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Simple Summary: Poor survival rates of squamous cell carcinomas (SCCs) are due in part to a limited
number of reliable biomarkers and molecular targets. NAD+ metabolism plays a relevant role in SCC
chemoprevention and therapy and is found dysregulated in several tumors. Therefore, the aim of our
study was to identify new biomarkers based on NAD+ metabolism-related gene (NMRG) expression.
Our findings indicate that NAD+ metabolism-related gene profiles can be an important source of
SCC biomarkers and potential therapeutic targets. These findings agree with SCC preclinical and
clinical studies using NAD+ precursors. Further in-depth studies on identified NMRGs may provide
additional insights into SCC pathogenesis and improve therapeutic choice.

Abstract: Poor survival rates of squamous cell carcinomas (SCCs) are associated with high recurrence,
metastasis, and late diagnosis, due in part to a limited number of reliable biomarkers. Thus, the
identification of signatures improving the diagnosis of different SCC types is mandatory. Considering
the relevant role of NAD+ metabolism in SCC chemoprevention and therapy, the study aimed at
identifying new biomarkers based on NAD+ metabolism-related gene (NMRG) expression. Gene
expression of 18 NMRGs and clinical-pathological information for patients with head and neck SCC
(HNSCC), lung SCC (LuSCC), and cervix SCC (CeSCC) from The Cancer Genome Atlas (TCGA)
were analyzed by several bioinformatic tools. We identified a 16-NMRG profile discriminating 3
SCCs from 3 non-correlated tumors. We found several genes for HNSCC, LuSCC, and CeSCC with
high diagnostic power. Notably, three NMRGs were SCC-type specific biomarkers. Furthermore,
specific signatures displayed high diagnostic power for several clinical-pathological characteristics.
Analyzing tumor-infiltrating immune cell profiles and PD-1/PD-L1 levels, we found that NMRG
expression was associated with suppressive immune microenvironment mainly in HNSCC. Finally,
the evaluation of patient survival identified specific genes for HNSCC, LuSCC, and CeSCC with
potential prognostic power. Therefore, our analyses indicate NAD+ metabolism as an important
source of SCC biomarkers and potential therapeutic targets.

Keywords: squamous cell carcinoma; NAD+; metabolism; biomarker; TCGA database

1. Introduction

Squamous cell carcinoma (SCC) is an epithelial tumor that occurs in organs covered
with squamous epithelium, such as skin, lips, mouth, esophagus, urinary tract, prostate,
lungs, vagina, and cervix [1]. The SCC incidence is different across tissues as risk factors
vary in relation to the site-specific protective function of the epithelia [1]. Three of the major
SCC types are head and neck SCC (HNSCC), SCC of the lung (LuSCC), and cervix SCC
(CeSCC). HNSCC is the sixth most common cancer worldwide and consists of a group
of tumors that arise from squamous mucosal surfaces, including nasal and oral cavities,
the nasopharynx, the oropharynx, the hypopharynx, and the larynx. Primary risk factors
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for HNSCC include tobacco and alcohol use, alpha-type human papillomavirus (HPV)
infection, age, and genetic predisposition [1,2]. LuSCC is a type of non-small cell lung
cancer (NSCLC) and occurs in the central part of the lung or the main airway. The main
risk factor for LuSCC is tobacco smoke. Other risk factors include age, family history,
exposure to asbestos or air pollution, and genetic factors [1,3]. CeSCC is the most common
gynecological tumor and the fourth leading cause of cancer-related death in women. The
primary risk factor for CeSCC is persistent infections with alpha-type HPVs [3,4].

SCCs are characterized by local invasive patterns, high recurrence, and metastasis.
Therefore, the treatment of SCC is comparable across the different anatomical sites [1].
Standard treatments include surgery, chemotherapy, or radiotherapy in early and advanced
curable disease, whereas targeted systemic therapies or immunotherapy are used in locally
advanced and metastatic tumors [5,6]. However, late diagnosis, recurrence, and metastases
are associated with poor survival rates. Despite advances in diagnostic methods and
combined treatments, the survival rate has not significantly improved over the last 30 years
due in part to a lack of reliable early diagnostic biomarkers and a limited number of
molecular targets for patients with advanced disease [1,7,8].

SCCs from different body sites exhibit similar histopathological features [3]. SCC
development is a multistep process involving the accumulation of multiple genetic alter-
ations modulated by genetic predisposition and environmental insults. SCCs share many
phenotypic and molecular characteristics (e.g., mutations in genes involved in squamous
cell differentiation and cell adhesion) that distinguish SCC from other cancer types. How-
ever, mutations of some genes appear more frequent or potentially specific to a given SCC
type [1,7,8]. Thus, the identification of new diagnostic biomarkers or specific signatures
that correlate with pathophysiological characteristics can improve therapeutic choice.

Energy metabolism reprogramming is one of the hallmarks of cancer [9]. Nicotinamide
adenine dinucleotide (NAD+) and its metabolites play a key role in the control of energy
homeostasis, enabling the cells to adapt to environmental changes, including nutrient
perturbation, genotoxic factors, infections, inflammation, and xenobiotics. Therefore, NAD+
depletion can be involved in many critical steps of tumorigenesis, such as genome instability,
metabolic changes, cell growth, inflammation, and immune response [10,11]. Preclinical
studies indicate that the increase of NAD+ levels restores the bioenergetics, redox balance,
and signaling pathways, ameliorating the adverse effects of pathophysiological conditions
and offering a promising option for therapy [10–12]. NAD+ levels could be restored by
dietary NAD+ precursors (e.g., nicotinamide (NAM), nicotinamide mononucleotide (NMN)
and nicotinamide riboside (NR)), inhibitors of NAD+-consuming enzymes, management of
the NAD+ biosynthesis via controlling NAD+-biosynthesis enzymes or improving NAD+
bioavailability through caloric restriction or exercise [11]. Clinical trials indicate that NAM
oral administration displays chemopreventive effects against skin SCC development and
recurrence in high-risk immunocompetent [13] and in immunocompromised patients [14].
Moreover, NAM improved the efficacy of radiotherapy against HNSCC and laryngeal
SCC [15,16]. Trials assessing the efficacy of NAM when prescribed synergistically with
targeted therapies in advanced NSCLC patients are ongoing [12].

Given the growing evidence of the relevant roles that NAD+ metabolism plays in
cancer initiation and progression, the aim of the present study was to identify molecular
profiles based on NAD+ metabolism-related gene (NMRG) expression from The Cancer
Genome Atlas (TCGA) showing diagnostic or prognosis power for HNSCCs, LuSCCs, and
CeSCCs and, thus, can be considered potential therapeutic targets.

2. Materials and Methods
2.1. Data Source

Gene expression profiles, clinical characteristics, and survival information for 504 pa-
tients with HNSCC, 501 with LuSCC, and 306 with CeSCC, and corresponding nor-
mal specimens (44, 49, and 3 samples, respectively) were extracted from The Cancer
Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov/, accessed on 15 Novem-
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ber 2022). Due to the small number of normal samples in the TCGA CeSCC database,
we further integrated TCGA and Genotype-Tissue Expression (GTEx) databases (https:
//gtexportal.org/home/datasets, accessed on 15 November 2022) to obtain 22 normal
samples.

Low or undetectable ENPP3 expression is observed in the majority of HNSCC tumor
samples (93%). Likewise, NMRK2 expression is low or undetectable in HNSCC, LuSCC,
and CeSCC samples. Due to this issue, ENNP3 and NMRK2 were excluded from all analyses
restricted to tumor samples.

Receiver Operating Characteristic (ROC) curve analysis

ROC curves were generated on GraphPad Prism 9. The area under the curve (AUC) is
plotted as sensitivity% (True Positive Rate) vs. 100%—specificity% (False Positive Rate).

2.2. Principal Component Analysis (PCA)

The PCA analysis was performed for 504 HNSCC, 501 LuSCC, 306 CeSCC, 537 Kidney
Renal clear cell Carcinoma (KIRC), 168 Glioblastoma (GBM), and 263 Sarcoma (SARC)
TCGA patients. TCGA expression (log2 of TPM) of 16 selected genes of nicotinamide
metabolism or of glycolysis was used to calculate the principal components.

2.3. Immune Microenvironment Analysis

Correlation of NMRG expression with immune infiltration level in HNSCCs, LuSCCs,
and CeSCCs (TCGA) was performed using the Tumor IMmune Estimation Resource
(TIMER) web application (https://cistrome.shinyapps.io/timer/, accessed on 15 November
2022) [17,18]. The purity-corrected partial Spearman’s rho value and statistical significance
were calculated.

2.4. Correlation with PD-1 and PD-L1

The correlation coefficient between PD-1 or PD-L1 and genes involved in nicotinamide
metabolism was calculated by Spearman’s Rho test using TIMER2.0 (http://timer.cistrome.
org/, accessed on 15 November 2022) [19]. Purity adjustment of TCGA HNSCC, LuSCC,
and CeSCC was performed before the Spearman calculation.

2.5. Survival Analysis

Mantel-Cox analysis was performed between NMRGs with high or low expression
and overall survival (OS) in 504 HNSCC, 501 LuSCC, and 306 CeSCC patients. High or low
expression was defined as relating to the mean of the log2(TPM) in the tumor samples of
each tumor type.

2.6. Statistical Analysis

All data processing steps and statistical analyses were performed using GraphPad
Prism 9.

Statistical significance of differential gene expression levels in tumor samples com-
pared to control specimens and in patients’ stratification was calculated by a two-tailed
Mann-Whitney test. Multiple logistic regression was performed to generate multiple ROC
curves on combined expression values in patients’ stratification. A Pearson correlation in-
dex and statistical significance were calculated to perform a correlation analysis of NMRGs
involved in patients’ survival with immune checkpoint expression.

3. Results
3.1. NMRGs and Their Ability as SCC-Type Discriminating Biomarkers

NAD+ is an essential metabolite for cellular homeostasis and its metabolism is char-
acterized by a balance of synthesis, consumption, and regeneration. NAD+ acts as a
co-enzyme for multiple redox reactions as well as a substrate for NAD+-consuming en-
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zymes (i.e., sirtuins, PARPs, and cADPRSs such as CD38) that coordinate genomic stability,
epigenetic status, and inflammation [10].

We investigated the gene expression of the foremost NMRGs (Figure 1) in specimens
of HNSCC, LuSCC, and CeSCC using the TCGA dataset to assay their ability to discrim-
inate cancer samples from normal controls. Namely, AOX1, NNMT, NAMPT, NMNAT1,
NMNAT2, NMNAT3, ENPP1, ENPP2, ENPP3, NMRK1, NMRK2, PNP, NADK, NADSYN1,
SIRT1, SIRT3, CD38, and PARP1 were investigated in each SCC type.
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Figure 1. Schematic representation of NAD+ metabolism. NAD+ is an essential coenzyme of
redox reactions for the production of adenosine triphosphate (ATP) and is involved in several
metabolic processes. Nicotinamide (NAM) is converted to NAD+ via the salvage pathway, which
represents the major pathway of NAD+ biosynthesis in mammals. NAM phosphoribosyltransferase
(NAMPT) is the “rate-limiting” enzyme that catalyzes the first step in the biosynthesis of NAM
mononucleotide (NAMN) from NAM. NMN adenyltransferases (NMNATs) utilize ATP to generate
NAD+, which can also be directly converted into NADP+ by NAD kinase (NADK). NAMN can
also be synthesized by NMRKs from N-ribosil-nicotinamide which is metabolized by PNP from
NAM. In a consuming way, the cyclic ADP-ribose synthase (cADPRS) CD38 hydrolyzes NAD+ to
NAM. Poly-ADP-ribose-polymerases (PARPs) use NAD+ as a co-substrate to “ADP-ribosylate” target
proteins (Sub), generating NAM. Sirtuins (SIRT) depend on NAD+ to deacetylate specific substrates
(Sub) generating NAM. At least, in the catabolic way NAM is methylated to 1-methyl-NAM (MNA)
by NAM-N-methyltransferase (NNMT) and then oxidized to l-methyl-2-pyridone-5-carboxamide
(2-Pyr) and l-methyl-4-pyridone- 5-carboxamide (4-Pyr).

Numerous cancer samples and corresponding controls for each SCC type are reported
in Table S1 which describes the clinicopathologic characteristics of analyzed patients. The
distribution of clinicopathologic parameters in the paired cohorts was comparable. Due to
the small number of normal CeSCC samples in the TCGA database, TCGA and GTEx data
were integrated for further analysis.

The expression levels of each NMRG in 504 patients with HNSCC, 501 with LuSCC,
and 306 with CeSCC compared to corresponding normal specimens (44, 49, and 22 samples,
respectively) are shown in Figure 2. The modulation of different NMRGs based on SCC
types is reported in Figure S2. Different expression patterns between patient tumor speci-
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mens and corresponding normal controls were observed for most genes. Specifically, some
genes were significantly modulated in all three tumors in the same way: AOX1, ENPP3,
and NMRK2 were down-modulated in tumor specimens, whereas PARP1 was up-regulated.
On the contrary, some genes were specifically modulated in a single tumor type. In fact,
HNSCC was characterized by a significant decrease of NAMPT and an increase of NADK
whereas LuSCC was characterized by a decrease of NMRK1. Although ENPP1 was down-
modulated in two tumor types, the differential expression was more significant in CeSCC.
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Figure 2. Gene expression levels of 18 NMRGs in HNSCC, LuSCC, and CeSCC compared to corre-
sponding controls. Violin plots representing the gene expression data of AOX1, NNMT, NAMPT,
NMNAT1, NMNAT2, NMNAT3, ENPP1, ENPP2, ENPP3, NMRK1, NMRK2, PNP, NADK, NADSYN1,
SIRT1, SIRT3, CD38, and PARP1 from the TCGA-HNSCC, TCGA-LuSCC, and TCGA-CeSCC plus
endo- and ectocervix from GTEx datasets. Values on the y-axis represent the log2 of the normalized
mRNA sequencing counts (TPM) for each NMR gene. On the x-axis, normal (N) and primary tumors
(T) are indicated. Different colors represent tumor types and normal tissues. p Values were calculated
using a two-tailed Mann-Whitney test. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001. HNSCC:
head and neck squamous cell carcinoma; LuSCC: lung squamous cell carcinoma; CeSCC: cervix
squamous cell carcinoma; N: control specimens; T: tumor samples.
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Other genes were modulated in a different way in all three SCCs (NMNAT1, NMNAT2,
NADSYN1, SIRT3, and CD38) or in two tumor types (NNMT, NMNAT3, ENPP2, PNP, and
SIRT1). Although NNMT1 was modulated in two tumor types, the differential expression
was highly significant in LuSCC.

Receiver operating characteristic (ROC) analysis is used in clinical epidemiology to
quantify how accurately diagnostic assays can discriminate between two patient states
(e.g., “diseased” and “nondiseased”). Specifically, the area under the curve (AUC) has
a meaningful interpretation for discrimination. AUC values range from 0.5 to 1, with 1
indicating 100% ability to discriminate “diseased” from “undiseased” cases.

To investigate the diagnostic power of NMRGs in discriminating each SCC type from
corresponding controls, the AUC was calculated for each gene and reported in Tables S2–S4.
The AUC comparison based on each NMRG and on the SCC type is shown in Figure 3 and
Figure S3, respectively.

Considering genes with AUC > 0.7 and p ≤ 0.0001, we found 6 genes for HNSCC
(AOX1, NMNAT2, ENPP3, NADK, CD38, and PARP1), 11 genes for LuSCC (AOX1, NNMT,
NMNAT2, NMNAT3, ENPP2, ENPP3, NMRK2, NADSYN1, SIRT1, CD38, and PARP1), and
11 genes for CeSCC (AOX1, NMNAT3, ENPP1, ENPP2, ENPP3, NMRK2, PNP, NADSYN1,
SIRT1, SIRT3, and CD38) with a good ability to differentiate each SCC from control samples
(Tables S2–S4 and Figure S3).

Interestingly, some discriminating genes were typical of a SCC type (Figure 3). NADK
was able to discriminate HNSCC from healthy controls (AUC = 0.7872; p < 0.0001) but
not LuSCC (AUC = 0.5129; p = 0.7660) or CeSCC (AUC = 0.5541; p = 0.3962). Likewise,
NNMT (AUC = 0.8766; p < 0.0001) discriminated LuSCC from controls but not HNSCC
(AUC = 0.5912; p < 0.0448) or CeSCC (AUC = 0.6069; p = 0.0940). Furthermore, CeSCC was
well discriminated by ENPP1 (AUC = 0.9715; p < 0.0001), PNP (AUC = 0.8622; p < 0.0001),
and SIRT3 (AUC = 0.9072; p < 0.0001), different from HNSCC (ENPP1:AUC = 0.5522;
p = 0.2505; PNP:AUC = 0.6740; p = 0.001; SIRT3:AUC = 0.6249; p = 0.006) and LuSCC
(ENPP1:AUC = 0.6353; p = 0.0018; PNP:AUC = 0.5128; p = 0.7671; SIRT3: AUC = 0.6272;
p = 0.0033).

Considering both differential expression and ROC analysis, three differentially expressed
NMRGs are able to discriminate tumors from control samples selectively in each SCC type.
Thus, a significant increase of NADK, a decrease of NNMT1, and a decrease of ENPP1 can be
considered relevant specific biomarkers for HNSCC, LuSCC, or CeSCC, respectively.

3.2. NMRGs and Their Ability as SCC Discriminating Biomarkers

As SCCs share histological features and many molecular characteristics [8], we investi-
gated whether the NMRG profile was typical of SCC or was common to several tumors.

This hypothesis was verified using principal component analysis (PCA) with the
combined expression data of 16 NMRGs (AOX1, NNMT, NAMPT, NMNAT1, NMNAT2,
NMNAT3, ENPP1, ENPP2, NMRK1, PNP, NADK, SIRT1, SIRT3, CD38, and PARP1) on
samples from three SCC and three non-correlated tumors. Specifically, we considered kid-
ney renal clear cell carcinoma (KIRC), which is a non-squamous epithelial tumor, sarcoma
(SARC), and glioblastoma (GBM) (Figure 4A). The NMRG profile allowed a clear separation
of SCCs from other tumors, mainly KIRK and SARC, indicating that such a profile seems
specific for SCC.

Aerobic glycolysis is persistently activated in tumor cells and several cancers are
characterized by glycolysis-related gene signature [20]. Thus, 16 genes from the glycolysis
pathway (i.e., PKM, TPI1, PFKP, PGAM1, PFKM, FOXK1, ENO1, ALDOA, ENO2, ENO3,
FOXK2, GPI, HK1, PFKL, PGK1, and GAPDH) were used as the control (Figure 4B). PCA
analysis showed that the glycolysis-related profile is not able to cluster patients with
different tumors, indicating that such a profile seems common for all six tumors.

Therefore, the NMRG profile can be considered a relevant biomarker of SCC which is
able to discriminate these tumors from KIRC, SARC, and GBM.
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Figure 3. ROC analysis on the expression values of the 18 NMRGs. Overlapped ROC curves based on
AOX1, NNMT, NAMPT, NMNAT1, NMNAT2, NMNAT3, ENPP1, ENPP2, ENPP3, NMRK1, NMRK2,
PNP, NADK, NADSYN1, SIRT1, SIRT3, CD38, and PARP1 gene expression values for the three SCC
types are represented in the same plot for each gene. Red lines indicate HNSCC; blue lines indicate
LuSCC; green lines indicate CeSCC. The area under the curve (AUC) is plotted as sensitivity% vs.
100%—specificity%. AUC and p values are reported for each gene highlighted with the tumor’s
corresponding color. HNSCC: head and neck squamous cell carcinoma; LuSCC: lung squamous cell
carcinoma; CeSCC: cervix squamous cell carcinoma.
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Figure 4. PCA on three SCC and three non-correlated tumors. Principal component analysis (PCA) of
six cancer types, three SCCs (HNSCC, LUSCC, and CESCC), and three non-correlated tumors (KIRC,
SARC, and GBM). Log2 of the normalized mRNA sequencing counts (TPM) of 16 NMRGs (A) or 16
glycolysis-related genes (B) was used to perform the PCA. ENPP3 and NMRK2 were excluded from
this analysis which considers only the expression in tumor samples, since low or undetectable ENPP3
expression is observed in the majority of HNSCC tumor samples and low or undetectable NMRK2
expression is observed in the majority of HNSCC; LuSCC and CeSCC tumor samples.

3.3. NMRG Expression and Risk Factors

Beyond site-specific risk factors, age, and gender are common determinants for SCC
tumors [1].

In Figure S1, NMRGs with significant differential expression in age and gender groups
of SCC patients are reported. NNMT1 was significantly up-regulated in HNSCC patients
aged 81–100 years old compared to young patients (21–40 years), whereas NADSYN1
was more expressed in patients aged 41–60 years old. In keeping with the literature data,
CD38 expression significantly increased with the age of HNSCC patients and probably was
related to reported tissue NAD+ depletion [21,22]. AOX1 and ENPP2 displayed a significant
differential expression between LuSCC patients aged 41–60 years old and 61–80 years old.
An age-related increased expression was observed for ENPP3 in LuSCC patients. In CeSCC,
an age-related decreased and increased expression was found for NNMT1 and NMNAT3,
respectively. NMNAT1 significantly increased only in the 61–80-year-old patient group,
whereas NMNAT2 significantly decreased in the 81–100-year-old group.

Males with HNSCC displayed a significantly increased expression of NMNAT3 and
PARP1 with respect to females, whereas males with LuSCCs showed increased levels of
NAMPT.

Thus, only a few NMRGs can be considered age- or gender-related in those SCC samples.

3.4. NMRGs as Diagnostic Biomarkers for Patient Stratification

SCCs are classified according to histological features (e.g., stage, grade), anatomical
site, and, in some types, HPV status (Table S1). Staging and grading of SCC are established
prerequisites for management as they influence risk stratification and treatment planning.
The TNM system is based on an assessment of the size of the primary tumor (T), involve-
ment of locoregional lymph nodes (N), and metastasis (M). HNSCC staging displays values
from 1 to 4, which represent the most advanced forms.
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As reported by ROC analysis, some single genes displayed a low diagnostic power
(AUC < 0.7) for HNSCC staging (Table S2). However, NMRGs with significant AUC
values (AOX1, SIRT3, NMRK1, PARP1) were differentially expressed among tumor stages
(Figure 5A). Thus, multiple logistic analysis and ROC analysis were carried out on the
combined expression profile of these NMRGs with significant AUC values to identify a
diagnostic signature.
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As shown in Figure 5A, the signature combining the expression values of AOX1
and SIRT3 was able to discriminate stage 1 from stage 2 HNSCC samples (AUC = 0.7154,
p = 0.0014) and stage 1 from stage 3 (AUC = 0.730, p = 0.0005). The signatures AOX1,
NMRK1, SIRT3, and PARP1 were able to discriminate stage 1 from stage 4 HNSCC
(AUC = 0.7585; p < 0.0001). No single NMRG or specific signature was able to discrim-
inate LuSCC stages (Table S3).

Histopathological grading is based on the differences in tumor differentiation. Low-
grade or grade 1 HNSCC are well-differentiated tumors, whereas high-grade or grade 3
HNSCC are poor or undifferentiated lesions. Likewise staging, single genes displayed a low
diagnostic power for HNSCC grading (Table S2). However, NMRGs with significant AUC
values (ENPP1, ENPP2, NAMPT, SIRT1, PARP1, NMNAT1, and PNP) were differentially
expressed among tumor grades (Figure 5B). Multiple logistic analysis and ROC analysis
on the combined expression profile of these genes with significant AUC value (Table S2)
identified a diagnostic signature (NAMPT, ENPP1, SIRT1, and PARP1) able to discriminate
grade 1 from grade 2 HNSCC (AUC = 0.7259; p < 0.0001). Furthermore, the signature
NMNAT1, ENPP1, ENPP2, PNP, SIRT1, and PARP1 were able to discriminate grade 1 from
grade 3 HNSCC (AUC = 0.8532; p < 0.0001). No single NMRG or specific signature was
able to discriminate CeSCC grade (Table S4).

The incidence of HNSCC greatly varies depending upon the anatomic region [23].
Single NMRGs displayed a low diagnostic power for discriminating the oropharynx spec-
imens from those of the oral cavity (Table S2). However, NMRGs with significant AUC
values (NNMT, NMNAT3, NADSYN1, and PARP1) were differentially expressed between
these anatomic regions (Figure 6A). Notably, multiple logistic analysis and ROC analysis on
the combined expression profile of these genes indicated that the signature had a high diag-
nostic power for discriminating the oropharynx from oral cavity HNSCCs (AUC = 0.6932;
p < 0.0001).

Considering the histological type of CeSCC, single NMRGs displayed a low diagnostic
power for discriminating the adenocarcinoma from SCC (Table S4). However, NMRGs
with significant AUC values (NAMPT, NMNAT2, NMNAT3, ENPP1, ENPP3, NMRK1,
NADK, SIRT1, SIRT3, and CD38) were differentially expressed between histological types
(Figure 6B). Multiple logistic analysis and ROC analysis on the combined expression profile
of these genes identified that signature as a discriminant for adenocarcinoma from SCC of
the cervix (AUC = 0.935; p < 0.0001).

Numerous pieces of evidence indicate molecular and clinical differences in mutations,
gene expression regulation, treatment responses, and patient survival rates between HPV-
negative and HPV-positive HNSCC [23]. Specifically, HPV-positive tumors usually display
a better prognosis than HPV-negative tumors. p16 (INK4A) staining is a widely used and
generally accepted surrogate tool to identify HPV association and, therefore, to classify
HNSCC as either associated or not associated with the viral infection [23]. In keeping with
the literature data, the ROC analysis of p16 expression in HPV positive vs negative samples
displayed an AUC = 0.9811 (p < 0.0001) (Figure 7). Some single NMRGs (NNMT, NAMPT,
NMNAT1, NMRK1, PNP, and PARP1) displayed a good diagnostic power for discriminating
HPV status of HNSCC (Table S2) and were differentially expressed between HPV-negative
and HPV-positive groups (Figure 7). Furthermore, the signature combining these NMRGs
displayed a very high diagnostic power (AUC = 0.9572; p < 0.0001) similar to what was
measured with the p16 expression (Figure 7).

Therefore, specific NMRG signatures display high diagnostic power for several clinical-
pathological characteristics and their validation may be helpful for diagnosis and personal-
ized treatments.
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3.5. NMRGs and Immune Microenvironment Characterization

Current staging and grading systems are centered on the tumor per se rather than
stroma and host responses. Thus, they are informative for prognosis but not exhaustive,
as the immune microenvironment highly influences SCC development and the response
to immunotherapy [24,25]. Comprehensive characterization of tumor-infiltrating immune
(TII) cells in solid tumors has been increasingly recognized as a novel and robust prognos-
tic factor. Notably, NAD+ metabolism may regulate the function of innate and adaptive
immune cells, which can act as tumor suppressors or promoters, and, therefore, con-
tribute to inflammatory response [26]. Therefore, the characterization of the SCC immune
microenvironment can help the treatment stratification, especially for the new immunother-
apeutic drugs.



Cancers 2024, 16, 309 12 of 22

Cancers 2024, 16, x FOR PEER REVIEW  13  of  24 
 

 

classify HNSCC as either associated or not associated with the viral infection [23]. In keep-

ing with the literature data, the ROC analysis of p16 expression in HPV positive vs nega-

tive  samples displayed  an AUC  =  0.9811  (p  <  0.0001)  (Figure  7).  Some  single NMRGs 

(NNMT, NAMPT, NMNAT1, NMRK1, PNP,  and PARP1) displayed  a  good  diagnostic 

power  for discriminating HPV status of HNSCC  (Table S2) and were differentially ex-

pressed between HPV-negative and HPV-positive groups (Figure 7). Furthermore, the sig-

nature combining these NMRGs displayed a very high diagnostic power (AUC = 0.9572; 

p < 0.0001) similar to what was measured with the p16 expression (Figure 7). 

 

Figure 7. NMRGs as diagnostic biomarkers for HPV infection status. Differential gene expression 

levels of selected genes (violin plots) and ROC curve on their combined expression values for HPV 

infection status in HNSCC specimens. HNSCC: head and neck squamous cell carcinoma. 

Therefore, specific NMRG signatures display high diagnostic power for several clin-

ical-pathological characteristics and their validation may be helpful for diagnosis and per-

sonalized treatments. 

3.5. NMRGs and Immune Microenvironment Characterization 

Current staging and grading systems are centered on the tumor per se rather than 

stroma and host responses. Thus, they are informative for prognosis but not exhaustive, 

as the immune microenvironment highly influences SCC development and the response 

to immunotherapy [24,25]. Comprehensive characterization of tumor-infiltrating immune 

(TII) cells in solid tumors has been increasingly recognized as a novel and robust prog-

nostic factor. Notably, NAD+ metabolism may regulate the function of innate and adap-

tive immune cells, which can act as tumor suppressors or promoters, and, therefore, con-

tribute to inflammatory response [26]. Therefore, the characterization of the SCC immune 

microenvironment can help the treatment stratification, especially for the new immuno-

therapeutic drugs. 

Figure 7. NMRGs as diagnostic biomarkers for HPV infection status. Differential gene expression
levels of selected genes (violin plots) and ROC curve on their combined expression values for HPV
infection status in HNSCC specimens. HNSCC: head and neck squamous cell carcinoma.

The amount of six TII cell types (B cells, CD4 T cells, CD8 T cells, neutrophils,
macrophages, and dendritic cells) in the tumor microenvironment of HNSCC, LuSCC,
and CeSCC was estimated using Tumor IMmune Estimation Resource (TIMER), a web
resource for the evaluation of clinical relevance of tumor-immune infiltration. The correla-
tion of NMRG expression with immune infiltration level was further evaluated (Table 1).
The data revealed that although TII cells examined were found in all SCC types, the best
correlations with NMRG expression were observed in HNSCC. On the contrary, poor
correlations were observed in CeSCC.

Considering HNSCC, CD4+ T cells were the most relevant immune cells positively
correlated with NMRG expression (13/16 genes). The expression of seven NMRGs (i.e.,
AOX1, ENPP1, ENPP2, NADK, SIRT1, CD38, and PARP1) was positively correlated to
infiltrating levels of all TII cells. On the contrary, PNP and SIRT3 expression displayed
significantly negative correlations with TII amount.

Considering LuSCC, the levels of neutrophils, macrophages, and CD8+ T cells were
significantly positively associated with most of the NMRGs (10/17, 10/17, and 9/17 genes,
respectively). The expression of seven NMRGs (i.e., AOX1, NNMT, ENPP1, ENPP2, ENPP3,
SIRT1, and CD38) positively correlated with an increase of all TII cells.

Considering CeSCC, the levels of B cells, CD4+ T cells, and macrophages were signifi-
cantly positively associated with most of the NMRGs (7/17, 7/17, and 5/17, respectively).
Only ENPP2 had a significantly positive correlation with the increase of all TII cells.

Our results suggest a potential role of NMRGs in the tumor immune microenvironment
changes mainly in HNSCC.
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Table 1. Correlation of NMRG expression with immune infiltrates and checkpoints. Red spots indicate a significant positive correlation, blue spots indicate a
significant negative correlation and grey spots indicate no correlation. Data obtained with genes displaying low or undetectable expression in tumor samples are
in grey.
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AOX1 0.24 0.13 0.41 0.30 0.23 0.32 0.12 0.17 0.32 0.34 0.35 0.45 0.40 0.50 0.31 0.10 0.18 −0.02 0.11 0.13 0.09 0.08 −0.04 0.00
NNMT 0.05 0.10 0.25 0.45 0.27 0.32 0.08 0.14 0.17 0.29 0.27 0.47 0.48 0.48 0.18 0.01 −0.05 0.01 −0.14 0.23 0.06 −0.03 −0.01 −0.08

NAMPT −0.08 0.06 0.10 0.08 0.11 0.12 0.01 0.25 −0.09 0.05 −0.27 0.03 0.03 −0.06 −0.08 0.38 −0.11 0.05 −0.12 −0.19 0.18 0.20 −0.08 0.26
NMNAT1 0.06 0.02 0.31 0.15 0.22 0.20 0.20 0.12 0.06 0.10 0.16 0.21 0.27 0.18 −0.02 −0.12 0.05 −0.02 0.12 0.08 0.06 0.03 −0.07 0.00
NMNAT2 0.04 −0.05 0.29 0.12 0.12 0.21 −0.05 0.10 0.02 0.13 0.33 0.24 0.27 0.28 0.13 −0.09 −0.03 −0.07 −0.04 −0.04 0.02 −0.09 −0.09 −0.09
NMNAT3 0.18 0.03 0.14 0.07 −0.15 −0.04 0.05 −0.17 0.00 −0.15 −0.08 −0.15 −0.26 −0.23 −0.09 0.07 0.13 0.00 0.14 −0.02 −0.07 0.08 −0.02 0.02

ENPP1 0.27 0.20 0.35 0.48 0.13 0.40 0.12 0.07 0.17 0.18 0.21 0.20 0.15 0.28 0.19 0.06 0.17 −0.01 −0.01 0.30 −0.08 −0.16 −0.11 −0.21
ENPP2 0.41 0.50 0.65 0.73 0.57 0.75 0.56 0.36 0.42 0.48 0.39 0.58 0.49 0.66 0.43 0.26 0.30 0.41 0.34 0.42 0.34 0.41 0.33 0.17
ENPP3 0.46 0.35 0.35 0.30 0.17 0.34 0.32 0.11 0.26 0.24 0.19 0.26 0.28 0.24 0.18 0.07 0.15 0.12 0.07 0.21 −0.03 −0.13 0.03 −0.22

NMRK1 0.06 0.16 0.19 0.16 0.18 0.17 0.26 0.14 0.00 0.03 −0.14 −0.02 −0.15 −0.09 0.00 0.27 −0.13 0.06 0.03 −0.03 0.05 0.14 0.00 0.12
PNP −0.29 −0.19 −0.15 −0.15 0.01 −0.12 −0.22 0.13 −0.13 −0.10 −0.04 0.07 0.09 0.05 −0.11 −0.02 −0.15 −0.07 −0.10 −0.11 0.03 0.05 −0.19 0.09

NADK 0.11 0.17 0.40 0.26 0.36 0.33 0.30 0.25 0.08 0.03 0.41 0.14 0.17 0.25 0.25 0.08 0.09 0.05 0.17 0.11 0.15 0.09 0.03 0.03
NADSYN1 0.02 −0.05 0.04 0.01 −0.06 −0.06 −0.06 −0.02 −0.01 −0.18 0.14 −0.11 −0.12 −0.11 0.06 0.06 0.00 −0.09 0.22 −0.02 0.06 0.04 −0.02 0.10

SIRT1 0.20 0.15 0.45 0.28 0.25 0.34 0.21 0.27 0.25 0.28 0.37 0.30 0.27 0.36 0.28 0.03 0.01 0.11 0.04 0.03 0.03 −0.06 −0.04 −0.01
SIRT3 −0.13 −0.10 −0.15 −0.07 0.02 −0.07 −0.04 −0.11 −0.06 −0.09 0.04 −0.02 −0.16 −0.07 −0.08 −0.08 −0.10 0.06 −0.14 0.04 −0.08 −0.09 0.06 −0.14
CD38 0.27 0.35 0.35 0.31 0.37 0.42 0.41 0.27 0.47 0.42 0.24 0.28 0.35 0.45 0.55 0.31 0.29 0.45 0.38 0.11 0.49 0.56 0.55 0.34

PARP1 0.24 0.19 0.39 0.28 0.19 0.30 0.26 0.18 0.10 0.01 0.18 −0.11 −0.01 0.07 0.20 0.19 0.19 0.10 0.16 0.03 0.13 0.15 0.06 0.10
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3.6. NMRGs and Immune Checkpoints

Immunotherapy treatments are based on the activation or inhibition of molecules that
orchestrate the host immune response and display impressive results in different cancer
types, increasing survival with less severe side effects. The most important inhibitory
targets are CTL4, PD-1 (PDCD1), and its ligand PD-L1 (CD-274) [27]. Notably, NAD+
metabolism drives IFNγ-induced PD-L1 expression to lead to tumor immune evasion [28].

The correlation between NMRGs and PD-1 or PD-L1 expression in HNSCC, LuSCC,
and CeSCC was evaluated using TIMER2.0. The Spearman’s Rho correlation values are
reported in Table 1.

Similar to what was observed for TII cells, the best correlations of NMRGs with PD-1
or PD-L1 expression were mainly observed in HNSCC. On the contrary, poor correlations
were observed in CeSCC.

Our results indicate that NMRG is associated with a suppressive immune microenvi-
ronment mainly in HNSCC.

3.7. NMRGs as Prognostic Biomarkers

Several factors can affect patients’ prognosis, including a weakened immune system,
tumor location, dimension and depth, and recurrence due to therapy resistance. Early
diagnosis improves the survival of patients with SCCs. However, most patients cannot be
screened early due to the lack of available biomarkers [1].

To investigate if NAD-metabolism genes may be prognostic markers or therapeutic
targets, we analyzed how their expression relates to patient survival. Survival data are
reported in Table S5. Expression levels were categorized as “high-level” (i.e., above the
median value) and “low-level” (i.e., below the median value).

High-level expression of NNMT, NAMPT, and PNP was significantly associated with
HNSCC’s poor prognosis (Table S5 and Figure 8A–C). Moreover, the down-regulation of
NADSYN1 and up-regulation of AOX1 and NMNAT1 were associated with LuSCC and
CeSCC poor prognosis, respectively (Table S5 and Figure 8D–F).

The overall survival for HNSCCs and CeSCCs was also investigated using a combina-
tion of these specific NMRGs. Notably, the signature “NNMT, NAMPT, PNP” displayed an
increased prognostic significance for HNSCCs with respect to single NMRGs (Figure S4).
Likewise, the signature “AOX1, NMNAT1” had a higher prognostic power for CeSCC
compared to that of single NMRGs (Figure S4).

To evaluate whether SCC’s poor prognosis was correlated to immune checkpoint
alteration, we investigated the expression of PD-1 and PD-L1 biomarkers in high- and
low-risk groups (Figure 8) and their correlation with NMRG levels (Table 2). PD-1 and
PD-L1 were significantly up-regulated in high-risk HNSCC with high NNMT1 levels. In the
low-risk group, NNMT1 levels positively correlated with PD-L1 expression (Figure 8A and
Table 2). Considering high-risk HNSCC with high NAMPT, PD-L1 was significantly up-
regulated. In the low-risk group, its expression significantly correlated with NAMPT levels.
PD-1 expression did not vary between risk groups although in the high-risk group, their
levels inversely correlated with NAMPT expression. In the low-risk group, NAMPT levels
positively correlated with PD-L1 expression (Figure 8B and Table 2). Considering high-risk
HNSCC with high PNP, PD-1, and PD-L1 were significantly down- and up-regulated,
respectively. In the low-risk group, PD-1 and PD-L1 levels correlated with PNP expression
in a negative or positive manner, respectively (Figure 8C and Table 2). PD-1 and PD-L1 did
not vary between LuSCC risk groups. In the high-risk group, NADSYN1 levels positively
correlated with PD-L1 expression (Figure 8D and Table 2). Considering high-risk CeSCC
with high AOX1, PD-1 was significantly up-regulated. No correlations were found between
AOX1 levels and PD-1 or PD-L1 expression (Figure 8E and Table 2). PD-1 and PD-L1 did
not vary between CeSCC risk groups expressing NMNAT1. Furthermore, no correlations
were found between NMNAT1 levels and PD-1 or PD-L1 expression (Figure 8F and Table 2).
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Table 2. Correlation data between NMRGs and immune checkpoint expression. * p ≤ 0.05, ** p ≤ 0.01,
**** p ≤ 0.0001, ns = no significance.

Pearson r R Squared p Value Significance N. of
Samples

HNSCC

NNMT

HIGH vs. PD-1 0.06658 0.004433 0.2934 ns 251

HIGH vs. PD-L1 −0.01235 0.0001526 0.8456 ns 251

LOW vs. PD-1 0.06059 0.003671 0.3371 ns 253

LOW vs. PD-L1 0.1235 0.01525 0.0497 * 253

NAMPT

HIGH vs. PD-1 −0.1952 0.03812 0.0026 ** 235

HIGH vs. PD-L1 −0.08881 0.007886 0.1749 ns 235

LOW vs. PD-1 0.0748 0.005595 0.2214 ns 269

LOW vs. PD-L1 0.2659 0.07072 <0.0001 **** 269

PNP

HIGH vs. PD-1 −0.06807 0.004634 0.2677 ns 267

HIGH vs. PD-L1 0.0304 0.0009239 0.621 ns 267

LOW vs. PD-1 −0.1378 0.01899 0.034 * 237

LOW vs. PD-L1 0.1493 0.02228 0.0215 * 237
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Table 2. Cont.

Pearson r R Squared p Value Significance N. of
Samples

LuSCC NADSYN1

HIGH vs. PD-1 0.03129 0.0009792 0.6354 ns 232

HIGH vs. PD-L1 −0.02539 0.0006447 0.7005 ns 232

LOW vs. PD-1 0.06948 0.004827 0.2597 ns 265

LOW vs. PD-L1 0.1615 0.02609 0.0084 ** 265

CeSCC

NMNAT1

HIGH vs. PD-1 −0.09107 0.008294 0.2293 ns 176

HIGH vs. PD-L1 −0.08989 0.00808 0.2354 ns 176

LOW vs. PD-1 0.1255 0.01575 0.1548 ns 130

LOW vs. PD-L1 0.07924 0.006279 0.3702 ns 130

AOX1

HIGH vs. PD-1 0.009421 0.00008875 0.9208 ns 114

HIGH vs. PD-L1 0.1465 0.02146 0.1199 ns 114

LOW vs. PD-1 −0.03515 0.001236 0.6284 ns 192

LOW vs. PD-L1 −0.1138 0.01295 0.116 ns 192

4. Discussion

Given the broad range of tissues in which SCC arises, it represents the most common
cancer worldwide [1]. SCCs share several features, including genetic and epigenetic alter-
ations, and the impact of the microenvironment on tumor development and progression.

Several studies showed NAD+ metabolism dysregulation in tumors [10]. However, no
NMRGs have been reported as diagnostic or prognostic biomarkers/signatures for HNSCC,
LuSCC, and CeSCC.

Using the TCGA dataset, we identified an NMRG profile, composed of 16 genes, able
to discriminate these SCC tumors from KIRC, SARC, and GBM specimens. Otherwise,
a profile composed of 16 genes encoding for enzymes of the glycolysis did not display
a discriminating power between different tumors. Therefore, the NMRG profile can be
considered a relevant biomarker of SCCs underlying the significance of NAD+ metabolism
in their pathogenesis. This finding agrees with preclinical and clinical studies that evidence
a key role of NAD+ precursors in SCC prevention and therapy [10,12–16,29].

Furthermore, our analyses indicate that NAD+ metabolism can be an important source
of SCC diagnostic biomarkers:

(i) several differentially expressed NMRGs display good diagnostic power in discrim-
inating tumors from control specimens. Specifically, we found 6 genes for HNSCC
(AOX1, NMNAT2, ENPP3, NADK, CD38, and PARP1), 11 genes for LuSCC (AOX1,
NNMT, NMNAT2, NMNAT3, ENPP2, ENPP3, NMRK2, NADSYN1, SIRT1, CD38, and
PARP1) and 11 genes for CeSCC (AOX1, NMNAT3, ENPP1, ENPP2, ENPP3, NMRK2,
PNP, NADSYN1, SIRT1, SIRT3, and CD38);

(ii) three differentially-expressed NMRGs can be considered relevant SCC-type spe-
cific biomarkers;

(iii) specific NMRG signatures display high diagnostic power for several clinical-pathological
characteristics.

The identification of these biomarkers could also give insight into common or specific
pathogenetic mechanisms. In fact, most differentially expressed NMRG biomarkers are
common for two or three SCCs. AOX1, ENPP3, and NMRK2 were down-modulated in all
analyzed tumor specimens, whereas PARP1 was up-regulated. AOX1 down-regulation in
all SCCs underlines its potential importance in SCC pathogenesis. AOX1 encodes aldehyde
oxidase 1 that is down-regulated in several tumors mainly as a consequence of hyperme-
thylation [30–32]. This gene is implicated in the AKT pathway as well as NAD+ catabolism.
For instance, decreased AOX1 activity can allow the accumulation of the MNAM catabo-
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lite. Notably, MNAM is metabolically active and can regulate posttranslational protein
acetylation through Sirt1 modulation [33]. PARP1 up-regulation is a common feature of
analyzed SCC. The enzyme has an important role in the repair of single-strand breaks, the
most common type of DNA damage, and is a well-established therapeutic target for several
tumors, including HNSCC. PARP inhibitors increase DNA damage, enhance immune
priming, and induce adaptive upregulation of PD-L1 expression [34]. ENPP3 and NMRK2
encode enzymes that catalyze the biosynthesis of NAM mononucleotide (NAMN). These
enzymes are up-regulated in colorectal and renal cancers representing specific biomarkers
and therapeutic targets [35–37]. Thus, ENPP3 and NMRK2 down-regulation in all analyzed
SCCs can strengthen the role of NAM replenishment in SCC prevention. Significant down-
regulation of AOX1 and ENPP3 and up-regulation of PARP1 are also observed in cutaneous
SCC (data from GSE datasets). Data regarding NMRK2 are not available. Therefore, the
common modulation of these three genes can play a key role in SCC pathogenesis.

Between differentially expressed NMRGs, NADK up-regulation resulted in an HNSCC-
specific diagnostic biomarker. NADK up-regulation can be due to gene mutations or
activated oncogenic signaling [38,39]. NADK catalyzes the phosphorylation of NAD+ to
NADP+ using ATP. The reduced form NADPH is high in proliferating tumor cells and
acts as a cofactor for the synthesis of macromolecules as well as ROS scavengers [39].
Thionicotinamide and other NAM analogs are able to inhibit NADK by targeting its NAD+
binding site. They sensitize cells to chemotherapeutic agents by increasing ROS levels and
inhibiting NADPH-dependent synthetic pathways [40].

NNMT down-regulation resulted in a LuSCC-specific diagnostic biomarker. NNMT is
an intracellular methyltransferase that catalyzes N-methylation of NAM to form MNAM, in
which S-adenosyl-L-methionine (SAM) is the methyl donor. MNAM is eventually excreted
from the body. A growing body of evidence indicates that, beyond clearance of excess
vitamin B3, NNMT is implicated in the regulation of multiple metabolic pathways in tumor
cells by remodeling cellular epigenetic states and generating active metabolites. As NNMT
has been found up- or down-regulated in different tumors, it seems to play a complex role
in cancer progression and function in a tissue-specific manner [33,41–43]. The observed low
expression of NNMT in LuSCC TCGA samples can induce an unbalance of NAM and SAM
levels and, in turn, affect NAD+-dependent redox reactions as well as the regulation of the
epigenetic landscape. For instance, the knockdown of NNMT in tumor cell lines increases
the SAM/SAH ratio and global H3K9 and H3K27 trimethylation. Other molecules in
addition to histones can be differentially methylated by changes in NNMT expression and
SAM levels [41].

ENPP1 down-regulation resulted in a CeSCC-specific diagnostic biomarker. ENPP1
participates in the hydrolysis of different purine nucleotides in several processes, is fre-
quently overexpressed in tumors, and is associated with poor prognosis and survival.
ENPP1 promotes an immunosuppressive tumor microenvironment by the imbalance of
ATP/adenosine and impairs the STING (stimulator of interferon genes) pathway immune
response by the hydrolysis of the effector cGMP–AMP [44]. Thus, ENPP1 down-regulation
can be unfavorable for creating an immunosuppressive landscape in CeSCC but could
foster a strong interferon-mediated immune response.

Although further in vitro and in vivo experiments will be needed, AOX1 can be a
potential common therapeutic target for SCC treatment, whereas NADK, NNMT, and
ENPP1 can be for HNSCC, LuSCC, and CeSCC, respectively.

The current therapeutic SCC treatments are mostly based on the TNM staging system
classification, leading to quite homogeneous treatment options for patients. Our bioinfor-
matic analyses identified specific NMRG signatures that display high diagnostic power for
discriminating patients on the basis of several clinical-pathological characteristics such as
stage, grade, or HPV infection. Thus, the validation of these signatures may be helpful for
diagnosis and personalized treatments.

The manipulation of NAD+ bioavailability represents a promising therapeutic strat-
egy [10,12,29]. Preclinical studies indicated that NAM administration is tumor suppressive
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by disrupting several processes such as proliferation, apoptosis, invasion, and metastasis.
Moreover, NAM administration can re-establish sensitivity to therapy in chemoresistant
forms, inhibit T cell exhaustion, and increase T cell differentiation, and have important im-
plications in immunotherapy [12,26]. The role of NAD+ in immunomodulation is context-
and signaling-pathway-specific [26]. Our bioinformatic analyses indicate a potential SCC-
type specific role of NMRGs in the tumor immune microenvironment changes. Indeed, the
correlation between NMRG levels and TII cells or suppressive immune milieu is mainly
observed in HNSCC samples. The lowest association is observed in CeSCCs.

Furthermore, the evaluation of the overall survival, based on NMRG expression levels
in patients from the TCGA dataset, identified potential prognostic biomarkers or ther-
apeutic targets. High-risk HNSCC patients are characterized by high levels of NNMT,
NAMPT, or PNP. Notably, a signature based on these three genes displays good prognostic
power. NNMT and NAMPT levels positively correlated with TII cells in the microenvi-
ronment, different from PNP. An NNMT increase is significantly associated with poor
prognosis and immune suppressive microenvironment in many tumors [45]. We found
that the high-risk group with high NNMT levels displays a significant increase in PD-1
and PD-L1. Also, NAMPT up-regulation is correlated with unfavorable overall survival
in several tumors. NAMPT-mediated signaling plays a key role in tumor progression by
modulating proliferation, cell plasticity, cytokine secretion, angiogenesis, metastasis, and
in microenvironment modifications [46]. Indeed, NAMPT drives INFγ-induced PD-L1
expression and induces tumor immune evasion in a CD8+ T cell-dependent manner [28].
Moreover, NAMPT overexpression effects can also confer chemoresistance to anticancer
drugs [46]. In keeping with the literature data, we found that the high-risk group of patients
with high NAMPT levels shows a significant increase in PD-L1. The high-risk group with
high PNP expression displays decreased levels of PD-1 and a slight increase of PD-L1. Up
to now, data concerning an association between PNP increase and tumor survival have not
been reported. However, the enzyme purine nucleoside phosphorylase may play a role
in cancer chemoresistance by catalyzing the degradation of potentially cytotoxic purine
analogs [47].

High-risk LuSCC patients are characterized by low levels of NADSYN1. Its levels neg-
atively correlated with TII cells and no significant difference in PD-1 or PD-L1 expression
was observed between high- and low-risk groups. Up to now, no data have been reported
regarding NADSYN1 and tumor survival. NAD synthetase is an enzyme for NAD+ biosyn-
thesis from tryptophane and, thus, is involved in NAD+ replenishment. Notably, NAM
administration is able to suppress lung tumor formation in animal models [12].

High-risk CeSCC patients are characterized by high levels of AOX1 and NMNAT1.
Of note, a signature based on these two NMRGs displays a good prognostic power. The
expression level of AOX1 and NMNAT1 correlates with the infiltration of a few TII cell
types. The high-risk group with high AOX1 levels displays a significant increase in PD-1
expression. No significant difference in PD-1 or PD-L1 expression was observed between
high- and low-risk groups expressing NMNAT1. High levels of AOX1 are associated with
better prognosis of bladder, renal, and pancreatic cancers [31,39], whereas high NMNAT1
expression is associated with poor survival in cancer patients with hepatocellular carci-
noma [48]. Although NNMT1, NAMPT, and AOX1 are well-studied enzymes in several
tumors, PNP, NADSYN, and NMNAT1 stand out as additional understudied enzymes that
justify further validation as therapeutic targets.

5. Conclusions

Our study is focused on the bioinformatic investigation of an NMRG profile as a
source of potential SCC biomarkers and therapeutic targets.

Beyond the well-established tumor marker PARP1, AOX1 can be a potential common
therapeutic target for SCC treatment. The hypermethylation of the gene suggests that
epigenetic drugs can be a promising tool to be assayed. The down-regulation of ENPP3
and NMRK2, found in all SCCs, can reduce NMAN bioavailability. Our findings agree with
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SCC preclinical and clinical studies using NAD+ precursors underlying their importance as
a drug for chemoprevention and adjuvant therapy. Furthermore, the use of NAM analogs
can be a promising strategy for synergizing with chemotherapy by NADK inhibition.

Therefore, future experimental studies concerning identified NMRGs and their vali-
dation on different populations may provide additional insights into pathogenetic mecha-
nisms as well as improve the therapeutic choice.
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(red); LuSCC (blue) and CeSCC (green). HNSCC: head and neck squamous cell carcinoma; LuSCC:
lung squamous cell carcinoma; CeSCC: cervix squamous cell carcinoma. Figure S2. Modulation of
different NMRG expressions based on SCC types. HNSCC: head and neck squamous cell carcinoma;
LuSCC: lung squamous cell carcinoma; CeSCC: cervix squamous cell carcinoma. Figure S3. AUC
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