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Simple Summary: Approaches to treat advanced cancer within tumor biology have been largely
unsuccessful. This review investigates the biology downstream of the tumor as a potential new
avenue for treatment. We draw insight from the mechanisms that lead to sickness and debility,
including a decline in physical/cognitive function and muscle wasting, otherwise known as cachexia.

Abstract: Options for treatment of incurable cancer remain scarce and are largely focused on limited
therapeutic mechanisms. A new approach specific to advanced cancers is needed to identify new
and effective treatments. Morbidity in advanced cancer is driven by functional decline and a number
of systemic conditions, including cachexia and fatigue. This review will focus on these clinical
concepts, describe our current understanding of their underlying biology, and then propose how
future therapeutic strategies, including pharmaceuticals, exercise, and rehabilitation, could target
these mechanisms as an alternative route to addressing incurable cancer.
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1. Introduction

Advanced cancer describes cancers that are locally advanced or metastatic, have
limited treatment options, and typically have low survival. These cancers often do not
respond to initial treatment and are aggressive in nature. The four most common cancers
have a five-year survival rate of 7–32% in the advanced stages, compared with 50–100% in
localized tumors [1]. In addition to its impact on mortality, patients with advanced cancer
generally experience increased morbidity and disability burden [2,3]. Beyond standard
chemotherapy regimens typically also used for localized disease, advanced cancer treatment
largely focuses on palliative care with the hope of alleviating symptom burden throughout
the remainder of the disease [4,5]. Some targeted interventions do exist for advanced
cancers, including chimeric antigen receptor (CAR) T-cell therapy and immune-checkpoint
inhibitors; however, survival outcomes often remain bleak, and further investigation of
treatments that directly target advanced disease is needed [6–11].

A key feature underlying advanced cancer is the associated systemic physiology
beyond the tumor. When cancer progresses beyond the local niche, patients with advanced
cancer experience numerous systemic sequelae in parallel with primary tumor progression
that contribute to their overall decline [12–14]. At this point, cancer is a systemic disease
not only due to metastatic spread but also due to its effects on the entire body, which is left
more susceptible to additional systemic insults, including thrombogenesis, pain, fatigue,
cardiopulmonary decline, and cachexia.

Cancer cachexia is a secondary systemic muscle wasting syndrome caused by systemic
inflammation and accelerated catabolic metabolism, which occurs in ~50% of all patients
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with cancer and 85% of those with advanced cancer [15–20]. The presence of cachexia
negatively impacts quality of life (QoL), treatment success, and survival [16,21]. The pro-
gressive loss of muscle mass in cachexia leads to concurrent impairments in overall muscle
strength and physical activity, including walking, proximal muscle strength, and standing
tolerance [22,23]. However, the effects of cancer cachexia extend beyond muscle [19,24–27],
impacting whole-body physical function and functional independence with activities of
daily living [28,29]. In addition, multiple organ systems, including the liver, intestines, and
neuroendocrine network, experience dysfunctional biology, implicating cancer cachexia as
a proxy for systemic disease in advanced cancer [16,20].

New approaches to targeting advanced cancer that are focused on tumor mechanisms
are in development, but there is considerably less focus in the oncologic community on
translating treatments for the parallel, systemic advanced cancer mechanisms. Even so, a
handful of promising biological and physiological targets linked to extratumoral outcomes,
such as cachexia, are emerging. In this review, we will explore the link between morbidity,
functional decline, and the systemic biology of advanced cancer. We will underscore
some of the specific physiologic mechanisms that tie together these concepts and then
describe some of the multi-modal approaches to treating these mechanisms that could be
incorporated into a more holistic approach to advanced cancer treatment.

2. Functional Decline and Facilitators of Morbidity in Advanced Cancers

Physical functional decline is a common feature of advanced cancer and is defined
as a decrease in independence with mobility or the performance of activities of daily
living (ADLs), such as walking, dressing, and using the toilet [30,31]. A decrease in
functional independence contributes to morbidity and overall survival [32–34], with up to
a 3-fold increase in mortality in those with cancer [30]. Importantly, a change in function
is distinct from a change in physical activity, whereby a change in function is defined as
changes in the ability to perform specified tasks, and physical activity is defined by energy
expenditure [35]. In studies of patients with advanced cancer, the available measures of
physical function are extremely diverse, including the use of true measures of functional
independence [28,29,36] and measurements of physical performance that are proxies for
functional decline, such as grip strength, the 6 min walk test (6MWT), gait speed, 30 s
sit-to-stand [37,38], and timed up and go test (TUG) [30,33,39].

Recent studies suggest that addressing functional decline specifically as a conduit for
treating the systemic biology of advanced cancer may reduce the worsening prognosis
experienced by this patient population [19,40–42]. Herein, we will describe facilitators of
morbidity related to advanced cancer and how each contributes to the overall functional
capacity of afflicted patients as a measure of both functional assessments and patient-
reported outcome measures (PROMs).

Metastatic disease is a key clinical feature of many advanced cancers that results from
several factors, including changing transcriptional activity, chromosomal instability, and
cell differentiation properties [43–46]. Once a metastasis is formed, disruption of secondary
organ physiology is the most common cause of cancer-related deaths (~90%), impairing
systemic function and directly causing organ failure [47,48]. The metastatic process is
energetically expensive and distinct from primary tumor biology [49], utilizing critical
energy from functional reserves in the body for the dual need of both spread and growth.
The depletion of these energy stores exacerbates fatigue, frailty, and decreased functional
capacity compared to localized tumors that utilize energy primarily for growth only and
therefore have less anabolic demand [50,51]. As a result, patients with metastasis have
significantly more self-reported decline in physical function, fatigue, and QoL than those
with only primary tumors [52].

Among the first signs of advanced cancer is decreased dietary intake. This can manifest
through multiple symptoms, including a measurable loss of appetite (anorexia), pain, lack
of interest (anhedonia), fatigue, or aversion to smells and tastes [53,54]. The effects of de-
creased dietary intake are compounded by malabsorption due to changing gastrointestinal



Cancers 2024, 16, 360 3 of 19

and microbiome physiology. A cascade of negative clinical outcomes can ensue from poor
nutrition [55], including weight loss, depression, fatigue, and decreased QoL [56]. More
serious conditions are associated with sustained malnutrition, including severe muscle
wasting, functional and cognitive decline, and poor survival [53,55,57]. For example, 6MWT
scores have been shown to be both an indication of poor survival and closely associated
with malnutrition in multiple studies [34,57,58].

Progressive functional decline is cited among the key outcomes of cancer cachexia,
but data on the specific relationship between cachexia and function remain imprecise.
Most studies focus on physical performance measures, such as hand grip strength, which
typically change at the end stages of the disease rather than the longitudinal study of
physical functional independence via the course of cachexia development [26,59,60]. How-
ever, more recent studies have investigated potentially more accurate measures of func-
tional impairment throughout the course of the disease by utilizing functional indepen-
dence measures (FIM), more diverse physical performance measures, and function-specific
PROMs [28,35,61,62]. The imprecise application of functional assessments is reflective of a
larger issue within the cachexia field in which multiple markers can be used for cachexia
diagnosis, including overall weight loss, the weight loss grading scale (WLGS), and bio-
chemical markers such as C-reactive protein (CRP) and albumin [63–65]. The variety of
diagnostic criteria leads to a non-unified population that contains multiple cohorts with
differing presentations of decline. These considerations withstanding, cancer cachexia
progression of any diagnostic criteria directly contributes to morbidity, frailty, cognitive
decline, and overall survival [19,61,66–68]. In ~20% of all cancer patients, cancer cachexia
is reported as the cause of death [15,69].

Frailty is another concept commonly associated with advanced disease and frequently
conflated with cancer cachexia, but it is distinct in that frailty is more accurately described as
a state of vulnerability to decline within the context of aging [30]. There are two approaches
for clinical frailty assessment. One is the Fried frailty phenotype, which defines the
condition as the presence of three or more of the following indicators: unintentional weight
loss, hand grip strength weakness, diminished walking speed, exhaustion, and decreased
physical activity level [30]. The second approach is termed the Rockwood frailty index and
classifies frailty as the accumulation of age-related deficits [70]. The factors most associated
with frailty are decreased gait speed and cognitive decline, as well as poor survival [71–74].
Once a patient has been clinically diagnosed with frailty, treatment goals center around
improving the current deficits and preventing the onset of new ones [75–77]. If an adverse
event linked to frailty, such as a mechanical fall, does occur, patients typically have reduced
survival and do not regain full functional capacity [71,78]. Ultimately, frailty is closer to
a mediating tool for connecting to outcomes rather than an etiologic concept that can be
addressed with targeted interventions.

The most common complaint among advanced cancer patients is chronic fatigue.
Commonly referred to as cancer-related fatigue (CRF), the diagnosis is defined by an
excessive and persistent feeling of tiredness that impairs emotional, physical, or mental
function [79–81]. CRF has many contributing causes, including systemic biology changes
induced by cancer, cancer treatments such as chemotherapy or radiation therapy, or a
combination of the two [56,80], and patient-reported fatigue can be directly linked to poor
survival in non-small-cell lung cancer (NSCLC) [82]. Importantly, CRF can be mediated by
the central nervous system (CNS), in which voluntary muscle activation is decreased, or by
the peripheral nervous system (PNS), whereby the synchronicity of muscle contraction is
reduced, leading to a decrease in strength [83,84]. Patients may experience isolated central
or peripheral fatigue or both concurrently. Cognitive aspects of fatigue and cancer-related
cognitive impairment are well documented in patients with CRF, exhibiting delayed recov-
ery from cognitive interference and impairments in memory and attention [81,85,86]. Some
studies suggest that CRF can be a prognostic indicator for future cognitive decline [86,87].

More broadly, cognitive decline is a complex condition in advanced cancer patients, influ-
enced by natural aging, cancer treatments, metastasis, and systemic cancer biology [3,88–90].
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Studies have found that objective assessments and subjective patient-reported measures of
cognitive decline do not always align, but general symptoms include brain fog, memory
failure, and a lack of awareness/attention [91]. Objective measures of cognitive impair-
ment are more indicative of decline, and subjective measures tend to be influenced by
psychological measures of depression and anxiety with increasing cognitive decline with
increasing psychological symptoms [85]. The clinically relevant cognitive decline that
impedes QoL can begin in ~30% of patients at 12 months prior to death and significantly
increase to ~45% of patients in the last 0–3 months prior to death, suggesting that a sudden
increase in cognitive impairments can be a prognostic indicator for advancing disease and
survival [92]. Additionally, emotional distress, such as anxiety and depression, can be a
strong co-factor for outcomes related to both cognitive decline and CRF [79,85].

As seen in Figure 1, each of the discussed facilitators of morbidity acts as a factor
that contributes to functional decline. Additionally, each factor participates in a positive
feedback loop that exacerbates other facilitators of morbidity and leads to exponential
decline. Overall, functional capacity is a defining facet of health and is instrumental to
both QoL and survival. It is possible that improving these functional deficits will not only
improve quality of life but also improve treatment outcomes. Improving functional capacity
requires knowledge of the biology underlying each of these facilitators of morbidity. The
next section will focus on the contributing systemic biology of advanced cancer and will
be followed by a comprehensive overview of current attempts to target this biology with
pharmaceutical or exercise interventions for functional improvement.
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3. Systemic Biology of Advanced Cancers: Extratumoral Mechanisms

Extratumoral mechanisms include any biology that is not directly tied to tumor
mechanisms but could be influenced by tumors via paracrine or endocrine factors. Cancer
cachexia has been studied extensively through the lens of the systemic biologic mechanisms,
largely immune and metabolic, underlying advanced cancers. Functional assessments are
not well defined in cancer cachexia biology studies and are still being developed. Currently,
the most widely used tests include grip strength and locomotor activity, with a growing
interest in muscle function in situ [93–99]. Unfortunately, most functional assessments
are performed at the endpoint of a study, comparing morbid animals to sham; however,
there has been a shift in the field to collect data longitudinally to better determine the early
factors associated with cancer cachexia [94,95,97]. We will summarize the current known
systemic mechanisms studied in cancer cachexia, which contribute to functional decline.

An increase in inflammatory cytokines in the blood is a well-reported event in cancer
cachexia. The most frequently measured cytokines include IL-6, TNF-α, and TGF-β super-
family members, such as GDF-15 [100]. Cancer cachexia patients have been found to have
significantly greater levels of circulating IL-6 and TNF-α, corresponding with decreased
upper and lower body strength compared to healthy age-matched controls [101]. In mouse
models, mice injected with adeno-associated viral vectors (AAV) expressing IL-6 and activin
A, a member of the TGF-β superfamily, led to significant reductions in body weight, fat,
and muscle mass, with the greatest effect when both cytokines were elevated [102].

Multiple mechanisms are suggested by which these inflammatory cytokines regulate
muscle loss. One implicated pathway is the ubiquitin–proteosome pathway (UPP). This
pathway is suggested to play a direct role in the muscle degenerative facet of cachexia
in both animals and humans and is initiated when an increase in cytokines such as IL-6,
IL-1β, and activin A triggers the downstream activation of UPP regulatory genes such
as the muscle-specific E3 ligase MURF1 and atrogin-1. The increased activation of these
genes then leads to protein degradation and muscle wasting [103–106]. In fact, studies have
found that MURF1 activation alone is sufficient for muscle wasting, and a mouse MURF1
knockout model protects against skeletal muscle and fat wasting [107]. Mouse studies have
also shown a significant decrease in muscle mass with elevated IL-6 [104,105]. In patients,
high levels of IL-6, IL-1β, and IL-8 are significantly associated with PROMs of appetite loss
and weakness [108]. However, it remains to be studied how UPP regulatory genes directly
correlate with function in cancer cachexia in humans, and more work needs to be done to
link function to cytokines at the human level.

Muscle biopsies from cancer patients with and without cachexia indicate that miR-
NAs that relate to myogenesis and inflammation may also have prognostic and predic-
tive value [109]. Plasma levels from head and neck cancer patients with and without
cachexia showed a decrease in miR-130a levels with an increase in TNF-α levels that was
highly specific to individuals with cachexia, demonstrating potential as a cancer cachexia
biomarker [110]. Although studies have not been carried out to determine the role these
miRNAs may play in patient function or muscle loss, the high specificity suggests they
may play a role in the pathophysiology of cancer cachexia.

In addition to muscle and adipose wasting, many other organs are negatively affected
by increased cytokine production and contribute to systemic disease physiology. Liver
dysfunction is one of the most studied outcomes of increased inflammatory cytokine circula-
tion, and disrupted function leads to imbalances in glucose and insulin homeostasis, as well
as steatosis and cholestasis [16,20,111]. Cytokine influx into the liver also triggers the hep-
atic inflammasome pathway in which IL-1β and the acute phase response proteins serum
amyloid A and fibrinogen are released, causing increased blood lactate and subsequent
increased resting energy expenditure [20,112–114]. Alterations in intestinal microbiota and
gut permeability are also implicated with increased circulating IL-6, negatively impacting
nutrient absorption and downstream metabolism [16,20]. Studies suggest the cytokines
IL-1β and TNF-α play a role in the neuroendocrine regulation of appetite as increased
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levels of these cytokines in the brain are associated with a greater incidence of anorexia in
mouse models, and inhibition of TNF-α in rats was shown to forestall anorexia [115–117].

The link between inflammation and the neural network that establishes appetite sup-
pression in anorexia–cachexia syndrome has been an emerging area of focus in cachexia.
Upregulated CNS-activating factors with growing interest in this area include GDF-15 and
lipocalin 2 (Lcn2). GDF-15 is thought to be secreted by the liver and binds to the receptor
GFRAL in the brainstem where upregulation modifies hunger by inducing nausea and
emesis [118,119]. These symptoms result in a decrease in food intake and body weight.
Therefore, it is not surprising that cancer cachexia patients experience an upregulation of
GDF-15, and exciting advances have been made to inhibit the GDF15-GFRAL axis. Like-
wise, patients with pancreatic cancer have shown increased mortality correlated with an
increase in Lcn2 expression. Lcn2 is derived in bone marrow and binds to melanocorti-
cotropin 4 receptor (MC4R) in the hypothalamus, inducing anorexia. A mouse model that
investigated the effects of both deletion and rescue of Lcn2 found protection and sufficient
induction of anorexia–cachexia syndrome, respectively [120]. Other studies have found
neural infiltrating neutrophils that express CCR2 in the velum interpositum of mice with
pancreatic ductal adenocarcinoma (PDAC). When CCR2 expression was blocked or geneti-
cally deleted, there was a significant reduction in infiltrating immune cells, the expression
of atrogenes, and loss of body weight [121]. Recent work in cachectic mice indicates a direct
negative effect of these neuroendocrine mechanisms on cognitive function [115,121,122].

4. Pharmaceutical Interventions

Despite the wealth of pre-clinical work, only a handful of FDA-approved drugs are
available for advanced stages of cancer, primarily via immune-based therapies. Treatments
targeted toward metastasis have largely failed in clinical trials, with no change, worsened
survival, or serious side effects, such as in metalloproteinase inhibitor (MPI) trials [123,124].
Conversely, one promising treatment for advanced cancer is tumor-infiltrating lymphocyte
(TIL) therapy, specifically in metastatic melanoma, citing a 22% complete tumor regression
in patients previously considered incurable [125]. However, TIL cannot be used universally,
and non-responders have been found to have lower levels of CD27+ CD8 T-cells and shorter
telomeres [125]. The low success with current targeted advanced cancer treatment options
suggests a different approach to treatment, such as therapies that target the downstream
systemic biology of cancer, are worth investigating.

While there are no FDA-approved treatments for cachexia, the current approach
commonly used in “cachexia clinics” is multi-modal, including dietary optimization, phar-
macologic interventions targeted toward nutrition impact symptoms, and physical activ-
ity/exercise [63]. In select studies, these clinics have been shown to improve patient weight
loss and quality of life [126–128]. The use of anti-inflammatories within a multi-disciplinary
intervention has been proposed, although their overall efficacy remains unclear [129]. In
one study of indomethacin treatment, cancer patients increased median survival from
250 days to 510 days [130], but more recent studies have demonstrated that the role of
NSAIDs in treating cachexia is unclear and further study is still needed [131]. Corticos-
teroids have demonstrated improved body weight and appetite in cancer cachexia patients;
however, treatment is recommended to last no more than a few weeks due to accumulated
toxicity and side effects with long-term use. For this reason, corticosteroid treatment is
often limited to end-of-life care [132]. More broadly, the concept of a “cachexia clinic”
remains rare worldwide, with the vast majority of cancer centers lacking any dedicated
clinical personnel for muscle wasting-related care. This is in part due to the current lack of
evidence for the specific elements of a multidisciplinary approach to cachexia [133].

Efforts to produce drugs specific for cancer cachexia mechanisms have included
blocking IL-6 signaling with monoclonal antibodies (mAb), including Clazakizumab and
Tocilizumab (Toci). Initial patient responses to Toci treatment were favorable in two cancer
cachexia patients with elevated IL-6 as well, demonstrating an increase in performance
scores and enabling further chemotherapy treatment [134]; however, clinical trials have not
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been completed to fully examine the effectiveness of Toci in cancer cachexia patients [100].
Likewise, Clazakizumab showed increased grip strength and decreased fatigue-related
symptoms in patients with NSCLC, but further clinical trials have not been carried out [135].
At the same time, Toci already has FDA approval for the treatment of cytokine release
syndrome (CRS), which is an acute toxic response to CAR T-cell therapy, suggesting that
Toci therapy is successful in reaching its biological target during cancer [136,137]. However,
CRS only requires a short-term duration of therapy, and further study is needed Into
long-term durations of therapy in order to successfully treat IL6-mediated cachexia.

Among emerging nutrition impact symptom-targeted therapies, anamorelin has
shown much promise [138]. Anamorelin is a selective ghrelin receptor antagonist that
was shown to increase lean body mass (LBM) and body weight in a phase 2 clinical trial
with cancer cachexia patients [139]. Phase 3 studies of anamorelin demonstrated weight
gain, an increase in LBM, and the amelioration of anorexia–cachexia symptoms but no
change in function or grip strength [140–142], which then led to a lack of approval. How-
ever, given the paucity of mechanistic evidence linking leptin–ghrelin signaling to physical
function, the absence of any changes in physical outcomes is not unexpected and perhaps
should have been excluded as a requirement for approval in a unimodal study design.

Pharmaceutical intervention data with a GDF-15 inhibitor mAb show promising results
in mouse models. Along with increases in muscle mass, appetite, and food intake, mice also
demonstrated improved functional abilities with wheel and treadmill running assessments
compared with non-treated animals [143]. Moreover, control IgG-treated animal pairs
fed with tumor-bearing GDF-15-GFRAL axis-impaired mice showed greater body mass
improvement in the tumor group, suggesting a feeding-independent mechanism for GDF-
15 in cancer cachexia [144]. Clinical trials are now in phase 2, following the phase 1 study
of the GDF-15 inhibitor ponsegromab, which demonstrated safety and secondarily resulted
in increased body weight, appetite, and functional assessment and QoL scores [145,146].

The MC4R antagonist TCMCB07 trialed in rats with cachexia demonstrated a signifi-
cant reduction in the loss of each body weight, cardiac and skeletal muscle, and fat [147,148].
Further studies in cachectic canines showed increased body weight, body condition score,
and QoL as described by owners [149]. Preliminary data in the phase 1 study of TCMCB07
revealed no adverse effects or contraindications in healthy individuals [150].

Altogether, the search for cancer cachexia pharmaceutical interventions has not yet
been fruitful. The failure of individual agents to treat cancer cachexia may be tied to the
heterogeneity of biological cachexia presentation between patients and over time [142].
Since patients do not have equally elevated levels of cytokines or serum inflammatory
markers, a more precise approach should be taken on the level of individualized or precision
medicine in the oncologic community to determine the most appropriate pharmaceutical
intervention, as has been conducted on a limited basis in some reported cases. Within such
an approach, clusters of inflammatory markers should be considered regarding prognostic
outcomes and treatment success. Furthermore, a disease-modifying marker that acts as a
proxy to test therapy mechanistic action would improve treatment accuracy and efficacy.

5. Nutritional Guidelines and Interventions

Within cancer cachexia clinics and individual oncologic care, nutrition is routinely
addressed by physicians and/or registered dieticians to provide safe recommendations
for dietary intake, as well as education about the macronutrient content of specific food
groups [132]. The current European Society of Clinical Nutrition and Metabolism (ESPEN)
guidelines established in 2021 for cancer patient nutritional intake vary depending on the
patient’s presentation. Cancer patients with weight loss are recommended protein intake
of 1–1.5 g/kg/day, supplementation with vitamins and minerals to recommended daily
allowances, and, in the presence of insulin resistance, an increased ratio of energy from fat
than carbohydrates. In cases with severe or worsening malnutrition due to inadequate oral
intake, enteral or parenteral nutrition may be recommended [151].
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Emerging opportunities for nutritional intervention include the ketogenic diet. A re-
cent study with two cancer cachexia mouse models demonstrated that although a ketogenic
diet alone decreases survival and tumor burden, a ketogenic diet plus dexamethasone
decreases tumor burden and mRNA levels of E3 ligases, as well as significantly extends OS
and PFS compared to normal-fed plus dexamethasone-treated mice [152]. These findings
suggest that certain diets may help improve the effects of cancer cachexia; however, they
may need to be augmented with medications or more advanced nutritional strategies. Cur-
rent data for the use of special diets are limited, and more work is required to understand
the clinical context in which diet and augmenting medications can be used.

6. Rehabilitation and Exercise Interventions

In 2018, The American College of Sports Medicine (ACSM) Roundtable convened
to determine exercise frequency, intensity, time, and type (FITT) prescriptions based on
available evidence for cancer patients. FITT prescriptions were developed with strong
evidence for directly addressing the aforementioned facilitators of morbidity, including
fatigue [153–163], QoL [164–166], and physical function [165–167]. Each of these health
outcome prescriptions recommends a regimen of aerobic, resistance, or a combination of
both 3x times per week for 6 to 12 weeks with specifications for the duration, intensity
as a measure of HRmax or VO(2max), number of repetitions, and whether supervised
or unsupervised shows the most benefit [168]. While these prescriptions are a large step
toward incorporating physical activity as a treatment, limitations to implementation exist.
For instance, this recommendation was based on studies that largely focused on one type of
cancer: breast or prostate. Additionally, studies were performed in individuals undergoing
or completing cancer treatment, meaning enrollment for advanced cancer patients was low
and therefore may not translate well to this population.

Cochrane reviews for exercise treatment, specifically in advanced cancer and cachexia
patients, state that although exercise is reliably safe and there is some evidence it can lead to
decreased symptom burden, the heterogeneity of studies precludes determination as a rec-
ommended treatment choice [169–172]. Largely, these studies are small and implemented
within individual institutions, resulting in a lack of consensus between clinical approaches,
types of exercises, and exercise duration/frequency, all of which are needed to administer
an exercise prescription. Within these differences lie important distinctions that are often
lost: rehabilitation and exercise are separate concepts, and aerobic and resistance exercise
have different values physiologically. Here, we will review these distinctions, as well as
published data on their impact on facilitators of morbidity and function in advanced cancer
patients. Table 1 reviews the specific literature discussed in this section, defining each study
as rehabilitation, exercise, or a combination.

Table 1. Published rehabilitation or exercise interventions in advanced cancer patients.

Cancer Type Length of Time
Intervention Type

(Exercise or
Rehabilitation?)

Routine Improved Outcome
Measures References

Stage IV lung
(n = 34) and

colorectal (n = 32)
cancer

8 weeks Exercise

4×/week
incremental 20 min

brisk walks
REX: 5 exercises,

10–15 reps

Mobility, fatigue,
and sleep

Cheville et al.,
2013 [173]

Mixed incurable
metastatic cancers

with life
expectancy < 2 years

(n = 121)

8 weeks Exercise

2×/week 50–60 min
AEX: 10–15 min

REX circuit:
6 stations, 2 min on,

1 min off

Shuttle walk test
(SWT) and HGS

Oldervoll et al.,
2011 [174]

Mixed recurrent
advanced or

metastatic cancer
(n = 46)

12 weeks Exercise 30 min walking on
alternate days None Tsianakas et al.,

2017 [175]
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Table 1. Cont.

Cancer Type Length of Time
Intervention Type

(Exercise or
Rehabilitation?)

Routine Improved Outcome
Measures References

Stage IIIb or IV
NSCLC or extensive
small cell lung cancer

(n = 114)

6 weeks Exercise

2×/week supervised
REX and AEX

3×/week home
walking

Peak VO2, 6MWT,
and 1 RM

Quist et al.,
2015 [176]

Advanced NSCLC
(n = 40) 8 weeks Exercise

3 days/week
supervised,
2 day/week

independent REX
and AEX

6MWT and
dynamometer

muscle strength

Kuehr et al.,
2014 [177]

Stage IIIb or IV
NSCLC or extensive
small cell lung cancer

(n = 23)

6 weeks Exercise

2×/week supervised
AEX and REX

3×/week home
walking

Peak VO2, 1 RM, and
emotional QoL

Quist et al.,
2012 [178]

Stage IV breast
cancer (n = 38,

16 intervention)
12 weeks Exercise

3×/week
video-guided seated
REX and stretching

Slower decline in
total and physical

well-being
Less increase

in fatigue

Headley et al.,
2004 [179]

Mixed advanced
cancers (n = 34) 6 weeks Exercise 2×/week supervised

REX circuit training

6MWT, timed
sit-to-stand, physical

fatigue, and
emotional QoL

Oldervoll et al.,
2006 [180]

Prostate cancer
(n = 16) 12 weeks Exercise

3×/week
12–15 min eccentric
resistance cycling

6MWT and
isometric knee

extension strength

Hansen et al.,
2009 [181]

Mixed advanced
cancers (n = 115) 8 sessions Rehabilitation

3×/week 90 min
PT for trunk and
lower extremity

Physical well-being Cheville et al.,
2010 [182]

Stages III and IV lung
cancer (n = 46)

Duration of
3 chemotherapy

cycles
Rehabilitation

3–4×/week REX:
50% capacity 10 reps,

3 sets with
resistance bands

5×/week AEX: 6 min
walk moderate

intensity
2 min

staircase walking

Cognitive function,
physical function,
staircase walking,

and 6MWT

Henke et al.,
2014 [183]

Inpatient advanced
cancer patients

(n = 250)

Length of
hospital stay Rehabilitation

Minimum of 900 min
of therapy/week,
including PT, OT,

and SLT

Motor and cognitive
FIM scores Roy et al., 2023 [29]

Individual studies are classified by cancer type and stage (when available), duration, intervention type, routine,
and improved outcomes after intervention. REX: resistance exercise; AEX: aerobic exercise; 1 RM: one repetition
maximum; PT: physical therapy; OT: occupational therapy; SLT: speech and language therapy; FIM: functional
independence measure.

The goal of rehabilitation interventions is patient- and task-specific (such as ADLs,
mobility, or higher-level activities/sports), while exercise is focused on general increases in
either strength (resistance) or endurance (aerobic) [35] and is therefore tailored to specific
physiological goals rather than functional independence goals. Many studies have been
carried out with each of these approaches in cancer patients, and common outcomes among
them are increased QoL and a decrease in fatigue symptoms [40–42,160,173,178–180,184,185].
Physical function improvements are less common and more dependent on details of the re-
habilitation or exercise intervention, as well as its level of implementation and appropriately
matched measured outcome. Most rehabilitation-based programs will administer tests that
focus on functional independence to assess improvement, whereas exercise interventions
will focus on symptom or performance/activity metrics [35].
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There are two main exercise modalities. Aerobic exercise is focused on cardiorespira-
tory fitness, and the intensity level can be determined by the total percentage of maximal
HR or maximal oxygen consumption (VO2max) maintained or met during the time of
exercise [186]. Activities involve repetitive movement of large muscle groups, such as those
used in swimming, running, and biking. In contrast, resistance training consists of exercises
focused on one muscle or muscle group at a time. Intensity is determined by the weight
used during exercise as a percentage of the maximum weight that can be lifted during one
repetition (1 RM). The main goal of resistance exercise is to induce muscle hypertrophy
and increase overall muscle strength and endurance [187]. As seen in Table 1, clinically
relevant improvements in cancer patients can be obtained with regimens for either aerobic
or resistance exercise or in a mixed regimen including both exercise types.

The best evidence for physical activity-related interventions in advanced cancer in-
cludes a combination of resistance training specific to individuals and muscle groups. A
large study of both aerobic and resistance training found an increase in physical perfor-
mance defined by an increase in the shuttle walk test (SWT) and HGS [174]. Another
study of inoperable lung cancer patients with 90 min of resistance exercise twice a week
and 30 min of increasing walking intensity 3 times a week found an increase in 6MWT,
Vo(2peak), muscle strength, and emotional QoL [178]. When compared against each other,
not surprisingly, resistance training and not aerobic training uniformly improved mus-
cular strength and/or endurance as defined by 6MWT, staircase walking, sit-to-stand,
and TUG [160,176,177,180,181,183,188], while targeted muscle group exercises have also
shown positive results for improved mobility and ADL measured via PROMs [42,173].
Studies examining the benefits of higher-intensity rehabilitation interventions for advanced
cancer or cachexia are limited, although one recent study showed that patients with
greater cachexia severity can still improve their functional independence in the inpatient
rehabilitation setting [29].

The underlying cause for improved fatigue and QoL with exercise, in both individuals
with and without illness, has perplexed researchers for decades. There is a large interest
in the anti-inflammatory effects of exercise, but a clear mechanism is not yet understood.
Interestingly, although IL-6 and NFκB are elevated in cancer cachexia [104,189–191], rodent
models and human studies have shown improved cancer cachexia and survival with
exercise, but with unexpected key mechanistic results, such as increased IL-6 and NFκB
signaling [19,192–194]. However, investigation of cytokine cascades in both sepsis and
acute exercise (not specified as resistance or aerobic) revealed a key difference in that
pro-inflammatory cytokines TNF-α and IL-1β are present first in sepsis before the release
of anti-inflammatory cytokines IL-6, TNF-R, IL-10, and IL-1ra [194]. In contrast, no TNF-α
or IL-1β are released before the presence of anti-inflammatory cytokines in exercise [194].
Considering elevated levels of TNF-α and IL-1β are found in advanced cancer and cachexia
patients, these results suggest that these cytokines may be more interesting therapeutic
targets [195,196]. Furthermore, this inflammatory insight underscores the potential for
more investigation into the variability of cytokine expression in cancer patients in the
context of physical activity, exercise, or rehabilitation.

Overall, the current use of rehabilitation and exercise for advanced cancer and cachexia
is limited due to outcome variabilities and discordant implementations between study
groups; however, reasonable inferences can be made toward a potentially effective clinical
training regimen. As the functional capacity of cancer patients varies widely between
individuals, the first step is to implement exercises that are specific to individual functional
levels. Patients with a disability should receive rehabilitation regimens aimed at increasing
functional independence rather than focusing on physiologic goals. Meanwhile, for those
without substantial physical impairments or disabilities, exercise should be geared toward
specific physiologic goals, such as improving objective muscle strength and coordination
or cardiopulmonary fitness (e.g., VO2max). A mixed approach would likely be ideal given
the distinct health benefits of both aerobic and resistance modalities, but it has not been
specifically studied with esither cancer or cachexia-specific outcomes, unlike sarcopenia,
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where exercise recommendations have been more firmly established [197]. Further studies
are needed to test this tiered, tailored approach in specific cancer populations and to
understand the details of the rehabilitation and exercise prescriptions that will be needed
for both effective improvement in functional outcomes but also easy implementation.

Finally, the overlap in cytokines released from exercise and overexpressed in cancer
and cachexia muddles the deterministic properties of these markers for successful exercise
intervention. A clear biological marker for the success of rehabilitation and exercise
intervention is greatly needed to help identify the most effective treatments and establish a
consensus with which a specific prescription can be given. Studies should also carefully
match outcomes to the specific type of physical intervention being offered for patients,
as these decisions likely have an understated role in the likelihood of ultimate success in
future clinical trials.

7. Conclusions and Future Directions

There is currently a lack of FDA-approved pharmacological agents and therapies
for advanced cancer patients, and morbidity and mortality rates remain high. While
many tumor biology-centered approaches have been tried and failed, some mechanisms
for treating within the realm of advanced cancer downstream systemic biology have
proven successful in reducing the morbidity burden, and new trials are revealing potential
pharmacological agents that may increase survival, such as those targeting the cytokine
GDF-15. In the meantime, resistance exercise may be a promising treatment to increase
function and QoL in advanced cancer individuals. Current research suggests more work
needs to be carried out to determine the most effective treatment for this disease, including
dosage and intensity. It is evident more collaboration is needed to ensure enough large
trials are conducted to reasonably infer the success of treatment intervention.

Future studies should focus on determining the most effective doses and intensities
of rehabilitation and exercise interventions and, importantly, define the most important
outcomes which determine intervention success. More work needs to be carried out on the
interplay between cytokines and inflammatory agents in advanced cancer to determine
how pharmaceutical interventions may impact treated individuals. Furthermore, once
a better platform for these markers is established, measurable changes in these markers
over the treatment timeline should be adopted as an indication of treatment response and
overall success. Lastly, mechanisms for integrating precision-based treatment of cachexia
or advanced cancer, which may also include multi-modal approaches, should be tested at
the pre-clinical and early-phase clinical levels.
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