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Simple Summary: Prostate cancer is a prevalent cancer in men. Metastatic disease is initially
responsive to androgen receptor signaling inhibition, but eventually resistance develops despite
continuation of therapy. This resistance involves multiple adaptations in the cell but also to the tumor
microenvironment, including epigenetic alterations. Epigenetic alterations change gene expression
without DNA sequence modifications and play a key role as regulators of cell functions both in the
tumor and the tumor microenvironment. Moreover, these epigenetic alterations highlight potential
therapeutic targets. Targeting these epigenetic modifications could improve androgen receptor-
targeted therapy and enhance anti-tumor immunity. In this review we discuss the role of epigenetics
in prostate cancer, strategies to target them, and their impact on the tumor microenvironment, with
the goal of identifying novel therapeutic avenues for advanced prostate cancer.

Abstract: Prostate cancer is the second most common cancer in men worldwide and is associated
with high morbidity and mortality. Consequently, there is an urgent unmet need for novel treatment
avenues. In addition to somatic genetic alterations, deviations in the epigenetic landscape of can-
cer cells and their tumor microenvironment (TME) are critical drivers of prostate cancer initiation
and progression. Unlike genomic mutations, epigenetic modifications are potentially reversible.
Therefore, the inhibition of aberrant epigenetic modifications represents an attractive and exciting
novel treatment strategy for castration-resistant prostate cancer patients. Moreover, drugs target-
ing the epigenome also exhibit synergistic interactions with conventional therapeutics by directly
enhancing their anti-tumorigenic properties by “priming” the tumor and tumor microenvironment
to increase drug sensitivity. This review summarizes the major epigenetic alterations in prostate
cancer and its TME, and their involvement in prostate tumorigenesis, and discusses the impact of
epigenome-targeted therapies.

Keywords: prostate cancer; epigenetics; tumor microenvironment; androgen receptor targeted therapy;
immunotherapy

1. Introduction

Prostate cancer (PCa) is the second most diagnosed form of cancer among men world-
wide [1]. Most patients present with organ-confined, localized disease, and diagnosis is
often preceded by an increase in serum prostate-specific antigen (PSA) levels. Depending
on the associated risk, patients may be monitored without intervention through active
surveillance (mostly low-grade tumors) or can be treated with radiotherapy to the prostate
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or prostatectomy (removal of the prostate) with curative intent [2,3]. However, approxi-
mately 30% of these patients eventually develop biochemical recurrence—an increase in
serum PSA levels—which is an indication of metastatic disease [2,4]. The treatment of
these patients requires a systemic approach, with androgen receptor (AR)-targeted ther-
apies as the most important pillar. Androgen deprivation therapy (ADT) represents the
mainstay treatment for the patient population with metastatic disease who cannot be cured.
ADT aims to suppress the testicular biosynthesis of androgens in order to inactivate AR
signaling—the key driver of PCa initiation and progression [5]. AR represents a critical
regulator in PCa cells and has been the focus of therapeutic development in recent decades.
AR is a hormone-driven transcription factor essential for normal prostate development
but also tumorigenesis [6,7]. Mechanistically, AR interacts with its natural ligand testos-
terone, dimerizes and translocates to the nucleus [7]. In the nucleus, AR binds the DNA
at androgen response elements (AREs), driving the expression of androgen-responsive
genes to promote cell survival and cell growth. Other transcription factors, such as FOXA1
and HOXB13, serve as pioneer factors for AR and render chromatin accessible to facilitate
AR-driven transcriptional programs [8,9]. AR is expressed in virtually all primary prostate
tumors, and remains expressed in most metastases [6,10].

Although practically all patients initially experience tumor regression following AR-
targeted therapy, the response is only transient, ultimately leading to metastatic castration-
resistant prostate cancer (mCRPC), which remains uncurable. The most prominent resis-
tance mechanism in mCRPC involves restoration of the AR signaling axis and, consequently,
continued dependence on androgen-signaling pathways, through somatic amplifications
of the AR gene itself [11] and/or an upstream AR enhancer [12,13], or the expression of
constitutively active AR splice variants (AR-SV), of which AR-V7 is the best studied [14,15].
In addition, in vitro studies have revealed other mechanisms by which PCa cells can acquire
hormone therapy resistance, such as intratumoral androgen production or AR compen-
sation through glucocorticoid receptor action [16]. Next to genetic alterations, epigenetic
rewiring [17,18] and transdifferentiation are also mechanisms of resistance, including neu-
roendocrine (NE) prostate cancer, which occurs as an adaptive response under the pressure
of prolonged AR-targeted therapy [19,20]. Therapy-resistant mCRPC highlights the need
for new approaches to treat advanced disease. An alternative treatment approach currently
being explored is based on the fact that cancer is a disease not only driven by genetic
mutations, but also dictated by epigenetic alterations [21]. Recent studies have shown that
the epigenomic landscape in mCRPC is remarkably reprogrammed compared to indolent
treatment-naïve PCa [22,23]. These epigenetic modifications reprogram the cascade of
various transcription factors and affect downstream gene expression, thereby driving PCa
plasticity and neuroendocrine differentiation. Distinct from genetic mutations, epigenetic
influences refer to modifying gene expression without permanent changes in the genomic
sequence. Since epigenetic modifications are reversible and more rapidly altered compared
to genetic changes, they are preferentially adopted by cancer cells, for example, in response
to treatment or during disease progression [17,24–26]. Exploring the role of the epigenome
in the development of treatment resistance may reveal epigenetic processes that are suscep-
tible to novel therapeutic interventions [21] and lead to the discovery of unique diagnostic
or predictive biomarkers [22,27].

The prostate tumor microenvironment (TME) plays a critical role in the development
and progression of PCa, and altering the TME could potentially provide novel ways to treat
patients and improve survival [28–31]. Furthermore, epigenetic alterations occur in tumor
cells, but also in cells within the TME. Therefore, targeting epigenetic modifications may
boost anti-tumor immunity and could enhance current therapies [4,32]. In this review, we
will touch upon four main questions: (1) What are the roles of various epigenetic modifiers
in PCa initiation, progression and aggressiveness? (2) How can epigenetic alterations be
targeted in PCa? (3) What is the role of epigenetic aberrations in shaping the immunosup-
pressive properties of the prostate tumor microenvironment? (4) Are epigenome-targeting
agents able to reverse tumor-associated immune evasion and therefore sensitize PCa to
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immunotherapy? We will collectively highlight which specific epigenetic alterations in
tumor cells and the TME are emerging as potential targets for the treatment of advanced
PCa and discuss promising avenues to explore for future therapeutic development.

2. What Are the Roles of Various Epigenetic Modifiers in PCa Initiation, Progression
and Aggressiveness?

In embryonic development, the dynamics of epigenetic-mediated gene regulation plays
a key role, and this type of gene regulation is frequently reactivated in cancer initiation and
progression [33–35]. Epigenetic modifiers can be differentially expressed in tumor tissues
compared to their normal counterparts, resulting in altered epigenetic profiles contributing
to the initiation and progression of cancer [36]. An overview of important epigenetic
modifiers affecting PCa is depicted in Figure 1 and discussed in further detail below.
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Figure 1. Graphic overview of important epigenetic modifications affecting PCa. Epigenetic modifi-
cations impact prostate tumorigenesis. Aberrant histone modifications affecting PCa are associated
with histone acetylation and methylation. The modification of histone tails requires epigenetic writers
(HAT, HMT, EZH2), depicted in pink and purple, depositing post-translational modifications at his-
tone tails and epigenetic erasers (HDAC, H/KDM), depicted in blue, and removing them. Epigenetic
readers (e.g., BRD-containing proteins), depicted in green, exert a variety of different catalytic and
scaffolding functions. (HAT, histone acetyl transferase; HMT, histone methyl transferase; HDAC,
histone deacetylase; H/KDM, histone lysine demethylase; BRD, bromodomain; EZH2, Enhancer of
Zeste 2). Image adopted from BioRender.com.

Histone Modifiers in Prostate Cancer Development, Progression and Treatment

Histone modifications and their mediators play a critical role in DNA transcription
and replication, chromosome packaging and DNA repair [37,38], and deviations in their
regulators promote prostate tumorigenesis [27]. For example, histone deacetylase (HDAC)
overexpression can lead to gene silencing [39] and is associated with PCa progression and
aggressiveness [40], with HDAC2 serving as an independent prognostic marker [41,42]. In
addition, histone lysine demethylases (KDMs) are a group of histone-modifying enzymes
that can remove both activating and repressive histone marks. KDMs are grouped into
seven classes, each targeting a specific type of methylation. Histone lysine demethylase
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1A and 4C (KDM1A and KDM4C) are associated with PCa progression and androgen-
dependent proliferation [22]. KDM1A (LSD1) is overexpressed in primary tumor lesions
and correlates with an increased risk of recurrence [21,43]. Mechanistically, KDM1A
demethylates H3K9me1 and me2, often associated with heterochromatin, and interacts with
AR to allow AR-mediated gene transcription [44]. KDM4C, which localizes to KDM1A, also
demethylates H3K9me1-3 to enhance AR function, linking both KDM1A and KDM4C to
androgen-dependent proliferation [21,22]. In addition, another histone lysine demethylase,
KDM5D, has been shown to act as a tumor suppressor by physically interacting with AR in
the nucleus and regulating its transcriptional activity by demethylating H3K4me3 active
transcription marks, to suppress AR signaling [22,45].

Another histone-modifying enzyme that has been implicated in promoting tumorigen-
esis is Enhancer of Zeste 2 (EZH2), the catalytic subunit of polycomb repressive complex 2
(PRC2) and a key epigenetic repressor of gene transcription, which catalyzes the trimethy-
lation of H3K27 (H3K27me3) [21,27,46]. In contrast, EZH2 also serves as a coactivator for
several transcription factors, including AR [22]. EZH2 overexpression and amplification
increase as tumors progress to metastatic disease and can lead to the aberrant silencing of
tumor suppressor genes [27,47].

Another prominent example of the influence of histone-modifying enzymes on PCa de-
velopment is the frequent dysregulation of bromodomain-containing (BRD) proteins [22,48].
BRD-containing proteins are chromatin readers with a variety of different catalytic and scaf-
folding functions within the cell. For example, BRD4 is a critical regulator of AR expression
and is frequently upregulated in mCRPC. In addition, AR co-regulators p300 and CBP are
paralogous proteins that are frequently increased in mCRPC and serve as transcriptional
regulators. They contain bromo- and histone acetyltransferase (HAT) domains and are
capable of acetylating histone H3 at lysine residue 27 (H3K27ac) [22,49], a mark for active
enhancers and gene transcription [50–52]. In addition, p300 and CBP can acetylate AR
at lysine 632 and lysine 633, enhancing the AR’s activation status [53]. The increased
expression of BRD4, p300 and CBP results in the progression of AR-dependent PCa, and
they are all associated with PCa tumorigenesis and poor prognosis [22,41], rendering these
proteins interesting therapeutic targets.

Lastly, Nicotinamide N-methyltransferase (NNMT), a metabolic enzyme that catalyzes
the methylation of nicotinamide using the universal methyl donor S-adenosyl-L-methionine
(SAM), connects metabolism with epigenetic remodeling [54]. NNMT can influence several
epigenetic enzymes, such as histone deacetylase sirtuins and NNMT expression, and is
significantly positively correlated with both stromal and immune components, resulting
in a tumor-promoting microenvironment [55–57]. Additionally, NNMT is frequently over-
expressed and associated with a poor prognosis in various cancers, including prostate
cancer [58]. NNMT impairs the methylation potential of cancer cells by consuming methyl
units from SAM, thereby creating the stable metabolic product 1-methylnicotinamide, re-
sulting in an altered epigenetic state that includes hypomethylated histones, contributing
to tumorigenesis and the aggressiveness of tumor cells [54].

3. How Can Epigenetic Alterations Be Targeted in PCa?

Epigenetic alterations can be targeted using specific drugs that modulate the activity
of enzymes involved in epigenetic regulation, such as HDACs. These drugs can restore
epigenetic patterns by inhibiting aberrant histone modifications, leading to, amongst others,
the reactivation of tumor suppressor genes and the suppression of oncogenes. Below, we
describe several classes of drugs targeting specific epigenetic modifications.

3.1. Histone Deacetylase Inhibitors

As described above, HDAC inactivation has multiple effects on PCa tumors, including
the induction of apoptosis and suppression of angiogenesis [21,59]. HDAC inhibitors
induce cellular differentiation [60] as well as cell-cycle arrest [61] and the inhibition of
AR-responsive gene transcription [62]. Furthermore, HDAC inhibitors can also inhibit
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the activity of proteins involved in cell proliferation and survival, such as E2F1 and p53,
resulting in the stabilization of these proteins [63–65]. To date, four HDAC inhibitors
(vorinostat, romidepsin, belinostat and panobinostat) have already been FDA-approved for
the treatment of lymphoma and melanoma [22,66]. Notably, while vorinostat, belinostat and
panobinostat are pan-HDAC inhibitors that target different HDAC members, romidepsin is
an agent designed to selectively inhibit HDAC1 and HDAC2 [66]. Interestingly, drug–drug
synergy was observed in cell lines and mCRPC PDX tumors in vitro between enzalutamide
and vorinostat, providing a therapeutic proof-of-concept [67]. In addition, the HDAC3-
selective inhibitor RGFP966 blocks the transcriptional activity of both full-length AR as
well as its constitutively active splice variant, AR-v7 [57]. However, with respect to PCa,
most HDAC inhibitors are currently still being evaluated in preclinical studies. Exceptions
are romidepsin and vorinostat, which entered phase II clinical trials [27] that enrolled
mCRPC patients before (romidepsin) or after (vorinostat) chemotherapy treatment (Table 1).
However, the response was limited to a few patients with a partial response or short-lived
stable disease.

Table 1. Summary of epigenome-targeting agents mentioned in the review (i = inhibitor).

Epigenetic Drug Molecular Target Cancer Type Phase References

Romidepsin HDAC1/2i Chemotherapy naïve mCRPC Phase II Molife et al. [68]

Vorinostat HDACi Progressive mCRPC after 1 prior
chemotherapy treatment Phase II Bradeley et al. [69]

Unfortunately, all patients treated with vorinostat experienced toxicity, and nearly
half of the patients treated with romidepsin discontinued therapy due to toxicity [68,69].
However, because in vitro studies suggest synergism between combined HDAC and AR
inhibition, combination therapy has been evaluated in early clinical trials. Panobinostat
was evaluated in a phase I/II trial together with the AR inhibitor bicalutamide in patients
with recurrent PCa [66]. HDAC1-targeted therapy reduced AR-mediated resistance to bica-
lutamide in CRPC cell lines, with longer progression-free survival for patients treated with
a combination of bicalutamide and panobinostat versus bicalutamide alone (Table 2) [22,70].
However, further studies on the combination of anti-HDAC agents with AR inhibitors are
needed to draw further conclusions on the benefit of the combination.

Table 2. Summary of epigenome-targeting agents mentioned in the review and their respective use in
combination therapies (i = inhibitor, ICB = immune checkpoint blockade).

Epigenetic Drug Molecular Target Combination Type Cancer Type Phase References

Panibostat Pan-HDACi Bicalutamide Anti-androgen Recurrent PCa Phase I/II Ferrari et al. [70]

CPI-1205 EZH2i
Enzalutamide/
Abiraterone/
Prednisone

AR/androgen
biosynthesis

inhibitor/
glucocorticoid

receptor agonist

mCRPC patients Phase Ib/II Taplin et al. [71]

Tazometostat EZH2i
Enzalutamide/
Abiraterone/
Prednisone

AR/androgen
biosynthesis

inhibitor/
glucocorticoid

receptor agonist

mCRPC patients Phase I Abida et al. [72]

ZEN-3694 BETi Enzalutamide ARi CRPC patients Phase II Aggarwal et al. [73]

CCS1477 P300/CBPi

Enzalutamide/
Abiraterone/

Darolutamide/
Olaparib/

Atezolizumab

AR/androgen
biosynthesis

inhibitor/
PARPi/IgG1 ab

Advanced solid
tumors Phase I/II Bono et al. [74]

CPI-1205 EZH2i Ipilimumab Anti-CTLA4 ICB Advanced solid
tumors Phase I/II ClinicalTrial.gov

[75]
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3.2. EZH2 Inhibitors

EZH2 inhibition has been shown to induce interferon-stimulated genes (ISGs) by dere-
pressing double-stranded RNA (dsRNA). This phenomenon is referred to as viral mimicry
and involves the re-expression of dormant endogenous retroviral sequences (ERVs), trans-
posable elements that are often repressed to prevent aberrant autoimmunity [76–78]. Since
the presence of dsRNA in the cytoplasm is associated with viral infections, the transcription
of dsRNA leads to the activation of antiviral signaling pathways and results in anti-tumor
immunity and responsiveness to checkpoint inhibition therapy [79–81]. In murine and
human PCa organoids, it has been shown that treatment with EZH2 inhibitors significantly
induced intracellular levels of dsRNA [82]. In addition, human prostatectomy samples
with low H3K27me3 and increased dsRNA levels had higher PD-L1 expression compared
to patient samples with high H3K27me3 and low dsRNA expression [82]. Targeting EZH2
as a therapeutic strategy for primary PCa or CRPC is considered particularly interesting
as EZH2 not only serves as coactivator of AR, but also binds to the AR promoter region
to amplify its expression [83]. Consequently, most studies evaluating the use of EZH2
inhibitors in PCa have focused on combination therapies involving anti-EZH2 drugs and
AR inhibitors. For example, a phase 1b/2 clinical trial is currently evaluating the effect
of the EZH2 inhibitor CPI-1205 in combination with the AR inhibitor enzalutamide, the
androgen biosynthesis inhibitor abiraterone or the glucocorticoid receptor agonist pred-
nisone in mCRPC patients (Table 2) [20,66,71]. The same AR-targeted therapies are also
being evaluated in a phase I clinical trial for their synergistic effects with tazometostat,
another EZH2 inhibitor, in patients with mCRPC (Table 2) [22,66,72]. Since EZH2 inhibitors
trigger a viral mimicry response, this provides a strong rationale for combining these drugs
with immunotherapies.

3.3. BET, p300/CBP, LSD1 and NNMT Inhibitors

BET inhibitors target the bromodomain and extra-terminal (BET) family, a subset
of BRD-containing proteins [48]. In PCa cell lines and xenografts, it has been observed
that AR signaling is disrupted by BET inhibitors, with BRD4 no longer being recruited to
chromatin [20,84]. Due to the effect of BET inhibitors on AR signaling and the resulting
anti-tumorigenic effects, they have been investigated in particular in combination with
AR inhibitors. One example is the BET inhibitor ZEN-3694, which was evaluated in a
phase II clinical trial in CRPC patients in combination with enzalutamide (Table 2) [20,22].
This combination exhibited promising efficacy and tolerability in patients with mCRPC.
These findings suggest the need for additional prospective studies, particularly in a subset
of mCRPC cases characterized by low AR transcriptional activity [73]. In addition, p300
and CBP are frequently overexpressed in PCa, and their inhibition has shown anti-tumor
activity in preclinical studies. A phase I/II clinical trial using the P300/CBP inhibitor
CCS1477 has shown that AR and MYC signaling is downregulated (Table 2) [74,85]. In
contrast, the evaluation of the efficacy of KDM1A (LSD1) inhibitors as a PCa treatment
has not progressed beyond preclinical studies. KDM1A expression is often increased in
PCa, and preclinical studies in cell lines have demonstrated that inhibiting KDM1A leads
to anti-tumor activity [20,22]. For example, the inhibition of KDM1A was observed to
prevent pioneer factor FOXA1 from binding chromatin, thereby decreasing AR activity and
suppressing tumor growth. These observations make KDM1A a potentially interesting
therapeutic target, although further studies are needed to confirm these findings [22].

In addition, small-molecule inhibitors of NNMT have been developed in recent years
and considered as therapeutics for metabolic diseases, such as diabetes, obesity and fatty
liver disease [86–88]. Furthermore, several NNMT inhibitors show promising results in
targeting cancer. For example, a study using a mouse model of ovarian cancer showed
decreased tumor burden and tumor cell proliferation in mice treated with an NNMT
inhibitor [55]. Another study showed that the use of an NNMT inhibitor reduced tu-
mor cell viability and induced cytotoxicity in 2D/3D clear cell renal carcinoma-derived
tumor models [89].
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In conclusion, epigenetic patterns correlate with clinical and pathological predictors
of PCa phenotype and outcome, and ongoing clinical trials evaluating novel epigenetic
therapies hold promise as potential treatment strategies for patients with advanced PCa.

4. What Is the Role of Epigenetic Aberrations in Shaping the Immunosuppressive
Properties of the Prostate Tumor Microenvironment?

Epigenetic alterations play an important role in shaping the immunosuppressive
properties of the prostate TME [90]. These aberrations can lead to alterations in gene
expression patterns, resulting in the downregulation of immune-related genes and the
upregulation of immunosuppressive factors [91]. In addition, epigenetic modifications
can influence the recruitment and function of immune cells within the TME, ultimately
contributing to immune evasion and tumor progression [92].

4.1. Epigenetics in the Prostate Tumor Microenvironment

PCa is derived from epithelial cells that originate from the luminal cell population of
the prostate [93]. In healthy conditions, tissue organization depends on consistent crosstalk
between epithelial cells and the surrounding stroma [3,58]. Prostate tumor development
is related to several genetic and epigenetic aberrations that result in uncontrolled cell
growth [94]. These epigenetic alterations affect not only tumor cells, but also cells in
the surrounding stroma, resulting in genotypic and phenotypic alterations of stromal
components [93]. In addition, critical features of this abnormal microenvironment, such
as oxidative stress, acidosis and oxygen deprivation, affect the vasculature, the epigenetic
landscape of cells in the TME and the extracellular matrix and lead to the recruitment
of immune cells [94,95]. As a result, a pro-tumorigenic TME is formed that includes an
extracellular/stromal matrix, host cells (fibroblasts, immune cells, pericytes, etc.) and
soluble factors (cytokines/chemokines) [4,96]. Importantly, interactions between the TME
and tumor cells play a key role in tumor progression, metastasis and aggressiveness, as
well as the development of resistance mechanisms [95]. Therefore, in recent years, the TME
has become an increasingly important area of focus in the search for novel therapeutic
approaches to the treatment of PCa.

4.2. Current Therapies Targeting the Prostate Tumor Microenvironment

Most therapies targeting the prostate TME have focused on the adaptive immune sys-
tem and the respective roles of immune cells in tumorigenesis. Cancer vaccines, stimulating
the host immune system by enhancing its recognition of tumor-associated antigens (TAAs),
are currently being investigated for their efficacy as a PCa treatment [4]. This strategy seems
promising since PCa cells express different prostate-specific antigens, such as prostatic
acid phosphatase (PAP), prostate-specific membrane antigens (PSMA) and prostate-specific
antigens (PSA) [97]. A limited number of mechanistically different vaccines have been
explored. One example is cell-based vaccines that use antigen-presenting cells to activate
T-cells, triggering an immune response [4,98]. While most of the vaccines investigated
failed to demonstrate the expected beneficial results, one cell-based vaccine, Sipuleucel-T
targeting PAP, received FDA approval for the treatment of mCRPC in 2010 [97]. However,
the use of Sipuleucel-T is considered controversial since Sipuleucel-T results in a limited
increase in overall survival and no observed effects on PSA levels, symptoms or tumor
burden [97,98]. In addition, immune checkpoint inhibitors have dramatically changed the
treatment landscape of multiple cancer types but have shown limited success as a PCa
treatment. Similarly, the recently developed chimeric antigen receptor T-cell (CAR-T) ther-
apy, which relies on the use of autologous T-cells engineered to recognize tumor antigens,
has shown limited success in clinical trials treating PCa patients thus far [4,97].

4.3. Challenges of Current Therapies

Overall, immunotherapies targeting the prostate TME have faced many challenges.
PCa is widely described as an immunologically “cold” tumor, which generally exhibits an
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immunosuppressive state with limited infiltration of cytotoxic T-cells and low expression
of tumor neoantigens as a result of the low mutational burden of PCa cells [4,97]. The low
accessibility of cytotoxic CD8+ T-cells to the TME leads to the formation of an immune-
evading microenvironment and results in innate resistance to checkpoint inhibitors [99].
In addition, the loss of major histocompatibility complex (MHC) classes I and II, often
observed in PCa, results in the reduced infiltration of cytotoxic T-cells into the tumor,
and it has been shown to be one mechanism of immune evasion in mCRPC cell lines and
clinical specimens [100–102]. Furthermore, the presence of tumor-associated macrophages
(TAMs) is commonly associated with anti-inflammatory responses [103]. In addition to
the immune cell-associated properties that pose challenges for immunotherapies, other
PCa-specific features increase the difficulty of targeting the prostate TME as a therapeutic
strategy. For example, PCa has a low mutational burden, and thereby, decreased neoantigen
expression compared to other tumor types [104]. This results in a potential lack of T-cell
co-stimulation and activation in the prostate TME, which prevents the generation of a
powerful immune response following antigen presentation, a key step in immunotherapy
effectiveness [105]. In addition, chronic inflammation, which is often observed in PCa, leads
to a persistent exchange of inflammatory cytokines, resulting in tumor cell proliferation and
the further formation of an immunosuppressive microenvironment, recruiting TAMs and
myeloid-derived suppressor cells (MDSCs) [106,107]. Finally, cancer-associated fibroblasts
(CAFs) support immunosuppression through the secretion of soluble factors and matrix
proteins [95]. CAFs maintain an immunosuppressive microenvironment by recruiting
regulatory T-cells and TAMs and promote the development of chronic inflammation, as
well as the induction of T-cell exhaustion, through the secretion of cytokines such as TGF-
β [95,108].

In conclusion, PCa is characterized by an immunosuppressive microenvironment
consisting of TAMs, MDSCs and CAFs, with limited cytotoxic T-cell infiltration due to
low levels of neoantigens resulting from a low mutational burden and the loss of MHC
classes I and II. Therefore, agents that reverse this immunosuppressive microenvironment
or enhance anti-tumor properties may have therapeutic potential for PCa patients.

5. Are Epigenome-Targeting Agents Able to Reverse Tumor-Associated Immune Evasion
and Therefore Sensitize PCa to Immunotherapy?

Interestingly, epigenetics is increasingly being explored to target the immune microen-
vironment. Here, we describe epigenetic therapies currently being explored in PCa, and
how these therapies can sensitize PCa to immunotherapies.

5.1. Epigenetic Therapies Targeting the Prostate TME to Increase Tumor Immunogenicity

Combination therapies of epigenome-targeting drugs with AR inhibitors or chemother-
apeutics have been proposed and are under investigation. Similarly, to overcome the
challenges of targeting the prostate TME, many therapeutic strategies are now exploring
the combination of immunotherapies with drugs that may enhance the susceptibility of
PCa to immunotherapeutics. Recent studies have shown that epigenetic aberrations in
tumor and immune cells are also drivers of pro-oncogenic immune dysfunction and the
development of resistance mechanisms to immunotherapies [109]. The reversible nature of
epigenetic modifications and their correlation with the level of tumor immunogenicity has
led to the investigation of epigenetically targeted drugs to potentially reprogram immune
evasion and to increase tumor susceptibility to current immunotherapies [110].

5.2. Enhancing Tumor Immunogenicity Using HDAC Inhibitors

Recent studies have shown that HDAC inhibitors target epigenetic aberrations in both
cancer and cancer-associated cells, and additionally, confer immune-enhancing properties
in immunologically “cold” tumors [110]. Therefore, HDAC inhibitors could potentially
help to overcome resistance and increase the susceptibility of immunosuppressive tumors
to immunotherapies. Antigen presentation by MHC class I molecules on the cell surface
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is essential for the activation of cytotoxic T-cells. To evade the immune response, tumors
use epigenetic modulators, such as HDACs, to decrease and alter the expression of MHC
class I on their cell surface, thereby preventing tumor recognition by T-cells [77,111]. By
using HDAC inhibitors, the expression of antigen-presenting MHC class I molecules has
been observed to be significantly increased in studies using various tumor cells, including
PCa cell lines [77,112]. This increase in MHC class I expression could enhance antigen
presentation, leading to increased cytotoxic T-cell recognition and activation. Further-
more, other MHC class I processing and presentation genes, which are also frequently
decreased in cancer cells, such as TAP1/2 and LMP2, were shown to be increased after
treatment with HDAC inhibitors [77]. It is important to note that all the observed effects of
HDAC inhibitors on the antigen presentation machinery have only been studied in tumor
cell lines, and further in vivo research is needed to confirm these findings. In addition,
epigenetic modulators are used to induce the activation of antiviral signaling pathways.
This treatment strategy is based on viral mimicry and leads to the promotion of type I
and type III interferon signaling [79]. The activation of this signaling pathway leads to
the secretion of pro-inflammatory signaling molecules and the upregulation of antigen
processing/presentation on cancer cell surfaces. Therefore, the induction of “viral mimicry”
would enhance innate and adaptive immune responses and increase tumor susceptibility
to immunotherapies [113]. However, further in vivo studies and analyses of clinical trials
are needed to draw more comprehensive conclusions. Another important factor mediated
by epigenetic modifications that affects the susceptibility of the tumor and its TME to
immune responses is soluble signaling molecules, such as chemokines. The tumor and
TME often suppress pro-immunogenic chemokines using epigenetic modulators to prevent
immune responses such as T-cell infiltration [77,114]. HDAC inhibitors increased T-cell
chemokine expression and infiltration in lung cancer models, inhibited tumor progression
and sensitized cancer cells to PD-1 inhibitors [115]. Again, further studies in other cancer
models are needed to confirm these findings. Finally, HDAC inhibitors also affect MDSCs,
which exhibit critical immunosuppressive properties, such as preventing T-cell proliferation
and activation [4]. MDSCs are, amongst others, mediated by various epigenetic modifica-
tions that affect gene expression and chromatin structure by regulating transcription factor
binding [116]. The induction and differentiation of MDSCs involves histone modifications,
underscoring the impact of histone acetylation on MDSC cell populations. Treatment with
HDAC inhibitors significantly decreases MDSC levels in the TME of prostate adenocarci-
noma mouse models [117]. Furthermore, in mammary tumor-bearing mice, an increase in
T-cells was observed in addition to a reduction in MDSCs numbers in the TME [118]. This
decrease in MDSC levels could further reduce tumor-associated immunosuppression and
sensitize tumors to checkpoint inhibitors.

Epigenetic modifications also play a role in regulating the innate immune response,
particularly NK cells, which are cytotoxic cells [119] whose activity is often downregulated
in the TME [4]. HDAC inhibitors affect the NK cell-mediated killing of tumor cells in
two different ways. In a co-culture experiment, the treatment of colon cancer cells with
HDAC inhibitors resulted in the direct upregulation of the NK activating receptor NKG2D
on the surface of NK cells [77,120]. Mechanistically, HDAC inhibitors induced histone
acetylation at gene promoter sites of the NKG2D receptor, resulting in increased NK cell
binding activity. Other HDAC inhibitors have been shown to increase the expression of
stress-inducing ligands, such as MICA, MICB and ULB-3, on the surface of tumor cells,
thereby increasing the susceptibility of these tumor cells to NK cell-mediated cytolysis [78].

In addition, due to their role in the adaptive immune response, T-cells are the focus of
most immunotherapeutic strategies. One of the most prominent T-cell populations affected
by epigenetic modifications are Treg cells, whose immunosuppressive properties play a
critical role in maintaining the immune-evasive TME [121]. However, targeting Treg cells
with HDAC inhibitors is complicated because they have heterogeneous targets involved
in Treg epigenetic mediation, resulting in a variable response [77]. Therefore, additional
studies are needed to achieve a better understanding of the effect of HDACs on Treg
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cells. Besides Treg cell activation and differentiation, epigenetic modifications also play
an important role in the T-cell differentiation processes leading to T-cell exhaustion [78].
The state of T-cell exhaustion is attributed to the overstimulation of T-cells by antigens,
resulting in non-functional T-cells due to the loss of sensitivity to signaling molecules [122].
T-cell depletion promotes the immune-evading properties of the TME and is often asso-
ciated with the development of immunotherapeutic resistance. Due to the involvement
of epigenetic modulators in the process of chronic overstimulation, drugs targeting these
aberrant epigenetic modifications may be able to reverse T-cell exhaustion and revitalize
them. Consequently, the restoration of T-cell activity could therefore sensitize tumors
to immunotherapies.

5.3. Enhancing Immunogenicity with EZH2 Inhibitors

The increased expression of EZH2 occurs in both tumor and TME-associated cells,
such as T-cells [123], NK cells [124], regulatory T-cells [125] and macrophages [126]. The
pro-tumorigenic effect of EZH2 on tumorigenesis is not limited to tumor suppressor gene
silencing, but also includes oncogenic immune evasion [109]. Similar to HDACs, EZH2 is
involved in MHC regulation. Cancer cells often downregulate these antigen-presenting
complexes and their respective antigen processing pathways to evade immune recogni-
tion [127]. The EZH2-mediated epigenetic silencing of H3K27me3 plays a critical role in
the regulation of the antigen-presenting machinery by suppressing both the activation and
basal levels of MHC classes I and II (Figure 2) [128,129]. In contrast to the heterogeneous
effects of HDACs on Treg cell populations, studies investigating Treg-mediated tumor
immunosuppression observed a significant increase in EZH2 expression, specifically in
tumor-infiltrating Treg cells [128]. This upregulation of EZH2 activity in Treg cells is associ-
ated with the maintenance of Treg cells and their inhibitory properties, thereby promoting
pro-tumorigenic immune evasion [109]. Furthermore, EZH2 upregulation is also associated
with the prevention of T-cell infiltration into the TME by suppressing pro-immunogenic
chemokines or cytokines, such as CXCL9 and CXCL10 [114]. Importantly, the effects of
aberrant epigenetic modulators, including EZH2 overexpression, are not limited to the
adaptive immune response, but also affect the antigen-independent innate immune system,
such as NK cells. During functional immune responses, NK cells recognize tumor cells
and use their cytolytic activities to induce cell death [127]. The upregulation of EZH2 in
both cancer cells and NK cells negatively affects this immune response in two different
ways. On one hand, the upregulation of EZH2 in tumor cells allows the cells to escape the
cytolytic activities of NK cells [109]. On the other hand, the aberrant expression of EZH2 in
NK cells directly inhibits their differentiation and activation [130]. Due to these diverse
effects of EZH2 overexpression in tumor cells and TME-associated cells, the inhibition of
EZH2 using epigenome-targeting agents may lead to a decrease in immunosuppression,
thereby sensitizing tumors to immunotherapies. In addition, anti-EZH2 agents may restore
antigen presentation processes mediated by the re-expression of MHC classes I and II.
Consequently, these effects would lead to T-cell activation as well as an increase in T-cell
infiltration into the TME, thereby distributing pro-tumorigenic immune-evasive properties
(Figure 2). Consequently, tumors treated with EZH2 inhibitors would be more susceptible
to immunotherapies. Furthermore, EZH2 inhibitors could prevent the negative effects of
EZH2 overexpression on NK cells, thereby enhancing NK cell activation and differentiation
and restoring their cytolytic activity to enhance anti-tumor immunity [109,124]. In addition,
EZH2 activity is significantly lower in normal cells than in tumor cells and is particularly
important during embryonic development [111]. As cells mature and differentiate, EZH2
loses its functional importance, making EZH2 a cancer cell-specific therapeutic target. An
ongoing phase I/II clinical trial is evaluating the tolerability and efficacy of the EZH2
inhibitor CPI-1205, which inhibits EZH2 catalytic activity by binding to EZH2, in combina-
tion with the anti-CTL-4 checkpoint inhibitor ipilimumab in patients with advanced solid
tumors (Table 2) [109,131]. Ongoing clinical trials and extensive preclinical studies will
provide further insight into the ability of EZH2 inhibitors to sensitize immunologically
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“cold” PCa to immunotherapies. However, further research is needed to determine the
efficacy, potential side effects and exact role of EZH2 in PCa.
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Figure 2. Graphic overview of the effect of EZH2 on the tumor and TME. The overexpression of EZH2
in cancer and cancer-associated cells promotes oncogenic immune evasion. EZH2 upregulation is
involved in the dysregulation of MHC classes I and II, the maintenance of Treg cells, the suppression of
pro-immunogenic CXCL9/10 chemokines and the inhibition of NK cell activation and their cytolytic
activities. The inhibition of EZH2 could lead to a disturbance in Treg cell activity, a rise in CXCL9/10
chemokine expression and the re-expression of MHC classes I and II. These effects could increase
cytotoxic T-cell activation and infiltration. EZH2 inhibitors could also enhance NK cell activation and
restore their cytolytic activities. Therefore, EZH2 inhibition could decrease immunosuppression and
sensitize tumors to immunotherapies. Adopted from BioRender.com.

5.4. Boosting Anti-Tumor Immunity Using NNMT Inhibitors

NNMT is expressed in tumor cells as well as cells in the TME [56]. The NNMT-dependent
metabolite of nicotinamide, 1-MA, has tumor-promoting and immune-suppressing effects in
ovarian cancer [132]. 1-MA that is secreted by NNMT-expressing fibroblasts and tumor cells
is taken up by T-cells in the TME. In response, T-cells secrete increased tumor necrosis factor-
α (TNFα) and decreased interferon-γ (IFNγ), ultimately leading to decreased cytotoxicity
and an increase in tumor growth. In line with this, in a clear cell renal carcinoma model,
NNMT expression has been correlated with the amount of Treg cells in the tumor tissue [89].
In addition, 1-MNA, alone and in combination with TGFβ, increases the amount of PD1-
expressing CD4 T-cells and, to a lesser extent, CD8 T-cells [89]. Although further experimental
evaluation is needed, this shows that 1-MNA acts as an immune-suppressive metabolite in
clear cell renal carcinoma and ovarian cancer [89,133]. The first data in mouse models did not
report adverse effects of NNMT inhibition or NNMT knockdown [75,133,134]. Furthermore,
NNMT-derived peptides that are specifically represented by HLA molecules on tumors could
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allow for the immunologic targeting of NNMT-expressing primary tumors and metastases, in
addition to molecular targeting [135].

6. Conclusions and Future Perspectives

This review summarizes the impact of epigenetic modifications on prostate tumorige-
nesis and the promising efficacy of targeting the epigenome. Many preclinical studies have
identified epigenetic modifications as attractive therapeutic targets due to their potential
reversibility and heterogeneous effects on pro-tumorigenic mechanisms. Targeting epige-
netic alterations may simultaneously affect cellular mechanisms and signaling pathways
in tumor and tumor-associated cells, as well as innate and adaptive immune responses.
In PCa, HDAC inhibitors are the most widely studied epigenetic drugs, and significant
progress has been made in their development over the past decades. However, clinical
trials evaluating the efficacy of HDAC inhibitors often fail to match the promising results
shown in earlier performed preclinical studies due to their heterogeneous effects. HDACs
are a superfamily consisting of different HDAC subtypes that exert multiple functions in
cellular mechanisms [27]. The landscape and heterogeneity of different HDAC subtypes in
PCa and their role in tumorigenesis is still under investigation. Therefore, first-generation
anti-HDAC agents are mainly pan-inhibitors targeting a variety of HDACs. However, the
lack of specificity of pan-HDAC inhibitors makes it difficult to predict and assess the exact
impact of the epigenetic drug on tumorigenesis, and results in frequent and severe side
effects [136]. To avoid the high toxicity and heterogeneous effects of HDAC inhibitors,
current research focuses on the development of selective inhibitors for specific HDAC
subtypes [27]. In addition, the effect of HDAC inhibitors is particularly dose- and cell
line-dependent, adding additional factors to consider when treating patients with HDAC
inhibitors [21]. More extensive genomics-based selection of patients, for example, with
high expression levels—or mutational status—of certain epigenetic enzymes, may enrich
for patients who experience benefit from HDAC inhibitors treatment.

Although HDAC inhibitors are the most studied epigenetic modifications in PCa,
epigenetic alterations other than histone acetylation also have major impacts on prostate
tumorigenesis. The increased expressions of epigenetic modifiers, such as KDM1A, BRD4
and EZH2, are common epigenetic hallmarks of PCa, and they are currently being investi-
gated as epigenetic drug targets. The development of novel inhibitors targeting different
epigenetic modifications also provides exciting opportunities for combination therapies.
For example, anti-EZH2 agents exert promising new effects on prostate tumorigenesis
when combined with AR inhibitors or immunotherapy [22,109].

Aberrant epigenetic modifications are promising novel drug targets for mCRPC, and
further analysis of epigenetic mechanisms may help to elucidate which aberrant epigenetic
modifications play a critical role in PCa, and this may also lead to the discovery of novel
predictive biomarkers to aid in patient stratification. This is of particular relevance, as
optimal patient selection in clinical trial design increases the likelihood of trial success, and
at the same time, limits any potential adverse effects of the treatment on these patients, who
may experience benefits from the drug. A more thorough analysis the PCa epigenome will
help to better understand potential resistance mechanisms to epigenetic drugs and drive
the development of improved epigenome-targeting agents. However, due to the diverse
and relatively small effects of epigenetic agents as monotherapies, we believe that their use
in combination with other therapies, especially together with AR inhibitors or immunother-
apies, is a more realistic scenario for the near future. Finally, since immunotherapies have
been particularly unsuccessful in PCa, we hypothesize that the use of epigenetic drugs
could lead to major advances by reprogramming this immunologically “cold” tumor type.

Since prostate cancer and its microenvironment are intrinsically heterogeneous, intra-
tumoral and inter-tumoral heterogeneity pose challenges [137]. Moreover, this hetero-
geneity is challenging to model in cell-culture models. Therefore, deeper analyses of the
intra-tumoral heterogeneity of epigenetic factions, in relation to epigenetic therapy effi-
cacy, would allow for a better understanding of clonal selection and treatment-induced
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epigenetic plasticity. A deeper understanding of the complex interplay between epigenetic
modifications and the tumor microenvironment may provide greater mechanistic insights,
which will enable the development of well-thought-out therapeutic strategies in the future
and a new class of drugs for the treatment of mCRPC.
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