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Simple Summary: With around 15 kD molecular weight, VHHs are considered the smallest antigen-
binding fragments. Based on their unique properties, VHHs have broad application prospects such
as bio-sensing, molecular imaging, drug delivery, disease treatments, and diagnosis. In this review,
we discuss VHH applications for cancer treatments and diagnosis. Meanwhile, an overview of
VHH-based agents in clinical trials is provided.

Abstract: The discovery of the distinctive structure of heavy chain-only antibodies in species be-
longing to the Camelidae family has elicited significant interest in their variable antigen binding
domain (VHH) and gained attention for various applications, such as cancer diagnosis and treatment.
This article presents an overview of the characteristics, advantages, and disadvantages of VHHs as
compared to conventional antibodies, and their usage in diverse applications. The singular properties
of VHHs are explained, and several strategies that can augment their utility are outlined. The preclin-
ical studies illustrating the diagnostic and therapeutic efficacy of distinct VHHs in diverse formats
against solid cancers are summarized, and an overview of the clinical trials assessing VHH-based
agents in oncology is provided. These investigations demonstrate the enormous potential of VHHs
for medical research and healthcare.

Keywords: VHH; nanobody; single domain antibody; cancer; therapy; diagnosis

1. Introduction

In 1993, a different type of antibody called heavy chain only antibody (HCAb) was dis-
covered in camelids, which had another structure compared with conventional antibodies
(Figure 1) [1]. Another type of antibody lacking light chains is also found in cartilaginous
fish [2,3]. HCAbs only contain two heavy chains, each one bearing beside two constant
regions CH2 and CH3 also a variable region. This variable region is also called the vari-
able domain of heavy chain of heavy-chain-only antibody (VHH), can be recombinantly
produced and has a molecular weight of only about 15 kD, which is 10% of a conventional
antibody and half of a single-chain variable fragment (scFv). Therefore, VHHs are also
called single domain antibodies (sdAb) or nanobodies.

While conventional antibodies have been used in anti-cancer therapies for many years,
VHH-based therapies have more recently started to be explored. The unique features of
VHH, such as high affinity and lower immunogenicity, may provide important differences
in anti-cancer therapies. To date, preclinical studies and early-stage clinical trials have
demonstrated the promising potential of VHH for cancer management. In this review, we
provide an overview of VHH characteristics and the general route of VHH development.
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Furthermore, we summarize the applications of VHH in anti-cancer therapies and provide
an overview of registered clinical trials testing VHH-based therapeutic and diagnostic
agents for oncological diseases.
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Figure 1. General structural comparison between conventional antibodies, heavy chain-only anti-
bodies, single-chain Fv, and VHH. Abbreviations: Fab—Fragment of Antigen Binding; Fc—Frag-
ment Crystallizable; CH—Constant domain of the Heavy chain; single-chain Fv; VH—Variable do-
main of the Heavy chain; CL—Constant domain of the Light chain; VL—Variable domain of the 
Light chain; VHH—Variable domain of the Heavy chain of Heavy-chain antibody. 
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ditionally, CDR3 in VHH can make up an exposed ring structure, which can behave like 
a ‘finger’ to stick into the ‘pocket’ of antigen, where a conventional antibody rather inter-
acts with flat surfaces [6–9]. In addition, an extra cysteine residue in CDR3 can form a 
disulfide bond with an extra cysteine residue in either CDR1 or in the framework region 
2 (FR2), which increases the stability of the VHH structure, while decreasing the energy 
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The unique biochemical and biophysical characteristics of VHH are their stability, in 

addition to high solubility, thermo- and proteolytic-resistance [10]. FR2 contains many 
hydrophilic amino acid residues, which determines the high solubility and dispersibility 
of VHH in water. VHH has also good conformational and thermal stability, which allows 
VHH to be stable at body temperature during a week while still having sufficient binding 
ability [11]. Additionally, VHH is also stable at extreme pH conditions, ensuring that VHH 
maintains its bioactivity in the stomach or the intestine [12–15]. The stability of VHH 
makes it possible to design VHH treatments following various administration methods, 
including intravenous injection, inhalation, and oral and intranasal administration. Alto-
gether, the stable biochemical and biophysical properties nurture the increasing applica-
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2.2. Low Immunogenicity 
Relatively little scientific evidence is publicly available to make strong claims about 
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2. General Characteristics of VHH

In VHH, there are only three complementarity-determining regions (CDRs) that make
contact with the antigen, as compared to six in conventional antibodies (3 in VH and 3 in
VL). To compensate for this and to ensure sufficient contact interface, the amino chain in
CDR3 (and to a lesser extent CDR1) is longer in VHH than its counterpart in conventional
antibodies [4,5]. As a result, the diversity and specificity of CDR3 is improved. Additionally,
CDR3 in VHH can make up an exposed ring structure, which can behave like a ‘finger’ to
stick into the ‘pocket’ of antigen, where a conventional antibody rather interacts with flat
surfaces [6–9]. In addition, an extra cysteine residue in CDR3 can form a disulfide bond
with an extra cysteine residue in either CDR1 or in the framework region 2 (FR2), which
increases the stability of the VHH structure, while decreasing the energy requested for
binding with antigens [4,5].

2.1. Biochemical and Biophysical Characteristics

The unique biochemical and biophysical characteristics of VHH are their stability, in
addition to high solubility, thermo- and proteolytic-resistance [10]. FR2 contains many
hydrophilic amino acid residues, which determines the high solubility and dispersibility
of VHH in water. VHH has also good conformational and thermal stability, which allows
VHH to be stable at body temperature during a week while still having sufficient binding
ability [11]. Additionally, VHH is also stable at extreme pH conditions, ensuring that VHH
maintains its bioactivity in the stomach or the intestine [12–15]. The stability of VHH makes
it possible to design VHH treatments following various administration methods, including
intravenous injection, inhalation, and oral and intranasal administration. Altogether, the
stable biochemical and biophysical properties nurture the increasing applications of VHH.

2.2. Low Immunogenicity

Relatively little scientific evidence is publicly available to make strong claims about
the immunogenicity of VHHs. Nevertheless, the structure of VHH has a high similarity
with the human VH structure, in particular, it has a high homology (86–94%) with the
human VH3 family [16,17]. The relatively small size of VHH (125 amino acids) implies a
low number of potentially immunogenic epitopes. The high solubility of VHHs reduces the
likeliness to form highly immunogenic aggregates. Moreover, unmodified VHHs show fast
blood clearance, which minimizes capture by antigen-presenting cells. All these features
favor low immunogenicity. In a phase I clinical study of 68Ga-HER2-VHH, 20 patients
were free of anti-drug antibodies (ADA) after one injection [18]. A phase I study of ALX-
0141, a trimeric format consisting of two identical anti-RANKL humanized VHHs and one
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anti-albumin humanized VHH, demonstrated that after a single subcutaneous injection
in 42 healthy volunteers, no ADAs were found [19]. In summary, the immunogenicity
of VHH in humans seems to be relatively low, which prevents one of the main causes of
adverse effects, i.e., allergy. Humanization of VHH is possible and can further reduce its
immunogenicity [20–22].

2.3. High Tissue Penetration and Fast Blood Clearance

Theoretically, the passive diffusion rate of a molecule in tissue is inversely proportional
to its molecular size. Therefore, compared with conventional antibody (150 kD), the mono-
valent VHH (15 kD) has a fast blood extravasation and a better tissue penetration to reach
its target. This results in a more homogeneous distribution, for example in solid tumors,
compared to conventional antibodies [23–26]. It has been shown that VHHs can cross the
blood-brain barrier (BBB) of healthy rats [27], providing improved ability for the diagnosis
and treatment of brain cancer, where in addition the BBB is likely disrupted [28–32]. Due
to the small molecular weight, VHH is usually cleared quickly through the kidneys [33–36].
As a result, the half-life time of VHH in the human body is mostly less than an hour [37,38],
a feature helpful to prevent toxicity. Although the short half-life of VHH is advantageous
for diagnostic applications, it may limit its therapeutic efficacy [39–41]. Methods such as
PEGylation, fusion or binding with albumin, multimerization, or fusion with antibody Fc
can help to extend the half-life [42–47]. For example, a bivalent anti-VEGF VHH showed a
1.8-fold longer half-life in comparison with the monovalent VHH [42]. PEGylation resulted
in a 12-fold longer half-life of an anti-CEA/CD3 bispecific VHH [45].

3. The Generation of VHH

There are several steps in the identification of a functional VHH.

1. The construction of a VHH gene library

The first step in the generation of antigen-specific VHHs is to construct a VHH-
encoding cDNA library. Antigen-specific VHHs can be retrieved either from an immune
VHH library, a naive VHH library, or a synthetic VHH library. The immune library is the
most frequently used method, exploiting the in vivo affinity maturation of the VHHs. To
construct an immune library, camelid animals are immunized with a targeted antigen. The
targeted antigen is injected into camelids multiple times, e.g., 7 times every two weeks [48].
5~7 days after the immunization lymphocytes are then extracted from the peripheral blood,
which contains B cells producing the matured HCAbs. Lymphocyte RNA is extracted and
reverse transcribed into cDNA [49]. The bulk of cDNA is used as a template for PCR with
VHH-specific primers [50]. Subsequently, the amplified VHH DNA fragments are cloned
into bacterial vectors to construct the library [51].

2. The selection of specific VHH

Phage display is the dominant technique to screen libraries for functional VHHs. Here,
the VHH immune libraries are cloned in phagemids in fusion with bacteriophage gene III,
and then VHHs are displayed on the tip of the M13 bacteriophage by infection with helper
phages providing phage structural components in trans. The target antigen is fixed directly
or indirectly on a solid carrier, to allow the phage library to interact with the antigen. While
the phages of interest bind with the fixed antigen, unbounded or unspecific phages are
removed by washing. Subsequently, a specific acid (e.g., 0.1 M pH 2.2 HCl-Glycine) or
base (e.g., 0.1 M triethylamine) is used to release the phage from its antigen. Generally,
after 2–5 selection rounds of panning, the VHHs with good specificity and affinity can be
selected [52].

3. The production of VHH

Due to its simple structure and good water solubility, VHH can be mass-produced
by using relatively low-cost expression systems such as bacterial or yeast expression sys-
tems [51,53–57]. After verifying the nucleic acid sequence of the selected VHH, an expression



Cancers 2024, 16, 371 4 of 25

vector is constructed and transferred into bacteria (e.g., E. coli BL21) or yeast (e.g., Pichia
pastoris GS115 or X33) for the production of VHH. In the bacteria expression process, suc-
cessfully transformed colonies are picked for culture expansion and induction of VHH pro-
duction. For example, if a Lac-operon is present in the expression vector, IPTG (Isopropyl-β-
D-thiogalactoside) is used to induce gene expression when the bacteria reach the exponential
growth phase. Most often VHHs are transported to the periplasm and extracted from there,
although also cytoplasmic expression is being pursued [58]. In the yeast expression pro-
cess, successfully transformed yeast colonies are picked for culture expansion following
induction, with VHHs most often ending up in the conditioned medium due to secretion.
The VHH protein in the supernatant, cell lysates, or periplasmic extracts can be purified
by methods such as affinity chromatography, ion exchange chromatography, or molecular
sieve chromatography. The production of VHHs in mammalian cell lines is rarely reported
because of the high cost of this expression system.

4. Applications of VHH
4.1. Molecular Imaging

Molecular imaging is one of the important methods in cancer research, which allows
the noninvasive study of tumors and their microenvironment, as well as tracing or monitor-
ing cancer progression and therapy effectiveness. Generally, a molecular targeted imaging
agent contains a targeting moiety and a radioisotope for nuclear imaging or a fluores-
cent moiety for optical imaging [59]. To target cancer cells more precisely, the imaging
agent is required to have higher specificity and sensitivity, with lower toxicity and fewer
adverse effects.

Conventional antibodies have been frequently tested in cancer molecular imaging
studies [60]. However, the application of conventional antibody-based molecular imaging
is rather limited by its large size and relatively long plasma half-life. This requires the use
of radionuclides with a long physical half-life, resulting in more radiation exposure and
additional measures for radiation protection [61]. With their smaller molecular weight,
VHHs have a deeper penetration into the central part of solid tumors to detect target
expression [62,63]. In addition, the short half-life and fast blood clearance limit non-specific
VHH presence resulting in an improved signal-to-noise ratio and fewer adverse effects.
Therefore, the VHH-based imaging technique is currently heavily investigated for cancer
diagnosis, to target proteins or receptors which are overexpressed in tumor cells or the
tumor microenvironment during cancer progression.

Positron emission tomography (PET) and single photon emission computed tomogra-
phy (SPECT) are the two main nuclear imaging techniques for cancer diagnosis. To improve
the accuracy and specificity and to reduce potential side effects of radiation exposure in
PET/SPECT imaging, the VHH has been used as an ‘immune carrier’ in the construction of
radioactive probes. In the very first study, Gainkam et al. investigated the uptake of the
99mTc labeled anti-EGFR VHH and showed that tumor uptake was correlated with tumor
burden, concluding that the VHH can be used to track the tumor response to therapy [34].
Table 1 identifies several preclinical studies on VHH-radionuclide conjugates for imaging.
Clinically, in a phase II study, 68Ga labeled anti-HER2 VHH was used to assess HER2
expression in primary breast cancer and metastatic lesions [64]. This clinical study showed
that the 68Ga-HER2-nanobody could be safely administered, with favorable biodistribution
and high accumulation in HER2-positive primary breast cancer and its metastases. In an-
other recent phase I study, a 68Ga-labeled VHH against the macrophage mannose receptor
CD206 was tested in a phase I PET safety study to track tumor-associated macrophages in
the tumor stroma [65]. Other clinical studies are summarized in Table 7.
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Table 1. Preclinical studies using VHH-radionuclide conjugates for imaging.

Target Conjugation Cancer Models Main Findings Reference

CD8 89Zr BrCa

The CD8+ T cells in solid tumors were
monitored by 89Zr-labeled anti-CD8-VHH,

which signal positively corresponded
with ICI treatment response.

[66]

CD8 18F ALL

Imaging with the 18F-VHH enabled rapid
visualization of CD8+ T cells within 1 h,

while no visible tumor uptake was
observed with the control VHH.

[67]

PSMA 111In CRPC

Renal uptake was efficiently reduced by
co-injection of gelofusine and lysine.
Replacing the c-myc-his tag with the

cysteine reduced renal uptake without
loss of targeting.

[68]

PD-L1 99mTc
TC-1 (immortalized murine

lung epithelial cell)

VHH accumulation correlated with the
levels of PD-L1 in tumors, even if PD-L1

expression was low.
[26]

PD-L1 99mTc NSCLC

[99mTc]Tc-HYNIC-KN035 displayed a
high PD-L1 specificity both in vitro and
in vivo, that was positively correlated

with the expression of PD-L1.

[69]

PD-L1 68Ga SKCM, BrCa

68Ga-NOTA-Nb109 specifically
accumulated in tumors with a maximum

uptake of 5 ± 0.35% injected dose/g
at 1 h.

[70]

PD-L1 68Ga GBM, CRC, NSCLC

Tumor-to-muscle ratio (TMR) reached its
peak at 40 min post-injection. The heart

uptake was almost fully cleared at 35 min
post-injection.

[71]

MMR 99mTc
TS/A (murine mammary
adenocarcinoma), 3LL-R
(Lewis Lung carcinoma)

Anti-MMR VHH targeted pro-angiogenic
MMR-expressing TAMs with tumor

uptake correlating with the amount of
TAMs in the tumor.

[72]

MMR 68Ga 3LL-R

TMR was determined while no
treatment-related toxicologically relevant
changes or acute immunological reactions

were observed. The tolerated dose was
established to be >1.68 mg/kg body

weight. The dosimetry levels for humans
were calculated by using the data in mice.

[73]

LAG-3 99mTc
TC-1 (immortalized murine

lung epithelial cell)

The tumor uptake of VHHs 3132 and 3206
targeting LAG-3 was comparable with

high contrast at 1 h post-injection.
[74]

LAG-3 99mTc
MC38 (murine CRC), MO4

(murine melanoma), and TC-1

The radiolabeled anti-LAG-3 VHH
detected LAG-3 expressing TILs 1 h post

tracer injection.
[75]

HER2 68Ga HER2+ cancer

A high tumor-to-organ ratio was
measured at 1 h post-injection with

increased uptake upon increasing the
injected dose.

[76]

HER2 18F OvCa The tumor-to-organ ratio at 1 h
post-injection showed excellent specificity. [25]
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Table 1. Cont.

Target Conjugation Cancer Models Main Findings Reference

HER2 99mTc BrCa The tumor had significant radiotracer
uptake at 0.5 h after injection. [77]

Glypican-3 68Ga, 18F HCC

The fusion of VHH to an albumin-binding
domain increased the tumor uptake and
decreased kidney accumulation of the

radiotracer (1 h to 6 h).

[78]

EpCAM 99mTc EpCAM driven cancer

The uptake value in tumors was increased
about two times from 0.5 h till 12 h after

injection, while it could clearly image
tumor-draining lymph nodes.

[79]

EGFR 99mTc
EGFR+ cancer, A431

(epidermoid carcinoma)

VHH uptake correlated with tumor
burden and tumor response to EGFR

inhibitor (erlotinib).
[34]

EGFR 99mTc A431

In vivo, the study demonstrated that
OA-cb6 labeled with 99mTc showed an
approximately 2.7-fold tumor-muscle

ratio at 4 h post-injection.

[80]

CLDN18.2 89Zr STAD
The VHH had good tumor uptake to

evaluate the expression of CLDN18.2 in
gastric cancer for patient selection.

[81]

CEACAM5 99mTc NSCLC

The high ratio of the signal in the tumor
compared with the background confirmed
that the VHH can be used as a molecular
probe for imaging CEACAM5-expressing

tumors.

[82]

CAIX 111In HNSCC The anti-CAIX VHH targeted hypoxia
regions in solid tumors. [83]

* EDB of FN 64Cu pan-cancer
Targeted the extracellular matrix to image

tumor progression, metastasis, and
fibrosis.

[84]

* Alternatively spliced EIIIB domain of fibronectin.

Besides being conjugated with a radionuclide, VHH can also be conjugated with a
fluorescent moiety for molecular imaging [85]. For example, Debie et al. extensively evalu-
ated fluorescently labeled anti-HER2 VHH for image-guided surgery and demonstrated a
significant reduction of residual tumor lesions as compared to conventional surgery [86,87].
Van Brussel et al. developed a CAIX-specific VHH conjugated to IRDye800CW, that could
visualize tumors compared to the background 2–3 h after the anti-CAIX VHH injection [88].
Furthermore, the VHH can also be used in magnetic resonance imaging (MRI) by conjuga-
tion with MRI contrast agents, such as gadolinium or paramagnetic nanoparticles [89,90].

4.2. VHHs in Anti-Cancer Therapies

The unique features that have been discussed above make VHHs promising replace-
ments for monoclonal antibodies or other types of antibody fragments. Figure 2 generally
describes different applications of VHHs in anti-cancer therapies.

4.2.1. Radioimmunotherapy

Radioimmunotherapy (RIT) is a “targeted” radionuclide therapy coupling radioiso-
topes with therapeutic properties to antibodies. These antibodies bind to specific targets
in the tumors and deliver their cargo, i.e., the radionuclide, at that site, resulting in min-
imal toxicity to normal tissue [91]. 90Y-ibritumomab tiuxetan (Zevalin®, Bayer) and 131I-
tositumomab (Bexxar®, GSK) are so far the only two RITs approved for clinical use to treat
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hematological malignancies [92,93]. Both are designed based on anti-CD20 monoclonal
antibodies to treat CD20-positive non-Hodgkin’s lymphoma (NHL). The application of
RIT for solid tumor treatment is, however, still a challenge. In addition to the large size of
conventional antibodies, the leakage of tumor blood vessels and the complexity of the ma-
trix in solid tumors make it difficult for RIT to reach all tumor cells. Therefore, alternative
carriers of therapeutic radioisotopes, such as VHHs and peptides have been investigated
for cancer RIT, especially for the treatment of solid tumors.
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Table 2 summarizes the preclinical studies on the application of VHH in RIT of solid
tumors. For example, D’Huyvetter et al. treated mice bearing HER2-positive SKOV3 ovar-
ian adenocarcinoma xenografts with the 177Lu-labeled anti-HER2 VHH and demonstrated
that the tumor growth was almost completely inhibited. Moreover, the event-free survival
was significantly longer for the treated group compared to the control group that received
vehicle treatment, while no evidence of renal inflammation or necrosis was observed [94].
Similarly, anti-FAP VHHs that are conjugated to 131I or 225Ac were able to limit tumor
growth and enhance the survival of mice bearing FAP-expressing tumors [95]. To target the
TME, Xu et al. generated the anti-FAPα (fibroblast activation protein-α) VHH-Fc fusion
labeled with 177Lu and showed therapeutic efficacy in HT1080 fibrosarcoma xenografts
in mice [96]. Anti-MMR VHH labeled with 177Lu was designed to target the stroma of
solid tumors. The 177Lu-labeled anti-MMR VHH significantly delayed tumor growth,
which outcompeted the effects of currently used therapies, such as immune checkpoint in-
hibitors, anti-angiogenic therapy (anti-VEGFR2 mAbs), and chemotherapies (doxorubicin,
paclitaxel) [97].

Table 2. VHH application in radioimmunotherapy.

Targets Conjugates Cancer Models References

HER2 131I (β/γ) HER2+ cancer [98,99]
125I, 131I-SGMIB (β/γ) BrCa [100]

177Lu (β) OvCa [94]
211At (α) HER2+ cancer [101,102]
225Ac (α) SKOV3, BrCa [103]
211At (α) BrCa [102]

FAPα * 89Zr (γ), 177Lu(β) FAPα+ cancer [96]
131I-SGMIB (β/γ) FAPα+ cancer [95]

225Ac (α)
MMR 177Lu (β), 111In(γ) TS/A [97]

* The anti-FAPα VHH is fused with the Fc fragment.
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4.2.2. Photodynamic Therapy

VHH can be conjugated to a photosensitizer (PS), which is a light-activatable com-
pound that generates cytotoxic reactive oxygen species upon activation with a certain
light wavelength [104]. These VHH-PS conjugates can also be used as tracers or probes
to monitor tumor progression using optical imaging after photodynamic therapy (PDT).
IRDye700DX, a phthalocyanine dye, is one of the most promising photosensitizers, whose
chemical structure is similar to hematoporphyrin. Its maximum absorption wavelength is
in the infrared wavelength region and therefore easier to be transmitted through human
tissue. Additionally, IRDye has low absorption of light with a wavelength of 400–600 nm,
which reduces the skin photosensitivity reaction. Therefore, many studies have used
IRDye700DX as PS to couple with VHH for PDT. For example, Renard et al. generated
anti-EGFR VHH conjugated with 111In-DPTA (diethylenetriaminepentaacetic acid) and
IRDye700DX PS in a site-specific way, which homed to A431 xenografts in vivo and re-
sulted in light-induced toxicity via cellular internalization [105]. Deken et al. investigated
anti-HER2 VHH conjugated with IRDye700DX PS that induced significant regression of
trastuzumab-resistant HER2-expressing breast tumors after a single treatment session with
selective cytotoxicity [106]. Table 3 summarizes cancer targets investigated using VHH-PS
conjugates in preclinical studies.

Table 3. Preclinical studies investigating VHH-PS conjugates.

Targets Conjugates Cancer Models Main Findings References

HER2 IRDye700DX

SK-BR-3 (HER2+, sensitive),
HCC1954, JIMT1, HCC1419
(HER2+, resistant), MCF7

(HER2 low), MDA-MB-231
(HER2−)

Anti-HER2 VHH-PS could potently and
selectively induce cell death in

HER2-positive cells regardless of its
sensitivity to trastuzumab.

[106]

EGFR IRDye700DX A431

The PS was conjugated with 111In-VHH in
a site-specific way, which resulted in

light-induced toxicity via cellular
internalization.

[105]

EGFR IRDye700DX Cell lines with different EGFR
expression

The anti-EGFR VHH-PS led to approx. 90%
tumor necrosis and almost no toxicity in

healthy tissue 24 h after PDT.
[107,108]

EGFR IRDye700DX A431, SCC-U8

VHH-PS induced the release of DAMPs
(HSP70, ATP) and the pro-inflammatory

cytokines of moDCs by incubating it with a
conditioned medium, which stimulates the

immune system.

[109]

MET IRDye700DX MKN45
The anti-MET VHH-PS had a nanomolar

affinity and led to cell death at nanomolar
concentration with illumination.

[110]

US28 IRDye700DX U251-iUS28

The anti-US28 VHH-PS was the first
example using GPCR as a target for

VHH-directed PDT, which selectively
killed US28-expressing glioblastoma cells.

[7,32]

EGFR/VEGFR2 IRDye700DX OSCC
The dual-targeting VHH-PS showed

improved efficacy in co-culture of
endothelial and cancer cells.

[111]

4.2.3. VHH as Immune Checkpoint Inhibitor

Several conventional antibodies have been used as immune checkpoint inhibitors (ICIs)
for anti-cancer treatments in the past years. However, due to the complex structure of these
antibodies and the tumor heterogeneity, antibody-based ICIs face many challenges such as
insufficient tumor penetration and immune-related adverse effects [112], highlighting the
need for optimization of antibody-based ICIs.

Due to the smaller molecular weight, VHHs have a higher penetration potential in
solid tumors. Petit et al. showed that T cell-mediated targeted delivery of an anti-PD-L1
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VHH outperformed an anti-PD-L1 conventional antibody in inhibiting tumor growth,
related to its higher tumor penetration in MC38 tumor-bearing mice [113]. Table 4 sum-
marizes the studies evaluating VHH-based ICIs. Although the VHHs lack ADCC and
CDC due to the absence of Fc fragment, the VHH still has anti-cancer efficacy by inhibiting
the bioactivity of immune checkpoints to attenuate immune suppression in tumors [114].
Therefore, fusing VHH with an Fc fragment can also compensate the ADCC and CDC in
anti-cancer therapies [115]. Ma et al. demonstrated that a tetravalent anti-PD-L1 VHH-Fc
fusion had a higher inhibitory effect on tumor growth compared to an equimolar dose of an
anti-PD-L1 monoclonal antibody (Tecentriq analog) in MC38 xenograft-bearing mice [116].
Clinically, envafolimab (KN035), anti-PD-L1 VHH-Fc fusion formulated for subcutaneous
injection, has demonstrated a favorable safety and pharmacokinetic profile, with promising
antitumor activity in patients with advanced solid tumors in Phase I–II trials [117–119].

Table 4. Preclinical studies using VHH-based ICIs.

Targets Cancer Models Main Findings References

PD-L1+CD16a+IL15 PD-L1+ cancer The fusion promoted cell growth in vitro,
while it attenuated tumor growth in vivo. [120]

PD-L1 PaCa
The VHH-CCL21 fusion could target

PD-L1 positive TME and promote
recruiting effector cells.

[121]

PD-L1 MC38

VHH outperformed conventional
antibodies in inhibiting tumor growth

due to VHH’s higher tumor penetration
in the MC38 tumor.

[113]

PD-L1 PD-L1+ cancer

Monovalent, bivalent, and trivalent
agents enhanced TCR signaling in PD-L1
positive cancer cells, to result in CD8+ T
cell activation and cytokine production to

attenuate cancer progression.

[122–124]

PD-L1+TIGIT MC38
The multivalent bispecific VHH could

synergistically enhance T cell activity by
inhibiting tumor growth in vitro.

[116]

PD-1 A549, BxPC3 The VHH could block the PD-1/PD-L1
interaction. [125]

PD-1 MC38
Long-term systemic expression of VHH

by AAV vector provided anti-tumor
activity without toxicity.

[126]

CTLA-4 Melanoma
The anti-CTLA4 VHH delayed

melanoma growth and prolonged the
survival time in mice.

[127]

CTLA-4 MC38, H22
The half-life-extended version of VHH
exhibited therapeutic efficacy in a Fc

independent manner.
[114]

4-1BB+PD-L1 CT-26-huPD-L1,
MC-38-huPD-L1

The bispecific VHH showed anti-tumor
efficacy with negligible hepatotoxicity. [55]

4.2.4. Targeting Tumor-Specific Antigens

Tumor-specific antigens (TSAs) are important targets for cancer treatments and di-
agnosis. However, TSAs are not exclusively expressed in cancer cells. Normal cells may
express TSAs at low levels, while cancer cells have high expression of TSAs during tumor
proliferation. As a consequence, molecules targeting TSAs should have high specificity and
affinity, which can be achieved with VHH.
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VHHs have been designed to bind tumor-specific targets TSAs such as HER2, EGFR,
and VEGFR, over the past years and they are reported to have anti-tumor efficacy. Table 5
summarizes the preclinical studies evaluating the therapeutic efficacy of various anti-TSA
VHHs. As the small molecular weight of VHH allows better intratumor penetration, it
leads to high VHH clearance resulting in a shorter plasma half-life during the treatment.
In vivo studies showed the half-life of VHH binding with its target within 1–2 h [128,129].
In addition, VHHs are not capable of promoting ADCC or CDC effects during the treatment,
which should also be considered. These two limitations can be overcome by modification
of the VHHs. For example, Sadeghi et al. generated an anti-VEGF bivalent VHH that
showed a 1.8-fold longer half-life compared to its monovalent form [42]. An et al. coupled
ABD035 to anti-GPC3 VHH labeled with 68Ga, which reached a peak tumor uptake at 6 h
post-injection combined with a reduced kidney accumulation at 1 h post-injection [78].
Another method is coupling VHHs with an Fc fragment to obtain the VHH-conjugates with
the ability to promote ADCC or CDC [130].

Table 5. Preclinical studies evaluating the therapeutic efficacy of anti-TAAs VHHs in solid cancer.

Target Cancer Models Main Findings Reference

CapG MDA-MB-231 Anti-CapG VHH prevented the formation of
lung metastasis. [131]

CD38 Melanoma

Anti-CD38 VHH Pseudomonas exotoxin A
(PE38) showed highly selective cytotoxicity.

The effectiveness could be increased by
retinoid acid.

[132]

CD47 Melanoma
Anti-CTLA4 VHH synergized with other

immune therapies when CD47 in TME was
near-completely blocked.

[133]

CEACAM5/CD3 LS174T, SKOV3

The in vivo half-life of the bispecific VHH
was increased 12-fold via the PEGylation

strategy, accompanied by more potent tumor
inhibition.

[45]

CXCR7 HNSCC
The anti-CXCR7 VHH inhibited tumor

growth by reducing the secretion of CXCL1
in vitro and inhibiting angiogenesis in vivo.

[134]

DLL4 MKN, HEK293

The DLL4 could bind on the surface of MKN
cells, and gastric carcinoma tissue and inhibit
the maturation of capillary-like structures in

HUVECs.

[51]

DR5 Hela, Colo205

Multivalent anti-DR5 VHHs had higher
apoptotic capacity than the monovalent form
that could mimic the activity of the natural

TRAIL ligand.

[135]

DPYSL2, TUFM,
Vimentin, NAP1-L1 GBM

The anti-TUFM VHH showed a cytotoxic
effect on GBM CSCs, while other VHHs were

shown to target mature GBM cells.
[136]

EGFR LUAD

VHH was linked with the cell-penetrating
peptide nonaarginine. The VHH inhibited

intracellular signaling by binding EGFR
resulting in reduced cell migration.

[137]

EGFR A549, DU145, MCF-7
The anti-EGFR extracellular domain III VHH

showed an anti-tumor effect both in vitro
and in vivo.

[138]
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Table 5. Cont.

Target Cancer Models Main Findings Reference

EGFR SW480
VHH could inhibit cancer cell viability by

altering proteins involved in the
DNA-damage checkpoint process.

[139]

MET HepG2, SK-HEP-1, HCC827,
NIH3T3

Anti-MET VHH pool that acts against the
whole ectodomain of MET could overcome

MET targeted treatment resistance by
promoting MET degradation and blocking
the kinase activity of MET. The anti-MET

VHH treatment could suppress cancer
proliferation, viability, and colony formation

in vitro and tumorigenesis in vivo.

[140]

p38δ Hela The VHH inhibited the target kinase activity
and tumor growth. [141]

Survivin HepG2 The VHH targeted survivin and blocked the
signaling pathway resulting in apoptosis. [142]

Tie1 U87MG

Targeting Tie1 with specific VHH triggered
Tie1-dependent inhibition of RTK

phosphorylation and angiogenesis in
endothelial cells and suppressed GBM

viability and migration.

[143]

4.2.5. VHH-Drug Conjugates (VHH-DC)

Antibody-drug conjugates (ADCs) are immune-conjugates formed with a monoclonal
antibody as a ‘delivery carrier’ and a cytotoxic/immune-promoting drug as ‘cargo’, which
are conjugated via a chemical linker [144]. Highly specific targeting antibodies are used
to overcome the toxicity and adverse effects of traditional chemotherapeutic drugs. In
addition, the antibody may also have additive or synergistic anti-cancer effects with the
drug, when both components of ADC exhibit anti-tumor effects [145]. Nowadays, third-
generation ADCs have been developed and investigated. With novel techniques for ADC
generation, ADCs with high targeting and therapeutic efficacy, relatively low immunogenic-
ity, consistent drug-to-antibody ratio (DAR) and low toxicity are becoming available [146].
As more ADCs have been entering clinical trials, more challenges for ADC development
have been raised. During the synthesis of ADC, the chemical modification leads to the
instability of monoclonal antibodies. In addition, the high molecular weight makes it
difficult for ADC to enter the inner hypoxic part of solid tumors, which limits the appli-
cation of ADCs in cancer treatments. Using VHHs as a ‘carrier’ of cytotoxic drugs is a
novel alternative to overcome the disadvantages of conventional monoclonal antibodies.
Table 6 summarizes recent VHH-drug conjugates studies. Indeed, Wu et al. demonstrated
that the anti-5T4 VHH-SN38 (irinotecan analog) conjugate was detected at 85 µm from
the periphery of the patient-derived organoids (PDOs), while the anti-5T4 conventional
antibody-SN38 conjugate mainly located around the periphery of PDOs [147]. Drug re-
sistance and downregulation of tumor antigens are challenging for ADCs as well [148].
Espelin et al. used anti-HER2 VHH conjugated with doxorubicin (MM-302) in combina-
tion with trastuzumab to demonstrate synergistic anti-tumor activity both in vitro and
in vivo, supporting its translation into clinical trials [149]. Therefore, other strategies are
being investigated including utilization of novel tumor antigens, antibody formats, linkers,
payloads, etc.
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Table 6. Studies evaluating the therapeutic potential of VHH-drug conjugates.

Target Cargo Cancer Models Main Findings Reference

EGFR Mal-Pt A375, A431

The VHH-DC could be specifically internalized
into EGFR-positive cancer cells, resulting in

higher therapeutic effects and lower side effects
compared with cisplatin alone.

[89]

PSMA Doxorubicin PC3-PIP, PC3-flu *

An in vivo study showed that a 42-fold lower
amount of VHH-DC could result in similar tumor

growth inhibition compared with commercial
doxorubicin treatment.

[150]

HER2 Doxorubicin BT474-M3, NCI-N87
VHH-DC could simultaneously bind with the
HER2 target on cancer cells with trastuzumab,
which results in synergistic antitumor activity.

[149]

HER2 Auristatin F BT474, MDA-MB-231
VHH-DC-albumin fusion overcame the rapid
renal clearance, which resulted in long-lasting

tumor remission.
[47]

VEGFR2 Diphtheria Toxin PC3
Coupling toxin with immune “carrier” resulted

in cancer cell growth inhibition, while toxin alone
was ineffective.

[151]

CD147 Doxorubicin Hela, 4T1, U87,
293T(low), SMMC-7721

In vitro studies showed the VHH-DC could
inhibit tumor cell proliferation and induce cell

apoptosis. The VHH-DC had a synergistic effect
in inhibiting the growth of tumors in vivo, as

compared with the treatment of doxorubicin or
VHH monotherapy.

[152]

5T4 SN38 BxPC-3, Huh-7

N501-SN38 showed deeper tumor penetration,
higher tumor uptake, and faster accumulation at

the tumor site than conventional ADC and
exhibited effective antitumor activity both

in vitro and in vivo.

[147]

* PC3-PIP and PC3-flu are PSMA positive or PSMA negative PC3, respectively.

4.2.6. VHH-Based CAR-T

The chimeric antigen receptor (CAR) is an engineered synthetic receptor that can
redirect lymphocytes to recognize and eliminate specific cells, which express the target anti-
gens [153]. T cells are most commonly used to carry CARs, but CARs can also be applied to
other types of immune cells, such as NK cells, dendritic cells, macrophages, etc. [154,155].
Hitherto, six CAR-T therapies have been approved by the FDA to treat relapsed/refractory
multiple myeloma (RRMM), diffuse large B-cell lymphoma (DLBCL), mantle cell lym-
phoma (MCL), follicular lymphoma (FL) and Precursor B-cell lymphoblastic leukemia, of
which anti-CD19 CAR-T products’ antigen recognition domain is based on the same scFv
(Kymriah®, Yescarta®, Tecartus®, and Breyanzi®), whereas the antigen recognition domain
of B-cell maturation antigen (BCMA, Carvykti®, Legend Biotech and Janssen Biotech) is
based on VHH [156]. The peptide linker of scFv-based CAR-T, however, showed immuno-
genicity as neutralizing antibodies were generated against the linker [157]. Additionally, T
cell exhaustion is another factor that limits the application of CAR-T, which occurs indepen-
dently of the binding with the target antigen but is caused by the unstable structure of scFv.
The exposed hydrophobic residues in the scFv variable domain and poor VH or VL folding
stability can result in CAR aggregation. The CAR aggregation on the surface of CAR-T
can lead in turn to the activation of effector cells and cytotoxic signaling cascade, which
contribute to T cell exhaustion [158,159]. Xie et al. generated VHH-based CAR-T cells,
which were designed to target PD-L1, CD47, or EIIIB+ fibronectin splice variant to target
the TME, and each VHH-based CAR-T could reduce solid tumor growth and improve
survival in immunocompetent tumor-bearing mice [160,161]. Rajabzadeh et al. designed an
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anti-MUC1 CAR-T which could increase secretion of Th1 cytokines and cytotoxic activity
that could inhibit cancer cell viability [162]. In summary, VHH-based CAR-T is promising
as an approach to treating solid tumors [163].

4.3. Other Applications of VHHs

VHHs can also be applied in other novel anti-cancer treatments. VHH, which binds
and neutralizes cytokines or growth factors such as TNFα or VEGF, respectively, can
attenuate tumor growth by inhibiting metastasis or angiogenesis [13,164–166]. Alterna-
tively, VHHs conjugated with proteins (e.g., cucurmosin, pseudomonas exotoxin), cy-
tokines (e.g., IFNγ, IL-2, TNFα) or peptides show promising potential of inhibiting tumor
growth [167–171]. Yin et al. investigated an anti-PD-L1 VHH and used it for modified
liposomes co-delivery of simevastatin/gefitinib that could remodel the TME of EGFR-
T790M-mutated NSCLC and overcome the drug resistance [172]. Furthermore, VHHs can
be used to construct cancer vaccinations. For example, conjugating anti-CD11b VHH with
H-2Db-restricted immunodominant E7 epitope (E749-57), which exists in high-risk human
papillomavirus-associated cancers, induced stronger CD8+ T-cell responses against HPV
positive tumors than E749-57 alone [173]. The tumor vaccine that contains anti-CD47 VHH
could induce suppression of tumor progression and improve the long-term survival of
tumor-bearing mice by remodeling the TME [174]. Altogether, VHHs have great poten-
tial to develop novel anti-cancer therapies with higher efficacy and lower toxicity, which
warrants further investigations.

5. An Overview of Ongoing Clinical Trials of VHHs in Cancer Treatments

With the failure of many promising anti-cancer therapies in clinical trials and un-
derstanding the progression of cancer, more strict safety and efficacy requirements have
been raised for the investigation of cancer treatments. Since the discovery of VHHs in
1993, VHH have become a promising agent for the diagnosis and treatment of cancer, viral
infection [41,175,176], and other diseases due to its unique structure and physicochemical
properties. The CAR-T, in which anti-BCMA VHHs serve as antigen receptors on T cells
(Carvykti®, Legend Biotech, and Janssen Biotech), has been approved by the FDA for the
treatment of advanced multiple myeloma in 2022. Meanwhile, many clinical trials evaluat-
ing the diagnostic and therapeutic potential of VHH-based agents in solid and hematological
malignancies are ongoing. Table 7 summarizes some of these clinical trials. Data was collected
on ClinicalTrial.gov, on 24 August 2023 (https://www.clinicaltrials.gov/ct2/home, accessed
on 24 August 2023, Keywords: VHH, nanobody, sdAb, cancer, tumor, malignancy).

https://www.clinicaltrials.gov/ct2/home
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Table 7. Overview of registered clinical trials of VHHs-based agents in the treatment of solid cancer.

Agent Target Cancer Type Study Identifier Phase Status Primary Purpose Related Publication

99mTc-NM-02 HER2 Breast cancer NCT04040686 Early Phase I Recruiting Diagnostic [177]

99mTc-NM-01 PD-L1 Non-Small Cell Lung Cancer NCT02978196 Early Phase I Recruiting Diagnostic [178,179]

99mTc-MIRC208 HER2 HER2 positive cancer NCT04591652 Not Applicable Recruiting Diagnostic [180]

89Zr-KN035 PD-L1 PD-L1 positive solid tumor NCT04977128 Not Applicable Recruiting Diagnostic [181]

68Ga-THP-APN09 PD-L1 Lung cancer
Melanoma NCT05156515 Not Applicable Recruiting Diagnostic [181]

68Ga-NOTA-Anti-MMR-VHH2 MMR
Breast cancer

Head and Neck cancer
Melanoma (skin)

NCT04168528 Phase I/IIa Recruiting Diagnostic [73,182,183]

68Ga-NOTA-Anti-MMR-VHH2 MMR

Breast cancer
Pancreatic cancer

Salivary gland cancer
Gastric cancer

Endometrial cancer
Uterine cancer

Non-Small Cell Lung Cancer
Biliary tract cancer

Cholangiocarcinoma
Colorectal cancer

Urothelial carcinoma
Prostate cancer

NCT03924466 Phase II Recruiting Diagnostic [73,182,183]

68Ga-NOTA-Anti-HER2 VHH1 HER2 Breast cancer NCT03924466 Phase II Recruiting Diagnostic [18,64,184]

68Ga-NOTA-Anti-HER2 VHH1 HER2 Breast cancer NCT03331601 Phase II Recruiting Diagnostic [18,64,184]

99mTc-NM01 PD-L1 Non-Small Cell Lung Cancer NCT04992715 Phase II Recruiting Diagnostic [178,179]

131I-SGMIB Anti-HER2 VHH1 HER2 Breast cancer NCT02683083 Phase I Completed Diagnostic [185]

68Ga-ACN376 CLDN18.2 Solid tumor NCT05436093 Not Applicable Recruiting Screening

αPD1-MSLN-
CAR-T Cells PD-1 Solid tumor NCT05373147 Early Phase I Recruiting Treatment [186]

αPD1-MSLN-
CAR-T Cells PD-1 Colorectal cancer

Ovarian cancer NCT04503980 Early Phase I Recruiting Treatment [186]

αPD1-MSLN-
CAR-T Cells PD-1 Non-small-cell Lung Cancer

Mesothelioma NCT04489862 Early Phase I Recruiting Treatment [186]

αPD1-MSLN-
CAR-T Cells PD-1 Colorectal cancer NCT05089266 Phase I Not yet recruiting Treatment [186]
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Table 7. Cont.

Agent Target Cancer Type Study Identifier Phase Status Primary Purpose Related Publication

KN046+Axitinib PD-L1/CTLA4 Bispecific Advanced Non-small Cell Lung cancer NCT05420220 Phase II Not yet recruiting Treatment [187]

KN046 PD-L1/CTLA4 Bispecific Thymic carcinoma NCT04469725 Phase II Recruiting Treatment [188]

KN044 CTLA4 Advanced solid tumor NCT04126590 Phase I Recruiting Treatment [189]

KN035 PD-L1 Solid tumor NCT03101488 Phase I Completed Treatment [190,191]

KN035 PD-L1 Advanced or metastatic solid tumor NCT03248843 Phase I Completed Treatment [190,191]

JS014
(fusion with IL-21)
+ Pembrolizumab

Human Serum Albumin Malignant neoplasm Experimental solid tumor
Adult lymphoma NCT05296772 Phase I Active, not

recruiting Treatment

Gavocabtagene
autoleucel

(gavo-cel; TC-210)
Mesothelin Mesothelioma NCT03907852 Phase I Phase II Recruiting Treatment [192]

Envofolimab
(KN035)+Gemcitabine and

Cisplatin
PD-L1 Biliary tract cancer NCT04910386 Phase II Not yet recruiting Treatment [193]

99mTc-NM-02,
188Re-NM-02 HER2 Breast cancer NCT04674722 Early

Phase I Recruiting Treatment [177,194]

Envafolimab (+Ipilimumab) PD-L1 Pleomorphic sarcoma Myxofibrosarcoma NCT04480502 Phase II Recruiting Treatment [195]

68Ga-NODAGA-SNA006 CD8α Solid tumors NCT05126927 Early
Phase I Recruiting Diagnostic [196]

DR30303-IgG1Fc CLDN18.2 Malignant neoplasm of the digestive system NCT05639153 Phase I Recruiting Treatment [197]

[99mTc]-NM-01 PD-L1 Non-small cell lung cancer, malignant
melanoma NCT04436406 Not Applicable Recruiting Diagnostic

68Ga-PD-L2 PD-L2 Colorectal cancer, Lung cancer NCT05803746 Not Applicable Recruiting Diagnostic
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6. Discussion and Future Directions

Since its discovery in 1993, VHHs have become one of the most promising approaches
for the treatment and diagnosis of various diseases, including cancer, autoimmune diseases,
respiratory diseases, and blood systemic diseases. The first VHH-based drug Caplacizumab
was approved in 2018 for the treatment of thrombotic thrombocytopenic purpura and
thrombosis. In 2022, the first VHH-based CAR-T treatment Carvykti has been approved by
the FDA to treat multiple myeloma. Up until now, VHH alone as a therapeutical agent has
not been approved for anti-cancer treatments.

As the smallest known antibody fragment that can recognize antigen, the VHHs retain
high affinity and specificity, whilst having unique chemical and physical features compared
to conventional antibodies. The unique molecular structure of VHHs makes it possible
to bind some epitopes that conventional antibodies are not able to access, such as the
active structure in the middle of the protein cleft. These unique features may behave like
a ‘double-edged sword’ in the therapeutic application of VHHs. For example, the single
domain character of VHH makes almost every amino acid residue crucial for antigen-
antibody interaction increasing the difficulty of VHH humanization. Additionally, fast
blood clearance can reduce the toxicity of the treatment, but it may compromise treatment
efficacy as well. In addition, although the lack of Fc fragments minimize immunogenicity,
the absence of ADCC or CDC limits the application of VHHs in anti-cancer treatments,
which are mainly promoted by Fc fragments. Therefore, related technologies should be
applied in the VHHs development process to overcome these drawbacks of VHHs. In
addition, in preclinical studies evaluating the efficacy of VHHs, the cancer models should
be chosen carefully, and the data should be interpreted with caution, since in some studies
VHH imaging agents recognizing human antigen were tested in human tumor xenografts in
mice, which cannot provide information on the binding of VHH in normal tissues of human
origin. Similarly, VHH with immune-modulating properties targeting human antigens
should be investigated in humanized mouse models.

7. Conclusions

According to the database of clinical trials investigating VHH-based anti-cancer agents,
most VHHs in ongoing clinical trials are still in their early stages. Most of these anti-cancer
targets cover PD-1, PD-L1, CTLA4, HER2, EGFR, and BCMA. The VHH studies gathered
in this review indicate that many promising novel VHH-based anti-cancer treatments and
diagnostic tools have been investigated. With the progressive understanding of cancer
biology, more potential anti-cancer targets have been identified. Together with straightfor-
ward selection methods, efficient and cost-effective expression, and purification techno-
logical processes, VHHs represent a promising opportunity in anti-cancer treatment and
cancer diagnosis.
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