Wang, K.; Feng, C.; Li, M.; Pei, Q.; Li, Y.; Zhu, H.; Song, X.; Pei, H.; Tan, F. A bibliometric analysis of 23,492 publications on rectal
cancer by machine learning: Basic medical research is needed. Therap. Adv. Gastroenterol. 2020, 13, 1756284820934594. [CrossRef]

19. Wang, K.; Herr, I. Machine-Learning-Based Bibliometric Analysis of Pancreatic Cancer Research Over the Past 25 Years. Front.
Oncol. 2022, 12, 832385. [CrossRef]

20. Uhlen, M.; Fagerberg, L.; Hallstrom, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, A.; Kampf, C.; Sjostedt, E.;
Asplund, A.; et al. Proteomics. Tissue-based map of the human proteome. Science 2015, 347, 1260419. [CrossRef]

21. Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta
C(T)) Method. Methods 2001, 25, 402–408. [CrossRef] [PubMed]

22. Wang, G.; Chen, J.; Dai, S.; Zhang, J.; Gao, Y.; Yin, L.; Jiang, K.; Miao, Y.; Lu, Z. High pyroptosis activity in pancreatic
adenocarcinoma: Poor prognosis and oxaliplatin resistance. Apoptosis 2023, 1–13. [CrossRef]

23. Ma, Y.; Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nat. Biotechnol. 2022, 40, 1349–1359.
[CrossRef]

24. Xia, D.; Wang, S.; Yao, R.; Han, Y.; Zheng, L.; He, P.; Liu, Y.; Yang, L. Pyroptosis in sepsis: Comprehensive analysis of research
hotspots and core genes in 2022. Front. Mol. Biosci. 2022, 9, 955991. [CrossRef] [PubMed]

25. Sherman, M.H.; Beatty, G.L. Tumor Microenvironment in Pancreatic Cancer Pathogenesis and Therapeutic Resistance. Annu. Rev.
Pathol. 2023, 18, 123–148. [CrossRef]

26. Zhang, F.; Suzuki, M.; Kim, I.S.; Kobayashi, R.; Hamada, N.; Sato, F.; Bhawal, U.K. Transcription factor DEC1 is required for
maximal experimentally induced periodontal inflammation. J. Periodontal Res. 2018, 53, 883–893. [CrossRef]

27. Dvinge, H.; Ries, R.E.; Ilagan, J.O.; Stirewalt, D.L.; Meshinchi, S.; Bradley, R.K. Sample processing obscures cancer-specific
alterations in leukemic transcriptomes. Proc. Natl. Acad. Sci. USA 2014, 111, 16802–16807. [CrossRef]

28. Krieger, T.G.; Le Blanc, S.; Jabs, J.; Ten, F.W.; Ishaque, N.; Jechow, K.; Debnath, O.; Leonhardt, C.S.; Giri, A.; Eils, R.; et al. Single-cell
analysis of patient-derived PDAC organoids reveals cell state heterogeneity and a conserved developmental hierarchy. Nat.
Commun. 2021, 12, 5826. [CrossRef]

29. Jia, Y.; Liu, Y.; Zhu, J.; Liu, L.; Ma, X.; Liu, D.; Han, S.; Zhang, L.; Ling, Z.Q.; Wang, Y. DEC1 promotes progression of Helicobacter
pylori-positive gastric cancer by regulating Akt/NF-kappaB pathway. J. Cell. Mol. Med. 2022, 26, 1943–1954. [CrossRef]

30. Oka, S.; Li, X.Y.; Zhang, F.Z.; Tewari, N.; Wang, C.; Kim, I.; Zhong, L.J.; Hamada, N.; Oi, Y.; Makishima, M.; et al. Inhibition of
Dec1 provides biological insights into periodontal pyroptosis. All Life 2021, 14, 300–307. [CrossRef]

31. Wang, L.; Liu, Y.; Dai, Y.; Tang, X.; Yin, T.; Wang, C.; Wang, T.; Dong, L.; Shi, M.; Qin, J.; et al. Single-cell RNA-seq analysis reveals
BHLHE40-driven pro-tumour neutrophils with hyperactivated glycolysis in pancreatic tumour microenvironment. Gut 2023, 72,
958–971. [CrossRef] [PubMed]

32. Yin, Y.; Xin, Y.; Zhang, F.; An, D.; Fan, H.; Qin, M.; Xia, J.; Xi, T.; Xiong, J. Overcoming ABCB1-mediated multidrug resistance by
transcription factor BHLHE40. Neoplasia 2023, 39, 100891. [CrossRef] [PubMed]

https://doi.org/10.3389/fimmu.2023.1111494
https://www.ncbi.nlm.nih.gov/pubmed/36817451
https://doi.org/10.3389/fonc.2022.770005
https://doi.org/10.1007/s12672-022-00495-0
https://doi.org/10.1007/s10495-023-01823-7
https://doi.org/10.1146/annurev-immunol-073119-095439
https://doi.org/10.1038/nri.2016.58
https://www.ncbi.nlm.nih.gov/pubmed/27291964
https://doi.org/10.1016/S1097-2765(02)00599-3
https://www.ncbi.nlm.nih.gov/pubmed/12191486
https://doi.org/10.3389/fimmu.2022.860676
https://www.ncbi.nlm.nih.gov/pubmed/35464423
https://doi.org/10.1038/s41392-021-00507-5
https://doi.org/10.1038/s41589-022-01182-5
https://www.ncbi.nlm.nih.gov/pubmed/36357533
https://doi.org/10.1093/qjmed/hcad011
https://www.ncbi.nlm.nih.gov/pubmed/36661317
https://doi.org/10.1016/j.bioactmat.2022.07.016
https://doi.org/10.1177/1756284820934594
https://doi.org/10.3389/fonc.2022.832385
https://doi.org/10.1126/science.1260419
https://doi.org/10.1006/meth.2001.1262
https://www.ncbi.nlm.nih.gov/pubmed/11846609
https://doi.org/10.1007/s10495-023-01901-w
https://doi.org/10.1038/s41587-022-01273-7
https://doi.org/10.3389/fmolb.2022.955991
https://www.ncbi.nlm.nih.gov/pubmed/36032662
https://doi.org/10.1146/annurev-pathmechdis-031621-024600
https://doi.org/10.1111/jre.12578
https://doi.org/10.1073/pnas.1413374111
https://doi.org/10.1038/s41467-021-26059-4
https://doi.org/10.1111/jcmm.17219
https://doi.org/10.1080/26895293.2021.1915886
https://doi.org/10.1136/gutjnl-2021-326070
https://www.ncbi.nlm.nih.gov/pubmed/35688610
https://doi.org/10.1016/j.neo.2023.100891
https://www.ncbi.nlm.nih.gov/pubmed/36931039


Cancers 2024, 16, 372 17 of 17

33. Frazzi, R. BIRC3 and BIRC5: Multi-faceted inhibitors in cancer. Cell Biosci. 2021, 11, 8. [CrossRef] [PubMed]
34. Putowski, M.; Giannopoulos, K. Perspectives on Precision Medicine in Chronic Lymphocytic Leukemia: Targeting Recurrent

Mutations-NOTCH1, SF3B1, MYD88, BIRC3. J. Clin. Med. 2021, 10, 3735. [CrossRef]
35. Li, S.; Yang, P.; Xu, L.; Li, M. Blocking of Birc3/TLR4/Myd88 signaling protects carbapenem-resistant klebsiella pneumoniae in a

mouse model of infection. Transpl. Immunol. 2021, 69, 101464. [CrossRef] [PubMed]
36. Liu, L.; Liu, H.; Luo, S.; Patz, E.F., Jr.; Glass, C.; Su, L.; Lin, L.; Christiani, D.C.; Wei, Q. Genetic Variants of CLEC4E and BIRC3 in

Damage-Associated Molecular Patterns-Related Pathway Genes Predict Non-Small Cell Lung Cancer Survival. Front. Oncol.
2021, 11, 717109. [CrossRef] [PubMed]

37. Roohollahi, K.; de Jong, Y.; Pai, G.; Zaini, M.A.; de Lint, K.; Sie, D.; Rooimans, M.A.; Rockx, D.; Hoskins, E.E.; Ameziane, N.; et al.
BIRC2-BIRC3 amplification: A potentially druggable feature of a subset of head and neck cancers in patients with Fanconi anemia.
Sci. Rep. 2022, 12, 45. [CrossRef] [PubMed]

38. Hu, C.A.; Klopfer, E.I.; Ray, P.E. Human apolipoprotein L1 (ApoL1) in cancer and chronic kidney disease. FEBS Lett. 2012, 586,
947–955. [CrossRef]

39. Yoshida, T.; Latt, K.Z.; Rosenberg, A.Z.; Shrivastav, S.; Heymann, J.; Halushka, M.K.; Winkler, C.A.; Kopp, J.B. Transcriptomic
Analysis of Human Podocytes In Vitro: Effects of Differentiation and APOL1 Genotype. Kidney Int. Rep. 2023, 8, 164–178.
[CrossRef]

40. Tzukerman, M.; Shamai, Y.; Abramovich, I.; Gottlieb, E.; Selig, S.; Skorecki, K. Comparative Analysis of the APOL1 Variants in
the Genetic Landscape of Renal Carcinoma Cells. Cancers 2022, 14, 733. [CrossRef]

41. Xu, Y.; Chen, X.; Liu, N.; Chu, Z.; Wang, Q. Identification of fibroblast-related genes based on single-cell and machine learning to
predict the prognosis and endocrine metabolism of pancreatic cancer. Front. Endocrinol. 2023, 14, 1201755. [CrossRef] [PubMed]

42. Liu, X.; Zheng, W.; Wang, W.; Shen, H.; Liu, L.; Lou, W.; Wang, X.; Yang, P. A new panel of pancreatic cancer biomarkers
discovered using a mass spectrometry-based pipeline. Br. J. Cancer 2018, 118, e15. [CrossRef] [PubMed]

43. Stromnes, I.M. IL18 at the Crossroads between Chronic Inflammation and T-cell Exhaustion in Pancreatic Cancer. Cancer Immunol.
Res. 2023, 11, 400. [CrossRef] [PubMed]

44. Widowati, W.; Jasaputra, D.K.; Sumitro, S.B.; Widodo, M.A.; Mozef, T.; Rizal, R.; Kusuma, H.S.W.; Laksmitawati, D.R.; Murti, H.;
Bachtiar, I.; et al. Effect of interleukins (IL-2, IL-15, IL-18) on receptors activation and cytotoxic activity of natural killer cells in
breast cancer cell. Afr. Health Sci. 2020, 20, 822–832. [CrossRef]

45. Farbod, M.; Dastgheib, S.A.; Asadian, F.; Karimi-Zarchi, M.; Sayad, S.; Barahman, M.; Kargar, S.; Mazaheri, M.; Neamatzadeh,
H. Association of IL-8 -251T>A and IL-18 -607C>A polymorphisms with susceptibility to breast cancer—A meta-analysis. Klin.
Onkol. 2022, 35, 181–189. [CrossRef]

46. Guo, X.; Zheng, L.; Jiang, J.; Zhao, Y.; Wang, X.; Shen, M.; Zhu, F.; Tian, R.; Shi, C.; Xu, M.; et al. Blocking NF-kappaB Is Essential
for the Immunotherapeutic Effect of Recombinant IL18 in Pancreatic Cancer. Clin. Cancer Res. 2016, 22, 5939–5950. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1186/s13578-020-00521-0
https://www.ncbi.nlm.nih.gov/pubmed/33413657
https://doi.org/10.3390/jcm10163735
https://doi.org/10.1016/j.trim.2021.101464
https://www.ncbi.nlm.nih.gov/pubmed/34500040
https://doi.org/10.3389/fonc.2021.717109
https://www.ncbi.nlm.nih.gov/pubmed/34692492
https://doi.org/10.1038/s41598-021-04042-9
https://www.ncbi.nlm.nih.gov/pubmed/34997070
https://doi.org/10.1016/j.febslet.2012.03.002
https://doi.org/10.1016/j.ekir.2022.10.011
https://doi.org/10.3390/cancers14030733
https://doi.org/10.3389/fendo.2023.1201755
https://www.ncbi.nlm.nih.gov/pubmed/37588985
https://doi.org/10.1038/bjc.2018.5
https://www.ncbi.nlm.nih.gov/pubmed/29438371
https://doi.org/10.1158/2326-6066.CIR-23-0145
https://www.ncbi.nlm.nih.gov/pubmed/36897261
https://doi.org/10.4314/ahs.v20i2.36
https://doi.org/10.48095/ccko2022181
https://doi.org/10.1158/1078-0432.CCR-15-1144

	Introduction 
	Materials and Methods 
	Retrieval and Downloading of Pyroptosis-Related Publications 
	Natural Language Processing (NLP) and Latent Dirichlet Allocation (LDA) 
	Patient Clinical Information, Transcriptome Data, and Immunohistochemistry Acquisition 
	Retrieval and Acquisition of Pyroptosis-Related Genes 
	Meta-Analysis of Prognostic Implications of Pyroptosis-Related Core Genes in PDAC 
	Identification of Differentially Expressed Pyroptosis-Related Genes 
	Cell Culture 
	mRNA Extraction and RT-qPCR 
	Identification of Key Prognostic Genes and Establishment of a Scoring System for Pyroptosis-Related Genes Prognostic Index 
	Validation of the Pyroptosis-Related Genes Prognostic Index Scoring System 
	Evaluation of Predictive Value and Construction of a Nomogram Prediction Model 
	Statistical Analysis 

	Results 
	Study Design 
	Identification of Pyroptosis-Relateted Genes through Bibliometric Analysis 
	Transcriptome Meta-Analysis Suggests an Essential Role of Pyroptosis Genes in PDAC Prognosis 
	Differential Expression of Key Pyroptosis-Related Genes in PDAC 
	Prognostic Scoring System Based on Pyroptosis-Related Genes for PDAC 
	Construction and Evaluation of a Prognostic Nomogram Based on Core Pyroptosis Gene Expression 

	Discussion 
	Conclusions 
	References

