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Simple Summary: Thyroid nodules are commonly detected in daily clinical practice, and their
diagnosis and therapy usually involve different specialists and various diagnostic and therapeutic
methods. Thyroid nodule management requires the integration of laboratory, imaging, and pathology
examinations to achieve a proper diagnosis. It enables the elimination of unnecessary therapeutic
procedures in many individuals and the timely identification of patients who require specific therapies.
Furthermore, bioinformatics may change the current management of clinical data, enabling more
personalized diagnostic approaches for patients with thyroid nodules. The clinical impact of artificial
intelligence needs to be determined in further large-sample studies, especially in indeterminate
cytology findings, that require “diagnostic surgery” to provide a definitive diagnosis.

Abstract: Thyroid nodules are common findings, particularly in iodine-deficient regions. Our paper
aims to revise different diagnostic tools available in clinical thyroidology and propose their rational
integration. We will elaborate on the pros and cons of thyroid ultrasound (US) and its scoring
systems, thyroid scintigraphy, fine-needle aspiration cytology (FNAC), molecular imaging, and
artificial intelligence (AI). Ultrasonographic scoring systems can help differentiate between benign
and malignant nodules. Depending on the constellation or number of suspicious ultrasound features,
a FNAC is recommended. However, hyperfunctioning thyroid nodules are presumed to exclude
malignancy with a very high negative predictive value (NPV). Particularly in regions where iodine
supply is low, most hyperfunctioning thyroid nodules are seen in patients with normal thyroid-
stimulating hormone (TSH) levels. Thyroid scintigraphy is essential for the detection of these nodules.
Among non-toxic thyroid nodules, a careful application of US risk stratification systems is pivotal
to exclude inappropriate FNAC and guide the procedure on suspicious ones. However, almost
one-third of cytology examinations are rendered as indeterminate, requiring “diagnostic surgery” to
provide a definitive diagnosis. 99mTc-methoxy-isobutyl-isonitrile ([99mTc]Tc-MIBI) and [18F]fluoro-
deoxy-glucose ([18F]FDG) molecular imaging can spare those patients from unnecessary surgeries.
The clinical value of AI in the evaluation of thyroid nodules needs to be determined.

Keywords: thyroid; ultrasonography; thyroid stimulating hormone; nuclear medicine; cytopathology

1. Introduction

Thyroid nodules are more common in countries with iodine-deficient populations,
and in women compared to men (ratio 4:1), and their prevalence increases with age and
body mass index [1–5].

Luckily, most thyroid nodules (90% to 95%) are benign [6]. Risk factors for thyroid
cancer include ionizing radiation (e.g., from cancer treatments, occupational exposure, or
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nuclear fallout, especially when the exposure occurs at a young age), rapid growth, hoarse-
ness, and a family history of thyroid cancer or cancer syndromes (e.g., multiple endocrine
neoplasia type 2, familial adenomatous polyposis) [7]. Notably, while thyroid nodules
can be detected in up to 10% of healthy subjects by palpation, neck ultrasonography (US)
may detect nodules in up to 68% of them, respectively [8–10]. Additionally, most thyroid
nodules are currently detected incidentally (i.e., thyroid incidentalomas) when imaging pro-
cedures (i.e., computed tomography (CT), magnetic resonance imaging (MRI), and vascular
Doppler) are performed for different indications [11]. Considering the high prevalence of
thyroid nodules compared to the very low prevalence of thyroid malignancies, screening of
thyroid cancer with neck US is discouraged as it results in overdiagnosis and overtreatment
without improving patient outcomes [12]. Consequently, attending physicians are required
to decide which nodules carry a significant risk of malignancy and require further diagnos-
tic workup. Thyroid US scoring systems need to be integrated into daily clinical practice,
complemented with the use of thyroid scintigraphy when indicated to avoid FNAC of
low-risk and autonomously functioning nodules [13]. Furthermore, molecular imaging
with [99mTc]Tc-MIBI and [18F]FDG is not widely used nowadays, although its usefulness is
clearly demonstrated in many studies [14–17]. It is highly recommended in indeterminate
cytology findings to spare patients from “diagnostic” surgeries, improve their quality of
life, and reduce total hospital costs caused by unnecessary procedures and their potential
complications [14–16].

Our present narrative review aims to analyze the available literature concerning the
diagnostic approach to thyroid nodules and provide an updated synopsis on the role
of different procedures, including advanced molecular imaging. For this document, the
authors volunteered to prepare the text for each section. A review of the literature was
performed in PubMed, Web of Science, and Scopus without time or language restrictions
through the use of one or more fitting search criteria and terms as well as through screening
of references in relevant selected papers. The body of literature up to and including
November 2023 was considered. Screening of titles/abstracts and removal of duplicates
were performed and the full texts of the remaining potentially relevant articles that met
the inclusion and exclusion criteria were retrieved and reviewed. Any disagreement was
discussed until a consensus decision was reached.

Key learning points:

• Initial assessment of patients with thyroid nodules should be based on clinical history,
clinical examination, and measurement of TSH level.

• Thyroid US and its scoring systems are important for the risk stratification of thyroid
nodules.

• Thyroid scintigraphy is generally performed in patients with low to low-normal TSH
value and nodules >1 cm in size.

• FNAC is performed for non-autonomous thyroid nodules, according to US scoring
systems.

• [99mTc]Tc-MIBI and [18F]FDG PET/CT are recommended in cytologically indetermi-
nate thyroid nodules to reduce “diagnostic” surgeries.

• The clinical value of AI in the evaluation of thyroid nodules needs to be determined.

2. Clinical History and Clinical Examination

The initial assessment of individuals with thyroid nodules detected by palpation or
during radiologic procedures includes clinical history and examination, measurement
of serum TSH level, US of thyroid nodules and neck lymph nodes, thyroid scintigraphy
(Na[99mTc]TcO4 or Na[123I]I) in cases of suppressed or low-normal TSH values, and FNAC
if indicated according to US findings and thyroid scintigraphy.

2.1. Clinical History

Clinical history suggestive of increased risk of malignancy includes rapid nodule en-
largement, head and neck external beam radiation therapy (particularly during childhood),
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whole-body irradiation (e.g., before bone marrow transplantation), and family history of
thyroid cancer or thyroid cancer syndromes [18]. Familial occurrence of DTC is demon-
strated in 5–10% of cases [19–21]. Some studies revealed that DTC occurs earlier [19,22],
in a more advanced stage and more aggressive [23] with a worse outcome in the next
generation [19]. Park et al. demonstrated a higher DTC recurrence rate in familial cases
compared with sporadic ones and the second generation had more aggressive clinical
features compared with the first one [24]. Therefore, patients with familial DTC need a
careful clinical history evaluation. Thyroid cancer syndromes should be considered as
they demand screening of different components of the syndrome in first-degree relatives.
They include multiple endocrine neoplasia type 2 (MEN 2), Cowden syndrome, familial
adenomatous polyposis, Werner syndrome, and Carney complex. Approximately 0.1% of
all DTC cases are associated with these syndromes, except MEN2A and MEN2B, where the
rates are 0.3% and 0.2%, respectively [25].

2.2. Clinical Examination

Thyroid gland palpation is usually the first clinical examination; however, it has
low sensitivity (2–6%) for detecting thyroid nodules [26] and, in some cases, the physical
examination may be limited by body habitus [27]. Most malignant thyroid nodules are
asymptomatic, and a great majority of patients are euthyroid. However, there are several
clinical examination findings harboring a higher risk of cancer, i.e., fixed and firm nodules,
nodules larger than 4 cm in size (19% incidence of malignancy) [28], cervical lymphadenopa-
thy, symptoms of obstruction, dysphonia, and vocal cord paralysis [6,27]. Furthermore,
a combination of a solitary nodule, cervical lymphadenopathy (>1 cm), and vocal cord
paralysis has a positive predictive value (PPV) of almost 100% for malignancy [29].

3. Thyroid Laboratory, Imaging, and Cytopathology
3.1. Laboratory Medicine

Thyroid function can be accurately assessed by measuring TSH and free thyroid hor-
mones (i.e., free thyroxine, FT4; free tri-iodo-thyronine, fT3). TSH and FT4 have a complex,
non-linear, inverse relationship resulting in relatively large changes in TSH compared to
small changes in FT4 concentrations, respectively [30–32]. Accordingly, except in some rare
conditions (i.e., central hypothyroidism, resistance to thyroid hormones, TSH-secreting
pituitary adenoma, hyperthyroidism under treatment, and euthyroid sick syndrome), TSH
measurement is a sensitive and the most accurate test for thyroid dysfunction [33,34]. As a
consequence, different guidelines endorse the measurement of TSH alone at the front line
while restricting FT4 (and rarely FT3) measurement in cases with abnormal TSH results (i.e.,
TSH reflex strategy) [35–38]. The same strategy is recommended in patients with thyroid
nodules where TSH measurement is unanimously recommended as the first-line functional
test by available clinical guidelines.

In patients with thyroid nodules, low TSH levels may be related to autonomously func-
tioning thyroid nodule(s) and thyroid scintigraphy is indicated. A normal TSH excludes a
clinically significant autonomy but, especially in countries with low iodine intake, cannot
exclude compensated autonomy: in those regions, thyroid scintigraphy may properly
exclude such nodules (frequently suspicious at neck US) from inappropriate FNAC [13,39].
Routine measurement of serum anti-thyroid peroxidase (TPO) antibodies is not necessary
for thyroid nodule evaluation [10,40] and routine measurement of serum thyroglobulin
(Tg) is strongly discouraged as it may be elevated in different thyroid diseases, including
benign ones, and is aspecific and relatively insensitive for thyroid cancer [41]. Calcitonin
is the standard biochemical tumor marker for medullary thyroid carcinoma (MTC) diag-
nosis and follow-up [42]. However, the value of routine testing in patients with thyroid
nodules remains questionable due to the low prevalence, which results in a low PPV of
basal calcitonin testing. Indeed, whether routine calcitonin testing improves prognosis in
MTC patients remains unclear [43].
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3.2. Thyroid Ultrasound

Since the 1970s, thyroid US has progressively gained a central role in assessing thyroid
diseases. High-resolution US examinations are widely used worldwide, being radiation-
free, relatively cheap, easy to learn, and versatile compared to other imaging modalities.
Ultrasound devices are equipped with transducer probes with variable frequency (i.e.,
2–20 Mega Hertz (MHz)). High-resolution linear transducers with a 7–15 MHz frequency
are currently employed for thyroid examination. Since the thyroid gland is superficially
located with its posterior border generally situated less than 4 cm from the skin, high-
resolution (≥12 MHz) probes provide excellent image quality. High-resolution conven-
tional B-mode (i.e., gray-scale ultrasound) evaluation is now integrated with multipara-
metric ultrasound (MPUS), including vascularization assessment (spectral Doppler, SD;
color Doppler, CD; power Doppler ultrasound, PD; superb microvascular imaging, SMI;
contrast-enhanced ultrasound, CEUS) and tissue stiffness assessment (sonoelastography),
respectively [13].

In clinical practice, US is the first-line imaging method for the examination of thyroid
morphology and structure. The main indications of thyroid US are summarized in Table 1.

Table 1. Thyroid ultrasound: clinical indications.

Indications

■ To evaluate thyroid nodules and differentiate between benign and malignant ones

■ To evaluate diffuse changes in the thyroid

■ To differentiate thyroid nodules from cervical cysts, thyroglossal duct, and cervical masses

■ To monitor patients with thyroid malignancies and detect recurrent/metastatic disease

■ To guide interventional procedures (FNAC, PEI, TA)

Legend: FNAC, fine-needle aspiration cytology; PEI, percutaneous ethanol injection; TA, thermal ablation.

Although US is critical for the evaluation of diffuse thyroid disease, differentiating
between benign and malignant nodules is the main application area. Despite several
ancillary techniques like elastography and Doppler that were proposed to differentiate
malignant nodules from benign ones, the most commonly used parameters are the high-
resolution B-mode ultrasound characteristics of thyroid nodules. Sonographic findings,
including assessment of the nodule echogenicity, internal composition, calcification, and
border regularity, are commonly used for differential diagnosis. Briefly, solid, hypoechoic
nodules, taller-than-wide shape, and irregular borders with microcalcifications have the
highest chance of being malignant [44].

Today, thyroid US allows an accurate evaluation of morphologic features, which have
been used to propose a standardized risk stratification for thyroid nodules (i.e., Thyroid
Imaging And Data Reporting Systems (TI-RADS)) attempting to reduce the admittedly high
inter-operator variability [13]. Among these, the American College of Radiology (ACR)-TI-
RADS, European (EU)-TI-RADS, Korean (K)-TI-RADS, British Thyroid Association (BTA),
American Thyroid Association (ATA) classification and American Association of Clinical
Endocrinologists (AACE), American College of Endocrinology (ACE), and Associazione
Medici Endocrinologi (AME) classification systems are commonly used [18,45–49]. The
rationale of these classification systems is that the risk of malignancy rises in parallel with
the increase in the number of suspicious US features and the lack of benign findings. Risk
classification aims to identify the most clinically significant malignancies and decrease
the number of unnecessary FNACs on benign nodules. Reviewing all the classification
systems is beyond the article’s scope, but we will briefly mention the most commonly used
ACR-TIRADS, EU-TIRADS, and ATA thyroid ultrasound risk stratification systems (RSS).

American College of Radiology (ACR)-TI-RADS [45] is based on the assessment of
different US features of thyroid nodules: composition (spongiform, mixed cystic, and solid),
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echogenicity (anechoic, hyperechoic/isoechoic hypoechoic and very hypoechoic), shape
(wider than tall or taller than wide), margin (smooth, ill-defined, lobulated or irregular,
extra-thyroidal), and echogenic foci (none or large comet-tail artifacts, macrocalcifications,
peripheral (rim) calcification, and punctate echogenic foci). It associates each of these
features with a score ranging from 0 to 3 points. The sum of the assigned points defines
the risk of malignancies according to five grades, with each grade corresponding to benign
(TR1: 0 points), not suspicious (TR2: 2 points), mildly suspicious (TR3: 3 points), moderately
suspicious (TR4: 4–6 points), or highly suspicious for malignancy (TR5: ≥7 points). This
system does not include subcategories or a TR0 group to indicate a normal thyroid. EU-
TIRADS is one of the most commonly used TI-RADS systems across Europe. EU-TIRADS
1 defines a normal thyroid gland without nodules. EU-TIRADS 2 is defined as a benign
category, whereas EU-TIRADS 3 defines a nodule with a low risk of malignancy. Nodules
with EU-TIRADS 4 have an intermediate risk, and with EU-TIRADS 5 have a high risk of
malignancy. Detailed EU-TIRADS categories, risks of malignancy, and recommendations
are explained in Table 2.

Table 2. EU-TIRADS categories, risks of malignancy, and recommendations [46].

Category US Features Malignancy Risk, % Recommendations

EU-TIRADS 1: Normal No nodules None None

EU-TIRADS 2: benign Pure cyst,
Entirely spongiform 0

No FNA required (unless for
therapeutic purposes/to relieve
compression)

EU-TIRADS 3: low risk
Ovoid, smooth
isoechoic/hyperechoic
No features of high suspicion

2–4 >20 mm FNA

EU-TIRADS 4:
intermediate risk

Ovoid, smooth, mildly
hypoechoic
No features of high suspicion

6–17 >15 mm FNA

EU-TIRADS 5: high risk

At least 1 of the following features
of high suspicion:

– Irregular shape
– Irregular margins
– Microcalcifications
– Marked hypoechogenicity

(and solid)

26–87 >10 mm FNA, <10 mm: consider
FNA or active surveillance

Legend: EU-TIRADS, European Thyroid Imaging Reporting and Data System; US, ultrasound.

The American Thyroid Association (ATA) guidelines for assessing thyroid nodules
are meant to improve inter- and intra-reader consistency when reporting thyroid nodules
on ultrasound and facilitate communication with referring physicians. The 2015 guideline
emphasizes the importance of the sonographic pattern of the nodule for risk stratification.
This system does not include scoring but categorizes the risk of malignancy from very low
risk to high. The malignancy risk as well as the size of the nodule are the two main criteria
for FNA (Table 3).

Comparison of thyroid ultrasound RSS is an ongoing debate in the literature. This is
understandable; each society deems its RSS to be the preferred system. Endocrinologists
from Europe prefer EU-RADS, endocrinologists from the USA uses ATA guidelines, and
radiologists and nuclear medicine physicians prefer the ACR-TIRADS system [50,51]
(Figure 1).
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Table 3. ATA sonographic patterns, estimated risk of malignancy, and fine-needle aspiration guidance
for thyroid nodules [18].

Sonographic Pattern US Features Estimated Risk of
Malignancy, %

FNA Size Cutoff (Largest
Dimension)

High suspicion

Solid hypoechoic nodule or solid
hypoechoic component of a partially cystic
nodule with one or more of the following
features: irregular margins (infiltrative,
micro-lobulated), microcalcifications,
taller-than-wide shape, rim calcifications
with small extrusive soft tissue component,
evidence of extrathyroidal extension

>70–90 Recommend FNA at ≥1 cm

Intermediate suspicion
Hypoechoic solid nodule with smooth
margins without microcalcifications, ETE, or
taller-than-wide shape

10–20 Recommend FNA at ≥1 cm

Low suspicion

Isoechoic or hyperechoic solid nodule, or
partially cystic nodule with eccentric solid
areas, without microcalcification, irregular
margin or ETE, or taller-than-wide shape

5–10 Recommend FNA at ≥1.5 cm

Very low suspicion

Spongiform or partially cystic nodules
without any of the sonographic features
described in low-, intermediate-, or
high-suspicion patterns

<3
Consider FNA at ≥2 cm
Observation without FNA is
also a reasonable option

Benign Purely cystic nodules (no solid component) <1 No biopsy

Legend: US, ultrasound; FNA, fine-needle aspiration; ETE, extrathyroidal extension.
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Figure 1. A 56-year-old woman with small hyperechoic and isoechoic nodules with regular borders
((A) longitudinal-plane US image) and size equal to and less than 1 cm ((B) labeled longitudinal-plane
image). Thyroid US risk evaluations were reported using ACR TIRADS 3, EU-TIRADS 3, ATA classi-
fications: low suspicion. Considering the size and risk of the nodules, no biopsy was recommended.

In a multicentric German trail, EU-TIRADS was proved to be inferior when com-
pared to other RSSs with diagnostic accuracies of 0.70 vs. 0.79, 0.78, 0.82, and 0.79 for
Kwak-TIRADS, ACR-TI-RADS, Korean-TIRADS, and American Thyroid Association (ATA)
Guidelines, respectively [52]. In another study, authors found that ACR TI-RADS, American
Association of Clinical Endocrinologists/American College of Endocrinology/Associazione
Medici Endocrinologi guidelines, European TI-RADS, ATA guidelines, and Korean TI-
RADS would have avoided FNA for 34.7%, 31%, 25.7%, 20%, and 6% of nodules with
false-negative rates (FNRs) of 24%, 28.5%, 22%, 7.2%, and 1.9%, respectively. In this study,
ATA guidelines had the highest area under the curve and a low FNR, whereas ACR TI-
RADS would have spared more patients from FNA with a high FNR [53]. So far, no
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uniform, worldwide accepted RSS has been established because of the controversy in the lit-
erature, and the differences in the expertise and preferences of ultrasonographers (Figure 2).
Also, there are limitations of RSS like insufficient sensitivity for the diagnosis of follicular
thyroid carcinoma and follicular subtypes of PTC and insufficient specificity to rule out
autonomously functioning thyroid nodules from FNAC. However, work has recently begun
on a new international US-based RSS for thyroid nodules. With the participation of several
scientific societies, an International TIRADS (I-TIRADS) will be proposed and established
internationally as a uniform evidence-based system. Currently, several working groups are
investigating ultrasound criteria. In addition, promising data already exist regarding the
use of AI to identify US patterns. This technique could significantly reduce interobserver
variability and may be associated with improvements in specificity and accuracy, without
significantly sacrificing sensitivity for malignancy detection [54].
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Figure 2. A 45-year-old woman with a family history of thyroid cancer. US showed ((A) transverse-
plane image, (B) longitudinal-plane image, (C) labeled longitudinal-plane image) hypoechoic nodule
with microcalcifications, taller-than-wide shape, irregular borders, and size > 1 cm. Thyroid US
risk evaluations were reported using ACR TIRADS 5, EU-TIRADS 5, and ATA classifications: high
suspicion. Considering the size and risk of the nodules, FNAC was performed; they were reported to
be malignant, and total thyroidectomy revealed papillary thyroid carcinoma.

3.3. Nuclear Medicine

Thyroid scintigraphy performed with functional tracers is used to map the global and
regional activity of sodium iodide transporter (NIS) within the thyroid gland. Nowadays,
it is commonly performed by using Na[99mTc]TcO4, preferred over iodine tracers (Na[131I]I
or Na[123I]I) due to its shorter physical half-life (6 h), pure gamma emission (140 keV), low
radiation burden, wide availability, and significantly lower costs [55]. Na[99mTc]TcO4 is
caught within thyrocytes through NIS located on the basolateral membrane, like radioiodine
tracers. On the contrary, as the main difference, it is not organified and leaves thyrocytes
with an effective half-life (6 h) shorter than that of Na[123I]I (about 13 h) and Na[131I]I
(about 8 days). However, Na[99mTc]TcO4 uptake is representative of thyroid hormone
biosynthesis and provides relevant clinical information on the global and regional function
of thyroid cells (Figure 3).
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Figure 3. A 65-year-old man affected by overt hyperthyroidism (TSH 0.00 µIU/mL (0.35–4.94), FT3
9.61 pg/mL (1.58–3.91), FT4 2.25 ng/dL (0.70–1.48)) associated with tachycardia, insomnia, and irri-
tability. Thyroid ultrasonography showed a large-sized nodule (38 × 34 × 20 mm) in the right thyroid
lobe, isoechoic with a hypoechoic ring. Moderately increased intra-nodular blood flow was also
noted. Thyroid scintigraphy was performed 20 min after Na[99mTc]TcO4 administration (111 MBq).
Image (anterior view; magnification: 1.4; matrix: 256 × 256; time frame: 100 Kcs) demonstrated
a well-defined hyperfunctioning area located in the middle–lower part of the right thyroid lobe.
In this latter, tracer uptake/distribution was quite intense and homogeneous, respectively. On the
contrary, mild tracer uptake was noted in the remaining right lobe (upper part), isthmus, and left lobe.
Thus, a toxic nodular goiter with severe functional inhibition of the remaining thyroid parenchyma
was diagnosed.

In physiological conditions, NIS activity is positively regulated by TSH and, as a
consequence, Na[99mTc]TcO4 uptake in the gland can be properly interpreted in light of
TSH values (ideally performed before thyroid scintigraphy). The activity of NIS is inversely
regulated by the intrathyroidal iodine pool that reflects the iodine intake.

Although almost all thyroid cancers are non-functioning, most of these nodules are
benign (i.e., 90–95%), which greatly reduces the specificity of a thyroid scan. Accordingly,
a thyroid scan is generally performed when nodules occur in people with low or low-to-
normal TSH levels. The relationship between thyroid autonomy and TSH levels, however,
is affected by the degree of iodine sufficiency and varies widely regionally [31,32,34]. There-
fore, although autonomous nodules are almost invariably accompanied by decreased TSH
levels (i.e., <0.1–0.4 mUI/L) when the iodine supply is adequate, the bulk of autonomous
tissue may be insufficient to suppress the TSH level in iodine-depleted thyroids, especially
in the early phases of autonomy. As a consequence, different indications are given in
current clinical guidelines with a thyroid scan recommended when the TSH level is low
or low to normal in the USA (iodine-repleted country), whereas a Na[99mTc]TcO4 scan is
recommended in all people with a nodule greater than 10 mm, independently of the TSH
level in Germany (iodine-deficient country) [5,39,55,56]

Consequently, high iodine concentrations (e.g., regular use of products rich in io-
dine) may reduce the quality of a functional image. For this reason, any “excess” iodine
intake should be avoided before scintigraphy or it should be postponed for several (i.e.,
1–3) to many (i.e., 6 or more) months in patients with severe iodine contamination due
to radiological contrast media administration or amiodarone therapy, respectively [55].
[99mTc]Tc-MIBI is a lipophilic cation able to cross the cell membrane, reversibly penetrating
the cytoplasm and then irreversibly moving through the membrane of the mitochondria
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using a different electrical gradient caused by a high negative electric potential of the inner
membrane. It is regularly used as a marker for myocardial perfusion and hyperfunctioning
parathyroid tissue. All in all, studies reported its abnormal uptake in different tumors
such as in the lungs, brain, breast, bone, and thyroid [57–60]. The role of [99mTc]Tc-MIBI
thyroid scintigraphy (i.e., molecular imaging) to better assess the risk of malignancy in
hypofunctioning and cytologically indeterminate thyroid nodules has been investigated
for more than three decades [56]. In 2004, Hurtado-Lopez first compared intranodular
[99mTc]Tc-MIBI and Na[99mTc]TcO4 uptake and found a quite absolute NPV for nodules
with a matching hypoactive pattern with both tracers [61]. More recently, the [99mTc]Tc-
MIBI uptake in the thyroid nodule has been qualitatively (i.e., visual analysis) compared to
the uptake in the extranodular (i.e., normal) thyroid parenchyma and classified as hyper-,
iso-, and hypointense, with the latter ruling out malignancy with up to 99% NPV [62,63].
Vice versa, an increased [99mTc]Tc-MIBI uptake with respect to surrounding parenchyma or
compared to a Na[99mTc]TcO4 image conferred a higher risk of cancer [61,62,64–66]. How-
ever, a positive pattern (i.e., abnormal [99mTc]Tc-MIBI uptake in the nodule) was found in a
significant proportion of histologically benign nodules (especially follicular and oxyphilic
adenomas), and an unsatisfactory PPV (i.e., 27%) was reported [67]. To improve the di-
agnostic performance of molecular imaging in such patients, Saggiorato and colleagues
proposed a semiquantitative approach using the so-called Retention Index (RI) method [68].
They concluded that [99mTc]Tc-MIBI-positive nodules with an RI value ≥ −11.94 were sus-
picious for malignancy, thus suggesting more aggressive clinical management. In addition,
they proved a reduced accuracy of [99mTc]Tc-MIBI scintigraphy in oxyphilic nodules and
discouraged its use in such a setting. More recently, a new semiquantitative method (i.e.,
wash-out index—WOind) was proposed, taking into account the [99mTc]Tc-MIBI kinetics
within the nodules, and was found able to improve the diagnostic accuracy compared to
qualitative evaluation [63,64,66] (Figures 4 and 5).

Finally, Schenke and colleagues, in a recent European multicenter study, confirmed
that the semiquantitative approach using the WOind method could significantly improve
the overall diagnostic performance of [99mTc]Tc-MIBI imaging [65]. In clinical routine,
thyroid [99mTc]Tc-MIBI imaging can also be used to differentiate between amiodarone-
induced hyperthyroidism (AIT) type 1 (i.e., normal or high uptake) and type 2 (low uptake),
respectively [69,70].

Currently, single-photon emission computed tomography (SPECT) associated with
computed tomography (SPECT/CT, hybrid imaging) is able to provide a co-registration of
anatomic and functional/molecular data results for a better localization and characteriza-
tion of tracer uptake [65]. [18F]FDG positron emission tomography/computed tomography
(PET/CT) is widely used for initial staging, restaging, recurrence detection, and assessment
of treatment outcomes in a variety of malignant diseases [71]. [18F]FDG uptake is related
to an overexpression of the transmembrane glucose transporter proteins (GLUTs), which
move the tracer into the cell, and to the overactivation of hexokinases that phosphorylate
[18F]FDG to [18F]FDG-6-phosphate and trap the tracer in the cell [72]. Interestingly, a
visually [18F]FDG-negative thyroid nodule with indeterminate cytology carries a negligible
risk of malignancy, making [18F]FDG an accurate ruling-out biomarker. Notably, a recent
blinded, randomized, controlled multicenter trial in the Netherlands consistently proved
that a [18F]FDG PET/CT-driven workup of cytologically indeterminate thyroid nodules
may change the clinical management and safely reduce inappropriate surgical interventions
by 40%. Notably, the authors warned against the use of [18F]FDG PET/CT in patients with
Hurthle cell nodules where a high [18F]FDG is expected, even in benign ones [73].

Conversely, a positive [18F]FDG PET/CT is not reliable as a rule-in test since approxi-
mately 50% of patients with positive nodules have a benign disease in the final histological
report [74–76] (Figure 6).
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(A) Thyroid scintigraphy, performed 20 min after Na[99mTc]TcO4 administration (111 MBq; anterior 
view; magnification: 1.4; matrix: 256 × 256; time frame: 100 Kcs), showed a well-defined hypofunc-
tioning area located in the middle–lower part of the right thyroid lobe. Thus, a nodular goiter was 
diagnosed while FNAC was conclusive for a benign lesion (Tir2) according to the Italian scoring 
system. [99mTc]Tc-MIBI scintigraphy was obtained 10 and 120 min (B,C, respectively) after tracer 

Figure 4. A 52-year-old woman affected by nodular goiter in euthyroid status (TSH 0.60 µIU/mL
(0.35–5.50), FT3 3.18 pg/mL (2.30–4.20), FT4 1.17 ng/dL (0.89–1.76)). Thyroid ultrasonography
showed a large-sized nodule (39 × 36 × 33 mm) in the right thyroid lobe, irregularly hypoechoic
with the presence of isoechoic areas. A moderately increased intra-nodular blood flow was also
noted. (A) Thyroid scintigraphy, performed 20 min after Na[99mTc]TcO4 administration (111 MBq;
anterior view; magnification: 1.4; matrix: 256 × 256; time frame: 100 Kcs), showed a well-defined
hypofunctioning area located in the middle–lower part of the right thyroid lobe. Thus, a nodular goiter
was diagnosed while FNAC was conclusive for a benign lesion (Tir2) according to the Italian scoring
system. [99mTc]Tc-MIBI scintigraphy was obtained 10 and 120 min (B,C, respectively) after tracer
administration (370 MBq). Images were acquired in anterior view, magnification 256 × 256, matrix
1.4, time frame 10 min. Increased [99mTc]Tc-MIBI uptake was noted in the hypofunctioning nodule.
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Figure 5. A 52-year-old woman affected by nodular goiter, cytologically benign (TIR2 according to
the Italian scoring system). [99mTc]Tc-MIBI scintigraphy was obtained 10 and 120 min after tracer
administration (A,B, respectively) using a semiquantitative approach by calculating the wash-out
index (WOind). WOind value was <−19% (exactly −37%), thus consistent with a no-malignant
lesion. Final histology diagnosis: follicular adenoma.



Cancers 2024, 16, 311 11 of 26Cancers 2024, 16, x FOR PEER REVIEW 11 of 26 
 

 

 

Figure 6. A 62-year-old man with a hypermetabolic thyroid nodule (SUV max = 18.3) unexpectedly 
discovered in the right lobe during a [18F]FDG PET/CT study performed for staging in suspected 
paraneoplastic syndrome. (A) CT – axial view, (B) a [18F]FDG PET/CT axial view, (C) [18F]FDG PET 
axial view, (D) whole-body [18F]FDG PET. A laboratory test was consistent with euthyroid status 
(i.e., TSH 2.1 µIU/mL (0.27–4.2), FT3 3.30 pg/mL (2.0–4.4), FT4 18.2 pmol/L (12–22)) with negative 
anti-thyroid antibodies (i.e., TPOAb, TgAb). Thyroid ultrasound demonstrated a multinodular goi-
ter with a dominant hypoechoic nodule in the right lobe (maximum size: 22 mm), which was then 
classified as hypofunctioning at thyroid scintigraphy. Accordingly, FNAC was performed: an inde-
terminate lesion with a high risk of being malignant (i.e., TIR3B according to the Italian scoring 
system) was diagnosed. The patient underwent total thyroidectomy, and the final histological diag-
nosis was consistent with Hurtle cell follicular adenoma. 

In summary, either [99mTc]Tc-MIBI or [18F]FDG PET/CT may safely rule out inappro-
priate diagnostic surgeries in about half of patients with cytologically indeterminate nod-
ules (non-Hurthle types). When adopted as a rule-out test, both [99mTc]Tc-MIBI scintigra-
phy and [18F]FDG PET/CT also proved to be cost-effective in comparison with the stand-
ard practice (i.e., diagnostic surgery) and the use of Gene Expression Classifiers [14–17]. 
Their use, however, should be optimized and restricted to patients with non-Hurtle cell 
cytological patterns and without additional indications to surgery as multinodular goiters 
or large-index lesions (i.e., > 40–50 mm). However, more specific rule-in biomarkers are 
still warranted in patients with [99mTc]Tc-MIBI- or [18F]FDG-positive cytologically indeter-
minate nodules in order to improve the PPV. 

Moreover, radiomics analysis of [18F]FDG PET/CT data preliminarily proved to in-
crease specificity and PPV in discriminating benign from malignant cytologically indeter-
minate nodules [77]. However, currently, available data are contrasting [78], likely due to 
differences in pretest probabilities and other variables. All in all, the application of radio-
mic analysis in this setting should be reserved for clinical studies and not performed to 
make clinical decisions. 

  

Figure 6. A 62-year-old man with a hypermetabolic thyroid nodule (SUV max = 18.3) unexpectedly
discovered in the right lobe during a [18F]FDG PET/CT study performed for staging in suspected
paraneoplastic syndrome. (A) CT – axial view, (B) a [18F]FDG PET/CT axial view, (C) [18F]FDG PET
axial view, (D) whole-body [18F]FDG PET. A laboratory test was consistent with euthyroid status (i.e.,
TSH 2.1 µIU/mL (0.27–4.2), FT3 3.30 pg/mL (2.0–4.4), FT4 18.2 pmol/L (12–22)) with negative anti-
thyroid antibodies (i.e., TPOAb, TgAb). Thyroid ultrasound demonstrated a multinodular goiter with
a dominant hypoechoic nodule in the right lobe (maximum size: 22 mm), which was then classified
as hypofunctioning at thyroid scintigraphy. Accordingly, FNAC was performed: an indeterminate
lesion with a high risk of being malignant (i.e., TIR3B according to the Italian scoring system) was
diagnosed. The patient underwent total thyroidectomy, and the final histological diagnosis was
consistent with Hurtle cell follicular adenoma.

In summary, either [99mTc]Tc-MIBI or [18F]FDG PET/CT may safely rule out inap-
propriate diagnostic surgeries in about half of patients with cytologically indeterminate
nodules (non-Hurthle types). When adopted as a rule-out test, both [99mTc]Tc-MIBI scintig-
raphy and [18F]FDG PET/CT also proved to be cost-effective in comparison with the stan-
dard practice (i.e., diagnostic surgery) and the use of Gene Expression Classifiers [14–17].
Their use, however, should be optimized and restricted to patients with non-Hurtle cell
cytological patterns and without additional indications to surgery as multinodular goi-
ters or large-index lesions (i.e., >40–50 mm). However, more specific rule-in biomarkers
are still warranted in patients with [99mTc]Tc-MIBI- or [18F]FDG-positive cytologically
indeterminate nodules in order to improve the PPV.

Moreover, radiomics analysis of [18F]FDG PET/CT data preliminarily proved to
increase specificity and PPV in discriminating benign from malignant cytologically indeter-
minate nodules [77]. However, currently, available data are contrasting [78], likely due to
differences in pretest probabilities and other variables. All in all, the application of radiomic
analysis in this setting should be reserved for clinical studies and not performed to make
clinical decisions.
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3.4. Fine-Needle Aspiration Cytology and Cytopathology

Thyroid nodules are common in clinical practice, with a prevalence of up to 60%
depending on age, sex, etc. [3,4,26]. The majority are benign [79], and the risk of malignancy
is 7 to 15% [79], depending on the nodule size, findings of ultrasound and nuclear medicine
techniques, and patient characteristics.

Several guidelines and RSSs (Table 4) recommend biopsy based on the size and
imaging findings.

Table 4. Ultrasound-based recommendations for fine-needle aspiration cytology: (a) Biopsy recom-
mendations of EU TI-RADS [46]. (b) Biopsy recommendations of ACR TI-RADS guidelines [45].
(c) Biopsy recommendations of ATA guidelines [18].

(a)

Category Malignancy Risk, % Recommendations

EU-TIRADS 1: Normal None None

EU-TIRADS 2 benign, malignancy risk 0%;
No FNA required (unless for
therapeutic purposes/to relieve
compression)

EU-TIRADS 3 low risk, malignancy risk 2–4% >20 mm FNA

EU-TIRADS 4 intermediate risk, malignancy
risk 6–17% >15 mm FNA

EU-TIRADS 5 high risk, malignancy risk 26–87% >10 mm FNA, <10 mm: consider
FNA or active surveillance

(b)

Category Points Malignancy Risk, % Recommendations

TR1: 0 points benign (aggregate risk level 0.3%); No FNA required

TR2: 2 points not suspicious (aggregate risk
level 1.5%); No FNA required

TR3: 3 points mildly suspicious (aggregate risk
level 4.8%); ≥25 mm FNA

TR4: 4–6 points moderately suspicious (aggregate risk
level 5.9–12.8%); ≥15 mm FNA

TR5: 7 points or more highly suspicious (aggregate risk
level 20.8–68.4% for 10 points). ≥10 mm FNA,

(c)

Category Malignancy Risk, % Recommendations

Benign Risk level < 1% No FNA required

Very low suspicion Risk level < 3%
Consider FNA at ≥2 cm
Observation without FNA is also a
reasonable option

Low suspicion Risk level 5–10% Recommend FNA at ≥1.5 cm

Intermediate suspicion Risk level 10–20% Recommend FNA at ≥1 cm

High suspicion Risk level > 70–90% Recommend FNA at ≥1 cm

The shape, margin, echogenicity, and presence of calcification are useful criteria for
the discrimination of malignant from benign nodules [80].

FNAC Technique:

• Preprocedural

The patient should be informed that limited intra- and peri-thyroidal bleeding and
mild local pain radiating to the ear may occur. Informed consent should be obtained
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after a detailed procedure discussion with the patient. The most significant possible
complication of the procedure is the development of a neck hematoma, especially in
hypervascular nodules, but this complication is fortunately rare [81] and usually resolves
without intervention. A preprocedural test for coagulation is not routinely needed, but
the patient should be questioned about recent or current anticoagulant therapy. To avoid
excessive bleeding, anticoagulation therapy should be discontinued 4–7 days before biopsy;
however, the preprocedural discontinuation of aspirin therapy is controversial [82]. Most
use fine or thin (22- to 27-gauge) needles for FNAC. Thinner needles should be preferred for
hypervascular nodules. The procedure can be performed with local anesthesia (lidocaine
hydrochloride 1–2%, 1–2 mL) or without. Oertel and colleagues advocated using ice as
an alternative for local anesthesia because it numbs the area and causes vasoconstriction,
decreasing the aspirate’s hemodilution [83]. Per nodule, three passes are typically obtained,
particularly if rapid on-site evaluation by a cytopathologist is unavailable. Under US
guidance, the needle may be introduced parallel or perpendicular to the transducer, and
the needle tip should be carefully monitored during the procedure. The collected material
is placed on glass slides, smeared, and fixed in 95% ethyl alcohol or left to air dry.

• Specimen Staining

When using the Papanicolaou staining method, the smears should be quickly placed
in 95% ethyl alcohol. When Diff-Quik or Giemsa stain is used, the smear should be allowed
to air dry. Papanicolaou staining is most commonly used for cytologic analysis of thyroid
specimens, and it provides the most precise depiction of nuclear chromatin, ground-glass
nuclei, and nuclear groove characteristics in papillary carcinoma. Diff-Quik or Giemsa
stain helps visualize the characteristics of the cytoplasm and colloid [83].

• Material Adequacy and False-Negative Results

Appropriate specimen preparation significantly increases the likelihood of material
adequacy and decreases the frequency of false-negative findings. Both may be affected by
the level of operator experience, lesion localization, method of guidance (palpation or US),
number of aspirations, needle gauge, sampling technique, capability for immediate on-site
cytologic analysis, and many other factors. The percentage of unsatisfactory specimens
should remain less than 15%, or, ideally, 10%.

• Comparison of Aspiration and Capillary Action

Thyroid fine-needle aspiration is a safe, simple, relatively accurate, and first-line
diagnostic tool in the evaluation of thyroid nodules. However, especially in hypervascular
lesions, the aspiration technique frequently leads to microscopic hemorrhages, which
obscure proper cytologic interpretation. Fine-needle capillary (FNC) sampling, a technique
without aspiration, was developed in the 1980s [84]. It has been suggested that this non-
aspiration sampling technique could reduce the amount of blood in samples and produce
superior-quality specimens. Various comparative studies showed that aspiration FNAC
and FNC sampling have no statistically significant difference in sample adequacy and
diagnostic accuracy. The choice of technique should be based on the operator’s personal
preferences and experience. However, Degirmenci and colleagues showed that selecting
finer needles (24–25 G) for sonography-guided sampling of thyroid nodules and using
the FNC technique increased the rate of adequate material in the cytological examination
when compared to aspiration FNAC (76.9% vs. 49.4%, p < 0.001) [85]. Non-aspiration FNC
sampling is less traumatic and causes less hemodilution of aspirate, which is critical for
hypervascular lesions. Titton et al. and Oertel have suggested that the thyroid sampling
should begin with non-aspiration FNC and, if the specimens collected with that technique
are inadequate, should continue with aspiration FNAC [83,86].

• Comparison with Core-Needle Biopsy

Core-needle biopsy is performed with an 18–20-gauge needle and provides a large
histologic tissue core, which may have a greater effect on surgical decision-making than
cytologic diagnosis. In a separate prospective study in which FNAC was compared with
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core-needle biopsy performed with a spring-activated, short-throw, 18–20-gauge needle,
the diagnostic yield with core-needle biopsy of thyroid nodules exceeded that with FNAC
techniques by approximately 10% [87]. As can be predicted, there was also a higher
complication rate with the use of the core needle and a higher need for anesthesia [88]. For
these reasons, a core-needle biopsy is considered for patients in whom FNAC produces
only specimens of inadequate cellularity after several passes or in patients who return for a
repeat biopsy after a non-diagnostic initial FNAC.

Fine-needle aspiration cytology represents the diagnostic cornerstone because of its
accuracy, reproducibility, and cost-effectiveness. However, FNAC is characterized by a grey
diagnostic area in which the indeterminate cytology precludes a distinction between benign
and malignant lesions. Physicians should manage the patients according to the different
findings of cytology reports concerning the chance of malignancy. Several reporting
systems and recommendations were proposed. Among these reporting systems, the Italian
SIAPeC-AIT classification, in its latest version updated in 2014; The Bethesda System for
Reporting Thyroid Cytopathology, proposed in 2007 and updated in 2017 and 2023; and the
Guidance On The Reporting Of Thyroid Cytology Specimens from The UK Royal College
Of Pathologists (RCPath) are among the most widely used in the world [89–92].

The Bethesda System for Reporting Thyroid Cytopathology is preferred by many
centers, especially in the USA. The updated version (Table 5) also accounts for the possibility
of a relatively new entity: non-invasive follicular neoplasm with papillary-like nuclear
features (NIFTP).

Table 5. The 2017 Bethesda System for Reporting Thyroid Cytopathology: implied risk of malignancy
and recommended clinical management [93].

Diagnostic Category Risk of Malignancy if
NIFTP ̸= CA (%)

Risk of Malignancy if
NIFTP = CA (%) Usual Management

I. Non-diagnostic or unsatisfactory 5–10 5–10 Repeat FNA with
ultrasound guidance

II. Benign 0–3 0–3 Clinical and sonographic follow-up

III. Atypia of undetermined
significance or follicular lesion of
undetermined significance

6–18 ∼10–30 Repeat FNA, molecular testing,
or lobectomy

IV. Follicular neoplasm or
suspicious for a follicular neoplasm 10–40 25–40 Molecular testing, lobectomy

V. Suspicious for malignancy 45–60 50–75 Near-total thyroidectomy
or lobectomy

VI. Malignant 94–96 97–99 Near-total thyroidectomy
or lobectomy

The system includes six categories, with the most controversial being III–IV, where
repeat FNAC, molecular testing, or lobectomy may be warranted. The cytological character-
istics of the indeterminate categories (III–IV) can be divided into four different subgroups:
qualitatively unsatisfactory specimen, cytologic atypia (mostly nuclear), architectural atypia
(microfollicular), and the combination of the latter two [94]. The first case includes speci-
mens with inadequate preparation and artifacts that may cause the appearance of nuclear
enlargements suspicious for atypia. Specimens with atypical cells also belong to this cat-
egory. Atypia can be epithelial, lymphoid, mesenchymal, or even non-specific and does
not suggest any specific tumor by itself (Bethesda III). The second case includes cytological
atypia in specimens, no matter the cell architecture. Usually, there are very few atypical
cells, so the confirmation/exclusion of malignancy is not possible. The presence of onco-
cytes, without an adequate clinical picture, e.g., Hashimoto’s thyroiditis, is also considered
atypical (Bethesda III). The third case involves specimens with some or abundant microfol-
licular structures but without atypia of the nucleus (Bethesda III and IV). Also, samples
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with many oncocytes, but without colloid or lymphocytes, are in this category (Bethesda
IV). The fourth case includes scarce cellularity and the presence of microfollicular structures
and nuclear atypia (Bethesda III). FNAC in these cases is considered as a screening tool
because it cannot confirm or exclude malignancy [94].

Although the morphologic parameters used by these various systems (Table 6) are
very similar, there are differences in the criteria for inclusion in cytologically indeterminate
categories which may affect the recommendations for the clinical management of patients
(Table 7).

Table 6. Comparison between 2014 Italian SIAPEC-AIT classification, 2017 Bethesda, and 2016 UK
RCPath reporting system for thyroid cytology.

RCPath Bethesda Italian SIAPEC-AIT

Thy1 Non-diagnostic for
cytological diagnosis
Thy1c Non-diagnostic for cytological
diagnosis—cystic lesion

I. Non-diagnostic or unsatisfactory
II. Virtually acellular specimen
III. Other (obscuring blood, clotting artifact, etc.)
IV. Cyst fluid only

TIR1 Non-diagnostic
TIR1c Non-diagnostic cystic

Thy2 Non-neoplastic
Thy2c Non-neoplastic, cystic lesion

Consistent with a benign follicular nodule
(includes adenomatoid nodule, colloid nodule,
etc.). Consistent with lymphocytic (Hashimoto)
thyroiditis in the proper clinical context
Consistent with granulomatous (subacute)
thyroiditis

TIR2 Non-malignant

Thy3a Neoplasm
possible—atypia/non-diagnostic

III. Atypia of undetermined significance or
follicular lesion of undetermined significance

TIR3A Low-risk indeterminate
lesion (LRIL)

Thy3f Neoplasm possible, suggesting
follicular neoplasm

IV. Follicular neoplasm or suspicious for a
follicular neoplasm
Specify if Hürthle cell (oncocytic) type

TIR3B High-risk indeterminate
lesion (HRIL)

Thy4 Suspicious of malignancy V. Suspicious for malignancy TIR4 Suspicious of malignancy

Thy5 Malignant VI. Malignant TIR5 Malignant

Table 7. “Indeterminate” diagnostic categories: comparison of risk of malignancy (ROM) and clinical
management between Italian, Bethesda, and British classifications.

2014 Italian SIAPEC-AIT 2017 Bethesda 2016 RCPath Classification

Diagnostic category
(ROM %) Management Diagnostic category

(ROM %) Management Diagnostic category
(ROM %) Management

TIR 3A
Low-risk
indeterminate lesion
(12–22%)

Clinical follow
up/Repeat FNA

III.
AUS/FLUS
(10–30%)

Repeat
FNA/Molecular
testing or lobectomy

Thy 3a
Neoplasm possible –
atypia/non-diagnostic
(25%)

Multidisciplinary
assessment

TIR 3B
High-risk
indeterminate lesion
(30–55%)

Surgery

IV.
Follicular neo-
plasm/suspicious
follicular neoplasm
(25–40%)

Molecular testing,
lobectomy

Thy 3f
Neoplasm possible,
suggesting follicular
neoplasm
(31%)

Multidisciplinary
assessment

Legend: ROM: risk of malignancy; AUS: atypia of undetermined significance; FLUS: follicular lesion of undeter-
mined significance.

Despite all these nuances in ultrasound RSS and cytopathology reporting systems,
physicians should decide the optimal management with the help of the patient’s history
and preferences, the data obtained from nuclear medicine imaging findings, and molecular
testing if available.
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4. Molecular Biomarkers

Molecular markers may have diagnostic or prognostic purposes. Approximately 15
to 30% of thyroid nodules are classified as indeterminate in the FNAC report [95]. They
include Bethesda III (atypia of undetermined significance) and Bethesda IV (follicular
neoplasm) lesions, with risks of malignancy (mean, range) of 28 (11–54)% and 50 (28–100)%,
respectively [92]. If excluding nodules diagnosed by surgical pathologic examination as
non-invasive follicular thyroid neoplasms with papillary-like nuclear features, the risks
of malignancy are 6.4 (6–20) and 7.1 (0.2–30) [92]. The principal use of molecular markers
in this FNAC categories is diagnostic, i.e., ruling out or ruling in thyroid cancer, with
implications for further patient management.

The Cancer Genome Atlas Research Network 2014 investigated the molecular profile
of 496 papillary thyroid cancers (PTCs), mainly classical and follicular subtypes, and
demonstrated two distinct molecular profiles: BRAFV600E-like and RAS-like [96]. The first
included the BRAFV600E mutation as well as RET/PTC and BRAF fusions, while the other
one included RAS family (HRAS, NRAS, KRAS) mutations, BRAFK601E mutation, EIF1AX
mutations, and THADA and PPARG fusions. These two molecular profiles seem to be
associated with classical and follicular PTCs but are also noted in other DTC histotypes.
Non-invasive follicular neoplasm with papillary-like nuclear features (NIFTP) and follicular
thyroid carcinoma (FTC) are also considered RAS-like tumors [95]. Furthermore, benign
lesions may also have RAS-like molecular profiles [97].

Molecular panels for indeterminate thyroid nodules range from the 7-gene panel,
including BRAF, KRAS, NRAS, HRAS, RET/PTC1, RET/PTC3, and PPARG/PAX8, to 112-
gene panels [95]. The small seven-gene panel includes the most common gene alterations
in thyroid nodules and has a high specificity. Therefore, it may be useful as a rule-in test.
According to a recent prospective study, this test can significantly increase the probability
of cancer in mutated undetermined thyroid nodules, with a specificity of 95% and a PPV of
67% [98]. Commercially available panels for molecular testing of indeterminate thyroid
nodules include Afirma GSC, Thyroseq v3, and ThyGeNEXT/ThyraMIR. Afirma GSC
combines next-generation RNA sequencing and small genomic alterations that are not
identifiable with standard methods. It is used mainly as a rule-out test with a high NPV
of 96%, while the sensitivity, specificity, and PPV are 68, 91, and 47%, respectively [99].
Thyroseq v3 is a panel of 112 genes with a high NPV of 97%, and the sensitivity, specificity,
and PPV are 82, 94, and 66%, respectively, and is also applicable as a rule-out test [99].
ThyGeNEXT is a next-generation sequencing panel with the purpose of sequencing gene
mutations (BRAF, NRAS, HRAS, KRAS, and PIK3CA) and mRNA fusions (RET/PTC1,
RET/PTC3, and PPARG/PAX8) [95]. It is combined with a miRNA risk classifier ThyraMIR,
which determines the expression of growth-promoting miRNA (miR-31, -146, -222, -375,
-551) and growth-suppressing miRNA (miR-29, -138, -139, -155, -204) and increases its
accuracy, demonstrating sensitivity, specificity, NPV, and PPV of 90, 93, 95, and 74%,
respectively [99].

In terms of prognosis, a recent study demonstrated that tumors with BRAF-like profiles
positively correlate with larger tumors, higher initial tumor stage, and presence of lateral
neck metastasis, compared with the RAS-like profile tumors and non-BRAF/non-RAS-like
tumors which included PAX8::PPARG fusion and DICER1, EIF11AX, PTEN, and IDH1
mutations [100].

In malignant thyroid nodules (Bethesda VI), BRAFV600E mutation is detected in 64–76%
of tumors, while TERT promoter mutations are detected in 11% of cases [101]. The pres-
ence of both mutations positively correlates with extrathyroidal extension, local and dis-
tant metastasis, tumor recurrence, and mortality [99], and predicts the development of
radioiodine-refractory DTC in PTC patients [102].

5. Integrated Diagnostics of Thyroid Nodules

Even if thyroid nodules are very common, randomized clinical trials are scarce, likely
due, almost partially, to the good prognosis of thyroid cancer. Instead, recommendations
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in clinical guidelines are largely based on observational studies and experts’ opinions.
Thyroid nodules mostly derive from follicular thyroid cells, and benign nodules (unifocal
or multifocal) are the most common thyroid lesions. Additionally, thyroid nodules may
also occur and coexist in conditions such as subacute thyroiditis, autoimmune thyroiditis,
and Graves’ disease, respectively. Thyroid cancer, however, occurs in 2–5% of thyroid
nodules. Finally, infiltrative disorders, lymphoma, metastases from non-thyroid cancers,
and paraganglioma can rarely result in a thyroid nodule. Factors related to an increased
risk of cancer are summarized in Table 8.

Table 8. Thyroid nodules: factors increasing the risk of cancer.

History

■ Childhood irradiation (head and neck)
■ Fallout from ionizing radiation
■ Radiation exposure
■ Family history of thyroid cancer
■ Enlarging nodule or rapid nodule growth
■ Male sex
■ Age less than 20 or more than 70 years

Clinical examination

■ Neck lymphadenopathy
■ Hard nodule
■ Nodule fixed to surrounding tissues
■ Hoarseness

Clinical investigations

■ Suspicious ultrasound features
■ High-risk TI-RADS classes
■ Largest diameter > 40 mm
■ Thyroid scintigraphy (Na[99mTc]TcO4 or Na[123I]I): not hot
■ Thyroid scintigraphy ([99mTc]Tc-MIBI): high uptake, slow washout
■ [18F]FDG -avid (PET/CT)
■ Serum calcitonin > 100 pg/mL (MTC)

Legend: TI-RADS, Thyroid Imaging-Reporting and Data System; Na[99mTc]TcO4, 99mTc-pertechnetate; Na[123I]I,
iodine-123; PET/CT, positron emission tomography/computed tomography; MTC, medullary thyroid cancer.

As thyroid nodules are very frequent while thyroid cancers are rare and relatively
indolent in most cases, the main challenge in approaching patients with thyroid nodules
is to identify malignant lesions while avoiding inappropriate excess use of thyroid US,
scintigraphy, FNAC, and surgery. Unfortunately, a significant lack of standardization in
the preoperative characterization of thyroid nodules is reported in the literature and in
guidelines, and, in turn, is commonly observed in clinical practice [103].

To further complicate the problem, a major proportion of nodules are currently de-
tected during imaging examinations for non-thyroid issues or during so-called thyroid
nodule screening. Notably, thyroid US examination is discouraged in patients without
clinical evidence of thyroid enlargement or nodules, and thyroid incidentaloma, especially
when <10 mm, should not be referred for additional examinations [104]. Unfortunately,
such concepts are rarely incorporated into clinical practice and a plethora of non-significant
nodules are detected, inducing fear and anxiety in our patients and a lot of inappropriate
additional examinations [105]. Interestingly, Asian thyroid nodule practice has a more
conservative approach in general, not only for indeterminate thyroid nodules [106] but also
for papillary microcarcinoma [107,108].

Usually, patients experience cancer fears and anxiety during the evaluation of thyroid
nodules. Accordingly, a “one-stop-shop” multidisciplinary approach represents an ideal
solution. The objectives of a one-stop-shop diagnostic thyroid unit are to concentrate in one
place and time all specialists required to provide a correct diagnosis and reach a clinical
decision as soon as possible (ideally within 1 day). In any case, patients should be first
examined by an experienced clinician (i.e., endocrinologist, nuclear medicine physician,
endocrine surgeon) and a blood sample should be obtained for TSH measurement. Based
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on clinical examination and TSH results, most patients can be properly informed and
reassured, and avoid further examinations.

Among patients with clinically relevant nodules and low-to-suppressed TSH levels, a
thyroid scintigraphy with either Na[99mTc]TcO4 or Na[123I]I should be ordered to detect
autonomously functioning nodules and exclude them from FNAC, as malignancies are
exceedingly rare in such cases. In other cases, US examination should be performed
and interpreted/reported according to one of the available TI-RADS systems in order to
standardize the selection of nodules that need further investigation with FNAC. All in
all, FNAC will be necessary for the minority of patients with non-autonomous thyroid
nodules and a high-risk TIRADS score. Cytopathology examinations should be reported
according to the Bethesda System for Reporting Thyroid Cytopathology and molecular
imaging should be considered in selected patients with indeterminate non-Hurtle cell
cytology and no additional factors in favor of surgery (i.e., multinodular goiter). Proper
patient–physician communication is pivotal before any step in order to clearly explain the
pros and cons of a data procedure and its impact on clinical decisions.

Finally, integrating different reports allows the coordinator physician to inform the
patient about the diagnosis and formulate a tailored management plan (i.e., surgery, wait
and see, thermal ablation). A diagnostic algorithm is proposed in Figure 7.
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The implementation of this algorithm into clinical practice is mandatory to reassure
patients regarding unnecessary therapeutic procedures and to identify those who need
specific therapies. The value of thyroid US and its scoring systems, scintigraphy, FNAC, and
molecular imaging is proven in many previously mentioned studies and requires further,
more extensive, and wider integration into the national guidelines of each country to ensure
widespread adoption and accessibility of integrated diagnostics of thyroid nodules.

6. Perspectives

The process presented above (i.e., clinical integration) is based on high-standing
diagnostic methods and physicians’ experience in interpreting and integrating different
data. This is a long process requiring time and resource investment and continuous
education. Artificial intelligence (AI) and machine learning (ML) can support clinicians
by providing them with additional insights not routinely available in clinical practice.
The high potential of AI and ML can be exploited in “integrated diagnostics”, defined as
the “convergence of imaging, pathology, and laboratory tests with advanced information
technology” [109].

AI algorithms can be trained to analyze images from multiple modalities and detect
phenotyping information that may not be obvious to the human eye. Lai and colleagues
compared the diagnostic performance of artificial intelligence algorithms and radiologists
with different experience levels in distinguishing benign and malignant TI-RADS 4 nodules
where heterogeneity is observed in the malignancy rates. They enrolled 1117 patholog-
ically defined TI-RADS 4 nodules and incorporated an independent external dataset of
125 TIRADS-4 nodules for testing purposes. Traditional feature-based machine learning
models, deep convolutional neural network (DCNN) models, and a fusion model that
integrated all prediction outcomes were used to score benign and malignant TI-RADS
4 nodules. A fivefold cross-validation approach was employed, and the diagnostic per-
formance of each model and radiologist was compared. Briefly, in the external test, the
area under the receiver operating characteristic curve (AUROC) of the three tested DCNN
models ranged from 0.852 to 0.856, respectively. These values were higher than those of
the three traditional ML models (0.767–0.709), respectively, and higher than that of an
experienced radiologist (0.815). The fusion diagnostic model developed by the authors,
with an AUROC of 0.880, outperformed the experienced radiologist in diagnosing TI-RADS
4 nodules [110]. These results demonstrate that automated clinical decision support signifi-
cantly improves diagnostic accuracy, i.e., sensitivity, specificity, and AUC, and minimizes
interpretation times and inter-reader variability. AI is also used in the analysis of genomic
data [111].

AI algorithms analyze large amounts of data and identify genetic variations that
may be associated with cancers or other common non-communicable diseases [112] or
assist in the interpretation of laboratory test results, such as pathology reports, and other
diagnostic data. As an example, longitudinal data analysis centered on collecting and
analyzing longitudinal data, specifically cluster analysis, already showed clinical usefulness
in patients with chronic renal failure for determining the required dialysis frequency [113].

Digital image analysis in pathology can identify and quantify specific cell types
for quickly and accurately evaluating histological features, morphological patterns, and
biologically relevant regions of interest [114]. Overall, AI is playing a growing role in
the diagnosis and management of diseases through integrated diagnostics, and appears
promising even in endocrine and thyroid diseases [115] (Figure 8).

However, some limitations should be considered, including the need for large amounts
of data to train AI algorithms and the need for more research to validate the use of AI. More-
over, the broad implementation of AI and integrated diagnostics requires central organiza-
tions (i.e., national or international level) to ensure common structures and methodologies,
standards, and data safety.
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An extensive discussion of such issues is out of the scope of our present paper; our
readers are directed to a recent review by Ali MA and Mohammed MA where the inherent
limitations of AI in analyzing omics data (i.e., preprocessing, datasets, validation of models,
testbed applications) are illustrated while potential solutions are proposed [116].

Future research integrating deep learning, ML, and AI on US images, FNAC, thyroid
scintigraphy, and specific molecular imaging is required to determine their value in dis-
criminating benign from malignant thyroid nodules, especially in cases of indeterminate
thyroid nodules where current molecular imaging is more powerful as a rule-out than
rule-in test.

7. Limitations

The majority of the reported data came from retrospective studies, with inherent
methodological limitations. However, the roles of US, FNAC, and thyroid scintigraphy are
consolidated in clinical practice and defined in clinical guidelines. Moreover, prospective,
and even randomized, studies are available for more recent molecular imaging methods
as well as cost-effectiveness analysis. Accordingly, the proposed modalities and their use
seem to be adequately supported by the current literature.

8. Conclusions

The current state of diagnostic medicine is well presented by the “silo metaphor”,
where radiology, laboratory medicine, and pathology are conceptually separate diagnos-
tic approaches. On the other hand, progress in understanding biochemical–biological–
structural interplays in human diseases, compounded with technological advances, is
generating relevant multidisciplinary convergences, leading the way for a new frontier
called integrated diagnostics. Thyroid nodules are commonly encountered in clinical prac-
tice and their diagnosis and therapy typically involve different specialists using different
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tools. Accordingly, thyroid nodules represent an ideal condition to develop and test inte-
grated diagnostics: an appropriate integration of laboratory, imaging, and pathology data
is essential to refine our diagnosis, reassure most patients with non-dangerous nodules,
and quickly identify those requiring specific therapies. Furthermore, bioinformatics and
computer sciences will change our current management of clinical data, allowing more
personalized and tailored diagnostic approaches.

The main advantages of our proposed diagnostic flow-chart are i. the reduction
in the number of nodules requiring any imaging procedure through use of a careful
clinical examination; ii. the reduction in FNAC procedures by using TIRADS criteria
and (selectively) functional thyroid scintigraphy; and iii. the reduction in inappropriate
diagnostic surgeries in patients carrying cytologically indeterminate nodules through
selective use of new molecular imaging procedures.

Looking forward, we believe studies concerning the management of thyroid inciden-
talomas are urgently needed to inform radiological reports and, hopefully, spare most
patients from any further investigation. In addition, the proper use of thyroid US (i.e.,
avoiding “screening”) should be more effectively supported by clinical societies. In such
context, the selective use of more advanced methods in patients with clinically relevant,
well-characterized nodules will be useful in avoiding unjustified surgeries and will be
cost-effective as well.
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