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Simple Summary: Ovarian cancer (OC), the most lethal gynecological malignancy, usually presents
in advanced stages. Unlike other gynecological malignancies, advanced epithelial OC often spreads
through peritoneal and lymphatic dissemination to the upper abdomen. Hence, OC necessitates
complex surgical procedures usually involving the upper abdomen with the aim of achieving optimal
cytoreduction without visible macroscopic disease. Omitting dissection of these particular areas can
compromise complete cytoreduction. Neglected anatomical areas that may harbor tumor residues
include the omental bursa; Morison’s pouch; the base of the round ligament of the liver and hepatic
bridge; the splenic hilum; and suprarenal, retrocrural, cardiophrenic and inguinal lymph nodes. These
areas are commonly involved and should be rigorously evaluated in every patient with advanced
epithelial OC as they often preclude optimal cytoreduction. This article provides a meticulous
anatomical description of neglected anatomical sites concealing possible residual disease during OC
surgery and describes surgical steps essential for the dissection of these “neglected” areas.

Abstract: Ovarian cancer (OC), the most lethal gynecological malignancy, usually presents in ad-
vanced stages. Characterized by peritoneal and lymphatic dissemination, OC necessitates a complex
surgical approach usually involving the upper abdomen with the aim of achieving optimal cytore-
duction without visible macroscopic disease (R0). Failures in optimal cytoreduction, essential for
prognosis, often stem from overlooking anatomical neglected sites that harbor residual tumor. Con-
cealed OC metastases may be found in anatomical locations such as the omental bursa; Morison’s
pouch; the base of the round ligament and hepatic bridge; the splenic hilum; and suprarenal, retro-
crural, cardiophrenic and inguinal lymph nodes. Hence, mastery of anatomy is crucial, given the
necessity for maneuvers like liver mobilization, diaphragmatic peritonectomy and splenectomy, as
well as dissection of suprarenal, celiac, and cardiophrenic lymph nodes in most cases. This article
provides a meticulous anatomical description of neglected anatomical areas during OC surgery and
describes surgical steps essential for the dissection of these “neglected” areas. This knowledge should
equip clinicians with the tools needed for safe and complete cytoreduction in OC patients.

Keywords: advanced epithelial ovarian cancer; anatomy; neglected anatomical areas; upper abdomen;
optimal cytoreduction; omental bursa
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1. Introduction

Ovarian cancer (OC) is a rare disease with specific tumor biology and clinical behavior.
Therefore, OC represents one of the major causes of lethality from cancer among women
in developed countries [1]. The majority of patients with advanced epithelial ovarian
cancer (AEOC) are initially diagnosed at an advanced stage of the disease [1,2]. The
main routes of spread include peritoneal and lymphatic dissemination with the upper
abdomen being commonly affected in advanced stages, which, in turn, increases the rate of
lymph node and peritoneal metastatic involvement and decreases the chance for complete
cytoreduction [1]. Therefore, the surgical approach to AEOC has changed in the last few
decades [3–5]. Optimal cytoreduction with no macroscopic visible disease (RO) remains
the most important prognostic factor [3,6,7]. The proficiency and anatomical expertise of
surgical teams significantly influence the quality of optimal cytoreduction. Suboptimal
cytoreduction often arises from the neglect of potential anatomical sites predisposed to
concealing macroscopic tumor residues, often left unexplored during AEOC surgery [8].
Omitting dissection of these particular areas can compromise complete cytoreduction [9].
Anatomical sites that may harbor “neglected” tumor residues include the omental bursa;
Morison’s pouch; the base of the round ligament of the liver and hepatic bridge; the splenic
hilum; and suprarenal, retrocrural, cardiophrenic and inguinal lymph nodes [3,5,7]. A
profound understanding of anatomy is a prerequisite since in most cases the surgeon has
to perform steps like liver mobilization, diaphragmatic peritonectomy and splenectomy, as
well as dissection of suprarenal, celiac and cardiophrenic lymph nodes [9]. Consequently,
oncogynecologists are responsible for the safe, precise and complete dissection of these
anatomical areas. Anatomical areas such as the retroperitoneal pelvic and paraaortic lymph
nodes, diaphragmatic peritoneum, mesentery of small intestine/colon, gallbladder and
omentum are not included in the article, as these areas are always preciously investigated
in cases of abdominal exploration during OC surgery.

The aim of the present article is to describe the potentially neglected anatomical areas
during surgery for AEOC. Additionally, most of the surgical maneuvers useful in dissecting
these areas are described in detail. The neglected anatomical areas in AEOC are shown
in Figure 1.
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Figure 1. Neglected anatomical areas that may contain residual tumor in advanced ovarian cancer
(authors’ own material). 1—omental bursa; 2—Morison’s pouch; 3—base of the round ligament
and hepatic bridge; 4—splenic hilum; 5—suprarenal lymph nodes; 6—retrocrural lymph nodes;
7—cardiophrenic lymph nodes; 8—inguinal lymph nodes.

2. Omental Bursa
2.1. Boundaries

The omental bursa (OB), also referred to as the lesser peritoneal sac, is a natural space
situated between the stomach and the pancreas [10]. The boundaries of the OB are defined
as follows [5,10–12]:

Anterior: The hepatogastric ligament (pars flaccida), the posterior wall of the stomach,
the gastrocolic ligament.

Posterior: The parietal peritoneum covering the right crura of the diaphragm, the
abdominal aorta, the celiac trunk, the pancreas, the left suprarenal gland and the medial
part of the anterior aspect of the left kidney and the duodenum.

Superior: The narrow between the right side of the esophagus and the ligamentum
venosum fissure.

Inferior: The fusion line of the layers of the greater omentum and the transverse mesocolon.
Left lateral wall: Lower bound—the gastrosplenic ligament and the splenorenal liga-

ment; left gastroomental fold; upper bound—the gastrophrenic ligament.
Right lateral wall: The epiploic foramen (Winslow’s foramen).
The OB can also be divided into an infragastric and a supragastric part. The infragastric

part is located posterior to the greater omentum, caudally and posterior to the stomach.
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Surgeons may encounter this part of the OB during supracolic (total) omentectomy. The
supragastric part is located posterior to the lesser sac and cranial to the pancreas. Accessing
this part is more intricate than accessing the infragastric one [13].

2.1.1. Recesses and Vestibule

Within the OB, three peritoneal pouches or recesses can be identified. The superior
omental recess is located between the caudal liver lobe and the diaphragm, whereas the
inferior omental recess extends between the posterior wall of the stomach, the pancreas
and the transverse mesocolon. More caudally, the inferior recess almost vanishes due to
the fusion of the layers of the greater omentum. The superior recess communicates with
the peritoneal cavity through Winslow’s foramen. The splenic recess is situated between
the stomach and the hilum of the spleen [5,10,14].

The vestibule of the OB is located to the left of the epiploic foramen. It is bounded
anteriorly by the hepatoduodenal ligament, superiorly by the caudate lobe of the liver and
postero-inferiorly by the head of the pancreas [11,15].

2.1.2. Hepatoduodenal Ligament and Foramen of Winslow

The greater omentum consists of the gastrosplenic, splenorenal, gastrocolic and gas-
trophrenic ligaments, whereas the lesser omentum is composed of the hepatogastric liga-
ment and the hepatoduodenal ligament (HDL) [11]. The latter is of great interest, as the
portal triad (common bile duct, proper hepatic artery, portal vein) is located beneath the
two peritoneal leaves of the lesser omentum (visceral and parietal peritoneum). The HDL
forms a thick right-sided margin of the lesser omentum, connecting the porta hepatis of the
liver and the superior duodenal flexure [11,15,16]. Between the two leaves of the HDL, the
common bile duct runs right to the portal vein. The proper hepatic artery runs left to the
portal vein [16]. The common bile duct and the proper hepatic artery are located anterior to
the portal vein. The HDL also contains nerves, lymphatics, and fatty and connective tissue.
The anterior vagal trunk of the vagus nerve is also a part of this complex ligamentous
structure, and the lesser curvature of the stomach lies at the left part of the HDL, in close
proximity with the anterior vagal nerve [11,15].

The foramen of Winslow (also referred to as the omental or epiploic foramen) is located
posterior to the HDL. As mentioned above, this foramen is the only natural connection
between the OB and the greater sac. The foramen has the following boundaries: anterior—
the HDL; posterior—the parietal peritoneum covering the inferior vena cava, right crus of
the diaphragm; inferior—the superior part of the duodenum; superior—the caudate lobe
of the liver [11,12].

The anatomy of the supragastric OB is shown in Figure 2.
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Figure 2. Anatomy of the supragastric omental bursa (embalmed cadaver, authors’ own material).
LL—left lobe of the liver; RL—right lobe of the liver; LTH—ligamentum teres hepatis; QL—quadrate
lobe; CaL—caudate lobe; FL—incised falciform ligament; CL—coronary ligament of the left liver
lobe; GSL—gastrosplenic ligament; HGL—hepatogastric ligament; LV—ligamentum venosum; MP—
Morison’s pouch; WF—Winslow’s foramen; CBD—common bile duct; CHD—common hepatic duct;
CD—cystic duct; RGA—right gastric artery; LHA—left hepatic artery; RHA—right hepatic artery;
GDA—gastroduodenal artery; PHA—proper hepatic artery; CHA—common hepatic artery; CT—
celiac trunk; SA—splenic artery; LIPA—left inferior phrenic artery; RIPA—right inferior phrenic
artery; AA—abdominal aorta; SMA—superior mesenteric artery; IVC—inferior vena cava; SV—
splenic vein; PV—portal vein; SMV—superior mesenteric vein; IVM—inferior mesenteric vein;
P—pancreas; S—stomach; Cr—cranial; Ca—caudal; L—left; R—right.

2.1.3. Vessels

The celiac trunk (CT), also referred to as the celiac axis, is the first visceral anterior
branch of the abdominal aorta. It arises immediately after the aortic hiatus at the level of
the T12/L1 vertebral bodies. The CT is approximately 1.5–2 cm long. It runs horizontally
and above the splenic vein before trifurcating into the left gastric artery, splenic artery and
common hepatic artery. This trifurcation is referred to as the “true” tripod because all three
arteries share a common origin. When one of these arteries originates before the other two
along the course of the CT, it is termed a “false” tripod. The left gastric artery is the smallest
branch of the CT and lies slightly cranial to the remaining two arteries [11,15,17]. It passes
between the two leaves of the lesser omentum to run along the lesser curvature of the
stomach. The splenic artery, the largest branch, is slightly to the left of the common hepatic
artery. The splenic artery is a tortuous branch and follows a leftward course slightly above
the neck and tail of the pancreas. At the level of the neck of the pancreas, the artery runs
horizontally before ascending and turning more laterally to terminate in the hilum of the
spleen. The splenic artery gives off branches such as the left gastroepiploic artery and short
gastric arteries. The common hepatic artery runs on the superior part of the duodenum.
It divides into the gastroduodenal, proper hepatic and right gastric arteries [11,15,18].
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The gastroduodenal artery is the first branch that runs caudally and supplies the pylorus,
pancreas and duodenum. The right gastric artery follows a caudal course and passes within
the two leaves of the lesser omentum along the lesser curvature of the stomach. The proper
hepatic artery arises just after the origin of the gastroduodenal and right gastric arteries. It
runs cranially and becomes a part of the portal triad between the two leaves of the HDL.
The proper hepatic artery divides into the left and right hepatic arteries at the level of the
porta hepatis [11,15,18].

The portal vein is the main vessel entering the liver, responsible for carrying about
75% of the blood flow. It arises from the confluence of the superior mesenteric vein and
the splenic vein. The true origin of the portal vein begins immediately after the splenic–
mesenteric confluence, which is located anterior to the IVC and posterior to the neck of
the pancreas at the level of the second lumbar vertebra [19,20]. Three drainage patterns
of the inferior mesenteric vein have been identified: into the splenic vein (type 1a), the
superior mesenteric vein (type 1b) or the confluence of superior mesenteric and splenic
vein (type 2) [21]. Notably, in the majority of cases, the inferior mesenteric vein and the left
gastric vein drain into the splenic vein [11,15]. The portal vein enters the HDL and divides
into left and right branches at the level of the porta hepatis [11,15].

2.1.4. Porta Hepatis

The porta hepatis (PH) is a transverse nonperitoneal fissure located on the inferior
surface of the liver from the gallbladder neck to the fissure for the ligamentum teres hepatis
and ligamentum venosum. The PH is also delimited by the quadrate lobe in front and
from the caudate process at the back. The lesser omentum connects to the PH margins.
Moving from posterior to anterior, the left and right portal veins and the left and right
hepatic arteries enter the PH. Conversely, some lymph nodes emerge from PH along with
the left and right hepatic ducts [11,15,22].

The vessels of the OB are shown in Figure 3.
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left lobe; FL—incised falciform ligament; LV—ligamentum venosum; S—stomach; P—pancreas; GB—
gallbladder; CT—celiac trunk; AA—abdominal aorta; CHA—common hepatic artery; SA—splenic
artery; GDA—gastroduodenal artery; LGA—left gastric artery; LIPA—left inferior phrenic artery;
PV—portal vein; IVC—inferior vena cava; IMV—inferior mesenteric vein; SMV—superior mesenteric
vein; PV—portal vein; SV—splenic vein; Cr—cranial; Ca—caudal; L—left; R—right.

2.1.5. Lymph Nodes

Celiac lymph nodes are situated near the origin of the CT. These nodes are terminal,
as they collect lymph from nodes located near the common hepatic, splenic and left gastric
vessels. Celiac lymph nodes also drain lymph from most internal organs (liver, gallbladder,
stomach, spleen and pancreas) into the cisterna chyli. Right and left small intestinal
lymph nodes originate from the celiac nodes and form the small intestinal lymphatic
trunk [5,11,15,23–25]. The number of celiac nodes varies from 3 to 15 [24,25].

The number of hepatic lymph nodes is variable. They can be divided into hepatic nodes
(receiving lymph from the celiac nodes and located near the hepatic artery), subpyloric
nodes (four or five nodes near the gastroduodenal artery) and cystic nodes (located at the
neck of the gallbladder) [24,25]. The hepatic lymph nodes can be identified in both the PH
and HDL [11,15]. The drainage of the hepatic lymph nodes can be classified into superficial
and deep lymphatic networks. The superficial is later separated into three main groups, the
most common being that passing through the HDL and gastrohepatic ligament. The deep
pathway drains the lymph nodes at the liver hilum, and then from the hepatic lymph nodes
to the nodes at the HDL. The latter can be divided into two chains—the posterior periportal
chain and the hepatic artery chain. The hepatic chain drains into the celiac lymph nodes
and then into the cisterna chyli [23,25].

2.2. Omental Bursa and Ovarian Cancer

The spread of OC into the OB occurs primarily by two routes—transcoelomic (peri-
toneal) spread or progressive lymph node involvement [5].

2.2.1. Transcoelomic Metastases

There are mainly two hypotheses that have been described for the transcoelomic
metastasis model in OC. The “seed and soil” theory explains that tumor cells detach from
the primary tumor and circulate within the peritoneal cavity through peritoneal fluid before
seeding intraperitoneally. The peritoneal fluid and OC cells flow in particular directions in
a clockwise rotation—influenced by gravity, they tend to accumulate in the most dependent
sites. Subsequently, the intraperitoneal fluid follows a cephalad direction towards the upper
abdomen due to the movement of the diaphragm and peristalsis of the bowels. However,
anatomical limitations restrict their movement within certain parts of the peritoneal cavity.
On the right side, peritoneal fluid passes from the pelvis through the right paracolic gutter,
Morison’s pouch, and the OB via the foramen of Winslow. Intraperitoneal fluid flow
also reaches the right subphrenic space, including the liver capsule and the diaphragm.
However, the falciform ligament limits the flow from the right to the left subphrenic space.
Conversely, on the left side, peritoneal fluid is confined by the phrenicocolic ligament to
the left paracolic gutter at the level of the inframesocolic recces [26–28].

The “metaplasia theory” postulates that metastatic omental sites in OC are not true
metastases, but rather a synchronous malignant transformation due to the common lineage
between omentum and ovarian epithelium [26,28].

However, both theories are insufficient to fully explain the pathogenesis of peritoneal
metastases in OC. The “seed and soil” theory does not explain the different distribution
patterns of peritoneal carcinomatosis (some patients have more peritoneal disease in the
upper abdomen than in the pouch of Douglas), whereas the “metaplasia” theory implies
that ovarian peritoneal carcinomatosis spreads randomly in the abdominal cavity [26,28].

In AEOC, the OB is often affected via the transcoelomic route. Peritoneal metastases in
the lesser sac can be found in the following anatomical structures: HDL, PH, medial aspect
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of Winslow’s foramen, caudate lobe of the liver, parietal peritoneum covering the posterior
border of the lesser sac, fissure for ligamentum venosum, subpyloric space, peritoneum
over the transverse mesocolon, and posterior surface of the hepatogastric and gastrocolic
ligaments [5,13]. The subpyloric space is a cul-de-sac, located below the pylorus. Due to
gravity, ovarian tumor cells accumulate in this space along with the peritoneal fluid or
ascites [29].

As previously mentioned, the peritoneal spread of OC to the lesser sac is possible
only through the foramen of Winslow, which is a connection between the lesser sac and
the peritoneal cavity. Thus, transcoelomic lesser sac metastases are absent in cases of
adhesions and occlusion of the epiploic foramen (e.g., as a result of previous surgeries in
the upper abdomen, with cholecystectomy being the most common cause of adhesions
and obliteration of the foramen). Transcoelomic spread to the OB is also linked with
conditions such as ascites, peritoneal carcinomatosis, high peritoneal cancer index (PCI),
involvement of Morison’s pouch and diaphragmatic dissemination [5]. However, tumor
spread into the lesser sac does not consistently follow expected patterns. Supragastric
lesser sac metastases are observed in 70% of patients with a normal supracolic omentum.
Interestingly, the lesser omentum can remain unaffected in about one-fifth of patients with
lesser sac metastases [13]. These findings show that there is no fully reliable predictor
for the transcoelomic spread of OC to the OB. Hence, a thorough assessment of the lesser
sac is imperative in every patient undergoing cytoreductive surgery for AEOC. If upper
abdominal disease is detected, the OB should always be opened and checked. Moreover,
the surgeon must be careful of the adhesions because they may contain metastatic nodules.

The percentage of lesser sac peritoneal carcinomatosis has been estimated in a few
reports; the majority of studies combine descriptions of both peritoneal and lymph metas-
tases [5,13,29]. Mukhopadhyay et al. reported lesser sac peritoneal metastases in 64% of
patients with AEOC. Celiac lymph node metastases were excluded from the study. A PCI
equal to or greater than 17 and involvement of Morison’s pouch were identified as the
strongest multivariate predictors for lesser sac involvement [13]. Raspagliesi et al. found
that 67% of women with AEOC had OB involvement, either peritoneal or lymphatic [5].
The authors specifically estimated transcoelomic dissemination to the OB in 59% of patients,
with 81% having supragastric lesser sac involvement and 19% having peritoneal dissemi-
nation at the HDL [5]. Tozzi et al. investigated the dissemination of PH and hepato-celiac
lymph nodes in 216 patients with AOC. Among these, 31 patients (14.3%) had a tumor on
both anatomical sides, and out of these, 18 (8.3%) patients had only HDL involvement [30].

Transcoelomic tumor dissemination of the OB is shown in Figure 4.
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2.2.2. Omental Bursa Lymph Node Metastases

The other pathway of OC dissemination into the lesser sac is through the lymphatics.
The following lymph nodes could be metastatic: triad (hepatoduodenal), portal and celiac
lymph nodes (CLNs). The real incidence of CLN involvement is unclear as systematic
lymph node dissection is not routinely performed in this region [5,7,30–33]. Studies have
shown that patients with AOC only benefit from the removal of bulky nodes as part of op-
timal cytoreduction [34]. Therefore, the majority of studies included the rate of metastases
among patients with suspicious CLNs [7,30–33]. Angeles et al. reported on 150 patients
with AOC who underwent optimal cytoreduction. Seventeen (11.3%) women had CLN
metastases [7]. Raspagliesi et al. reported on 3 patients (8%) with bulky metastatic CLNs
among 37 women with AOC [5]. Gallota et al. observed metastases to the hepato-celiac
lymph nodes in 52.9% of 85 patients who underwent hepato-celiac lymph node dissection.
However, in their study, the hepato-celiac lymph nodes included also the portal and celiac
triad lymph nodes [35]. Martinez et al. dissected CLNs in 41 women and found CLN
metastases in 23 (56.1%) of the patients. However, the estimated percentage in this study
could not be accurate as the authors included women with recurrent disease [32]. Patients
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with metastatic CLNs have higher PCI and more frequent PH involvement, as well as
more frequent involvement of the mesenteric and paraaortic lymph nodes [5,7,32,33,35].
Martinez et al. reported that 81.1% of patients with CLN involvement had metastatic
paraaortic lymph nodes [33]. Similarly, Angeles et al. observed that all patients with CLN
metastases had metastatic disease of the paraaortic lymph nodes. The authors additionally
found that more than 80% of patients with hepatic and lung recurrence had CLN involve-
ment [7]. Martinez et al. reported that metastases to the CLNs are associated with extensive
upper abdominal disease, hepatic metastases and a median PCI of 21. The authors also
found that 20% of patients with CLN involvement had suspicious mediastinal lymph nodes
on imaging tests (CT and PET-CT) [33]. Therefore, CLN dissection should be performed
after a thorough preoperative evaluation of the mediastinal lymph nodes. The prognostic
impact of CLN involvement is unfavorable as it is associated with decreased disease-free
survival (DFS) and reduced overall survival (OS) due to short-term recurrences, increased
risk of lymph node progression and resistance to platinum-based chemotherapy [7,32,33].
Furthermore, it is important to note that patients with CLN involvement experience poor
outcomes even after undergoing optimal cytoreduction [7,32]. These findings prompt us to
question the appropriateness of assigning these OC cases to FIGO stage IIIC [7,33,36,37].
In fact, there is a growing suggestion that this stage should be re-evaluated and possibly
divided based on a distinct consideration of metastases to infrarenal lymph nodes and
CLNs [7,33]. Notably, some experts have taken this notion a step further, advocating for
classifying CLN metastases in line with FIGO stage IVB, a classification similar to that of
patients with cardiophrenic lymph node involvement [7].

Comparably to the metastatic CLNs, the rate of metastases to the portal and triad
lymph nodes in AOC patients is also hard to estimate. Donato et al. reported a rate
of 4.5% for portal node metastases among 55 patients with AEOC and hepatobiliary
involvement [31]. Song et al. identified portal lymph node involvement in 1.9% of patients
undergoing primary cytoreduction for OC. However, recurrence rates in these nodes were
notably as high as 16.7% [38]. Tozzi et al. observed hepato-celiac lymph node metastases in
16.1% of patients with AEOC and macroscopic disease at the PH and found PH and hepato-
celiac lymph node involvement in approximately 15% of studied AOC cases [30]. In cases of
paraaortic and mesenteric metastatic lymph nodes, it is essential to assess portal and triad
lymph nodes during surgery [35]. The presence of portal or triad lymph node involvement
is associated with poorer prognosis compared to uninvolved nodes. Involvement of
lymph nodes in these regions serves as an indicator of disease severity, decreased DFS
and reduced OS [31,35,39]. Retrospective data indicate that hepato-celiac lymph node
metastases independently predict decreased progression-free survival (PFS) [35].

The sensitivity and specificity of different imaging modalities for detecting metastatic
lymph nodes in the OB vary in the medical literature. One study reported good sensitivity
(77%) but low specificity in detecting CLN metastases on CT, highlighting the importance of
radiologist expertise (with nonexpert sensitivity at 20%) [7]. Another study indicated that
pre-operative CT missed detecting most cases of PH and CLN metastases [5]. Retrospective
data suggested that positron emission tomography (PET) CT scans are more sensitive
than CT for detecting hepato-celiac lymph nodes and PH peritoneal dissemination [31].
However, another retrospective study reported low sensitivity in the detection of CLN
metastases using preoperative PET-CT and CT scans [33]. Nevertheless, a different retro-
spective study found that a combination of preoperative CT and diagnostic laparoscopy
detected all cases of hepato-celiac lymph node metastases and PH peritoneal involvement,
with CT alone missing the disease in these particular regions in 31% of cases [30]. Nowa-
days, oncogynecologists deal with tumor peritoneal implants or lymph node dissemination
in the omental bursa. An exception is transcoelomic or lymph node dissemination of
the porta hepatis, where an interdisciplinary surgical approach with biliary surgeons is
required [30,31,38].

CLN metastases are shown in Figure 5.
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2.3. Surgical Approaches to the Omental Bursa
2.3.1. Dissection of the Hepatogastric Ligament (Pars Flaccida)

To gain access to the supragastric part of the OB, the stomach should be retracted
to the left, exposing the superior part of the pancreas. The hepatogastric ligament lies
between the visceral surface of the left liver lobe and the lesser curvature of the stomach.
The left section of the gastrohepatic ligament is thinner than other parts of the ligament
because there is almost no fatty tissue between the peritoneal layers. It is also referred to
as pars flaccida of the lesser omentum. This is the preferred anatomical entry point to the
OB [12,15]. This approach enables access to the supragastric part of the OB. It is important
to note potential anatomical variations of the celiac trunk. Particular attention is warranted
for cases of a left hepatic artery arising from the left gastric artery (incidence 12–34%), and
in rare instances, a common hepatic artery originating from the left gastric artery. In such
scenarios, the anomalous hepatic artery crosses the supragastric part of the OB through the
midline [40].

2.3.2. Dissection of the Gastrocolic Ligament

The gastrocolic ligament extends from the inferior two-thirds of the greater curvature
of the stomach to the transverse mesocolon. On the left, it continues as the gastrosplenic
ligament, whereas on the right, it is limited by the gastroduodenal junction. Four layers of
the peritoneum that enclose the stomach and the transverse mesocolon/colon are part of the
greater omentum. The layers that descend to form the greater omentum later fuse to become
the two layers of the gastrocolic ligament at the level of the transverse mesocolon. The
anterior layer of the gastrocolic ligament attaches to the greater curvature of the stomach,
and the posterior layer attaches to the transverse mesocolon. In adults, the two layers
on the right side of the ligament are in close proximity to each other and the transverse
mesocolon. On the left side, there is a distance between the two layers of the ligament.
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Therefore, the left side of the gastrocolic ligament is the preferable point of dissection and
entry to the OB [10–12,15,41].

While these two approaches are frequently employed in OC surgery, additional tech-
niques will also be discussed. It is important for oncogynecologists to possess a basic
familiarity with various surgical accesses to the OB.

2.3.3. Anterior Trans-Omentum Approach

This approach represents a direct transection of the greater omentum at the level of
the greater curvature of the stomach [42]. It is suitable for patients with a normal body
mass index and a greater omentum characterized by minimal adipose tissue. However,
injury to the gastroepiploic vessels can potentially compromise the dissection.

2.3.4. Dissection of the Gastrosplenic Ligament

The gastrosplenic ligament forms through the lateral fusion of the peritoneal lay-
ers of the greater omentum. It is a thin attachment between the left part of the great
stomach curvature and the hilum of the spleen. During dissection of the gastrosplenic liga-
ment, the surgeons should be aware of the short gastric vessels and the left gastroepiploic
vessels [10–12,15].

2.3.5. Trans-Mesocolic Dissection

In this technique, the transverse mesocolon is dissected above the inferior border of
the pancreas. Surgeons should be aware of the possible presence of the Moskowitz artery,
an anatomical variation found in up to 17% of patients. This artery, also known as the
meandering mesenteric artery, forms a collateral pathway between the left colic and middle
colic arteries, passing above the inferior border of the pancreas [42–44].

The different surgical approaches are shown in Figure 6.
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ligament. (C) Direct dissection over the greater omentum just below the great curvature of the
stomach. (D) Dissection of the gastrosplenic ligament. PF—pars flaccida; LL—left lobe of the liver;
OB—omental bursa (supragastric part); GDA—gastroduodenal artery; CHA—common hepatic artery;
CT—celiac trunk; SA—splenic artery; S—stomach; PHA—proper hepatic artery; GCL—gastrocolic
ligament; TC—transverse colon; GO—greater omentum; TMC—trans-mesocolic dissection; GOD—
greater omentum dissection just below its attachment to the great stomach curvature; SP—spleen;
GSL—gastrosplenic ligament.

2.3.6. Kocher Maneuver

Dissection of the gastrocolic and gastrohepatic ligaments provides good access to the
OB and celiac trunk but is insufficient for dissection of the HDL and PH. To fully expose
these structures, a maneuver for the mobilization of the duodenum and head of the pancreas
was first described by Theodor Kocher. This approach to duodeno-pancreatic mobilization,
commonly used in visceral surgeries such as the Whipple procedure, or in emergent surg-
eries for retroperitoneal hemorrhage, and can also be beneficial in gynecologic-oncological
procedures in cases of tumor dissemination involving the PH, HDL, and suprarenal lymph
nodes. The Kocher maneuver starts with the medialization of the first, second and proximal
third portions of the duodenum. A vertical incision of the parietal peritoneum is made
1–2 cm lateral to the second part of the duodenum. The incision extends perpendicularly
between the lateral aspect of the epiploic foramen and the inferior duodenal flexure. The
procedure continues with a gentle dissection of the fascia of Toldt (the peritoneal adhesion
plane between the visceral peritoneum of the ascending mesocolon and the retroperi-
toneum), which is located lateral to the duodenum and the head of the pancreas. A further
avascular plane containing loose connective tissue and allowing for easy and bloodless
dissection is situated below the duodenum and the head of the pancreas and corresponds
to the fusion fascia of Treitz (the adhesion plane between the visceral peritoneum of the
duodenum and pancreas and the retroperitoneum). Both structures are covered from above
by the visceral peritoneum and the fusion fascia of Fredet (the plane between the ascending
mesocolon and the visceral duodenal–pancreatic peritoneum) [45–49].

The Kocher maneuver allows access to the infrahepatic IVC, duodenum, abdominal
aorta, superior mesenteric artery, posterior surface of the head of the pancreas, right renal
hilum and HDL. The limit of the dissection is the medial aspect of the IVC, determined
by identifying the left renal vein. The inferior mesenteric vein has also been described as
the medial limit. The dissection of the peritoneum can be carried out cranially up to the
retrohepatic IVC, thereby enabling the dissection of the posterior part of the PH [5,30,46–48].
The precise incision point for entry is critical, as a more lateral incision could open the renal
fascia and lose the right plane of dissection. Conversely, injury to the duodenum and vessels
is possible if the incision is made more medially than usual [47]. The Kocher maneuver is
often combined with the Cattel—Braasch maneuver, which represents a mobilization of the
ascending colon from the retroperitoneum after dissection of Toldt’s fascia [46]. Currently,
the Kocher maneuver is also performed by oncogynecologists [47]. The Kocher maneuver
and fascias near the duodenum and pancreas head are depicted in Figures 7–9.
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Figure 8. Kocher maneuver (embalmed cadaver, authors’ own material). (A) The duodenum and
stomach are retracted medially. The incision line of the peritoneum is indicated by the interrupted
black line. (B) Dissection of the fusion fascia of Treitz. (C) Mobilization of the duodenum and
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pancreatic head at the level of the left renal vein. The IVC is identified. (D) Anatomical structures after
completion of the Kocher maneuver. PH—porta hepatis, GDA—gastroduodenal artery; HP—head of
the pancreas; DU—duodenum; IL—incision line; RL—right lobe of the liver; TC—transverse colon;
AC—ascending colon; PV—portal vein; Ki—kidney; FFT—fusion fascia of Treitz; LRV—left renal
vein; Cr—cranial; L—left.
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Figure 9. Anatomy for Kocher maneuver and retroperitoneal access on the (right) and (left) side. Ur:
ureter, IVC: inferior vena cava, RCIA: right common iliac artery. Surgical archive of author IS.

2.3.7. Dissection of Portal, Celiac and Triad Lymph Nodes

The full exposure of the OB is achieved through the dissection of the gastrocolic and
gastrohepatic ligaments and the Kocher maneuver. The HDL is isolated using a vessel
loop through the foramen of Winslow, enabling traction of the ligament. For hepatic
resections, this vessel loop can additionally control the vascular flow of the liver (Pringle
maneuver); the loop can close the hepatoduodenal vascular flow for up to 25–30 min [18,30].
Dissection begins with peritonectomy of the HDL within a tumor-free zone. The hepatic
artery and common bile duct are dissected. The artery is identified after cranial retraction
of the stomach and gentle caudal retraction of the pancreas. The peritoneum is dissected
between the superior part of the duodenum and the ligamentum teres hepatis. The HDL is
retracted medially with the vessel loop, and the posterior peritoneum of the ligament is
dissected. The portal vein is identified, and all structures of the portal triad are visualized
and mobilized. Enlarged lymph nodes at the PH, proper hepatic artery and common
bile duct are meticulously separated and dissected [30,33,35]. Suspicious lymph nodes
between the portal vein and infrahepatic IVC are removed after gentle medial traction of
the portal vein with the vessel loop. In cases of other enlarged lymph nodes, the dissection
proceeds in a retrograde manner along the gastroduodenal artery, right gastric artery and
common hepatic arteries. This pathway leads to the celiac trunk, where enlarged lymph
nodes are also resected. There are various dissection techniques; however, all authors
start dissection immediately after the identification of all anatomical structures within the
OB, which will prevent inadvertent injuries and enable immediate actions for bleeding
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complications. Starting lymphadenectomy from the arteries and using them as landmarks
during dissection is a commonly employed approach in oncogynecology [30,33,35]. Some
surgeons perform cholecystectomy for better exposure of the right side of the HDL and
PH [33]. It should be stressed that in approximately 3.5% of cases, the common hepatic
artery may originate from the superior mesenteric artery [50].

3. Morison’s Pouch

Morison’s pouch, also referred to as the posterior right subhepatic space or hepatorenal
pouch, is part of the right supramesocolic compartment. It is separated from the anterior
right subhepatic space by the transverse mesocolon. The posterior right subhepatic space
communicates superiorly with the right subphrenic space, inferiorly with the right paracolic
space, and medially with the lesser sac through Winslow’s foramen [51–53]. Morison’s
pouch is defined by the following boundaries [51–53]:

Cranial: The posterior layer of the coronary ligament of the right liver lobe.
Caudal: The superior part of the right kidney.
Lateral: The parietal peritoneum, where it merges with that of the right diaphragm
Medial (from lateral to medial): Hepatic flexure of the transverse colon, transverse

mesocolon, the second part of the duodenum and the PH.
Anterior: The right lobe of the liver and the gallbladder.
Posterior: The upper portion of the right kidney, right adrenal gland and infrahepatic IVC.
In normal conditions, Morison’s pouch is free of any fluid collection. However, fluid

accumulation occurs in the pouch due to gravity, as it is one of the posterior spaces in the
peritoneal cavity. For this reason, Morison’s pouch is one of the most affected anatomical
zones in AEOC [9,53–55]. It is also a frequent site for OC recurrences [55]. However, the
percentage of Morison’s pouch metastases in AEOC has not been estimated in the literature,
as it is actually an upper abdomen metastatic peritoneal involvement. Morison’s pouch is
routinely dissected by oncogynecologists [13].

The dissection begins with mobilization of the right liver lobe, involving the division
of the anterior leaf of the coronary and triangular ligaments of the right liver lobe. The
liver is retracted cranially following the transection of the posterior leaf of the coronary
ligament. The transverse mesocolon is retracted caudally, and the duodenum is retracted
medially. Dissection and resection of the right colic flexure (hepatic flexure) enable better
access. The peritoneum is stripped from lateral to medial until the borders of the pouch
are reached [53,55]. Special attention must be paid to avoid a potential injury to the right
adrenal gland, infrahepatic IVC and right diaphragm [53]. Additionally, it must be noted
that there are small veins, infra- and retrohepatic veins, draining directly into the IVC
(Figure 10) [3].



Cancers 2024, 16, 285 17 of 40Cancers 2024, 16, x FOR PEER REVIEW 17 of 41 
 

 

 

Figure 10. Anatomy of Morison’s pouch and tumor dissemination in ovarian cancer (authors’ own 

material). (A,B) Morison’s pouch anatomy. The boundaries of the pouch are pointed (embalmed 

cadaver). (C) Tumor dissemination of Morison pouch in advanced ovarian cancer (open surgery). 

(D) Final intraoperative view after peritonectomy of Morison’s pouch. The posterior layer of the 

coronary ligament on the right lobe and right triangular ligament were dissected. RL—right liver 

lobe; GB—gallbladder; PCL—posterior layer of the coronary ligament of the right liver lobe; LPP—

lateral pelvic peritoneum; PH—porta hepatis; PV—portal vein; PHA—proper hepatic artery; MP—

Morison’s pouch; Ki—kidney; MD—metastatic disease; AG—right adrenal gland; MPP—Morison’s 

pouch peritoneum dissection; Cr—cranial; L—left. 

4. Base of the Round Ligament and the Hepatic Bridge 

The hepatic bridge, also known as pons hepatis or pont hepatique, is an anatomical 

variation in which the liver parenchyma bridges between segments III and IVb of the liver. 

Consequently, a tunnel forms over the umbilical fissure at the base of the round ligament 

[56–59]. Different pons hepatis types have been described. Initially, Couinaud classified it 

into three types: Type I: no communication, Type II: membranous communication, and 

Type III: a massive bridge [60,61]. Sugarbaker established a classification into four types: 

Type O—no hepatic bridge, where the base of the round ligament is visible; Type I—less 

than one-third of the umbilical fissure is covered by liver parenchyma; Type II—the he-

patic bridge covers up to two-thirds of the fissure; Type III—more than two-thirds is cov-

ered by the liver parenchyma (Figure 11) [56]. Cawich et al. proposed a dichotomous ty-

pology of pons hepatis—incomplete (the liver fissure being incompletely covered by the 

liver parenchyma, <2 cm) and complete (the fissure is completely covered, >2 cm) [62]. The 

frequency of the hepatic bridge varies in the literature. Sugarbaker found a frequency of 

49% in 102 patients [56], while Cawich et al. reported a prevalence of 40.9% in 66 cadavers 

[62]. Other studies reported lower incidences—22.85% and 30%, respectively [63,64].  

The spread of peritoneal tumors, including OC, can invade the walls of the tunnel. In 

such cases, the hepatic bridge should be resected to assess the tunnel. The possibility of 

tumor implants in the tunnel is high when there is macroscopic peritoneal disease at the 

Figure 10. Anatomy of Morison’s pouch and tumor dissemination in ovarian cancer (authors’ own
material). (A,B) Morison’s pouch anatomy. The boundaries of the pouch are pointed (embalmed
cadaver). (C) Tumor dissemination of Morison pouch in advanced ovarian cancer (open surgery).
(D) Final intraoperative view after peritonectomy of Morison’s pouch. The posterior layer of the
coronary ligament on the right lobe and right triangular ligament were dissected. RL—right liver
lobe; GB—gallbladder; PCL—posterior layer of the coronary ligament of the right liver lobe; LPP—
lateral pelvic peritoneum; PH—porta hepatis; PV—portal vein; PHA—proper hepatic artery; MP—
Morison’s pouch; Ki—kidney; MD—metastatic disease; AG—right adrenal gland; MPP—Morison’s
pouch peritoneum dissection; Cr—cranial; L—left.

4. Base of the Round Ligament and the Hepatic Bridge

The hepatic bridge, also known as pons hepatis or pont hepatique, is an anatomical
variation in which the liver parenchyma bridges between segments III and IVb of the
liver. Consequently, a tunnel forms over the umbilical fissure at the base of the round
ligament [56–59]. Different pons hepatis types have been described. Initially, Couinaud
classified it into three types: Type I: no communication, Type II: membranous communica-
tion, and Type III: a massive bridge [60,61]. Sugarbaker established a classification into four
types: Type O—no hepatic bridge, where the base of the round ligament is visible; Type
I—less than one-third of the umbilical fissure is covered by liver parenchyma; Type II—the
hepatic bridge covers up to two-thirds of the fissure; Type III—more than two-thirds is
covered by the liver parenchyma (Figure 11) [56]. Cawich et al. proposed a dichotomous
typology of pons hepatis—incomplete (the liver fissure being incompletely covered by the
liver parenchyma, <2 cm) and complete (the fissure is completely covered, >2 cm) [62]. The
frequency of the hepatic bridge varies in the literature. Sugarbaker found a frequency of 49%
in 102 patients [56], while Cawich et al. reported a prevalence of 40.9% in 66 cadavers [62].
Other studies reported lower incidences—22.85% and 30%, respectively [63,64].
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Figure 11. Types of hepatic bridge according to the Sugarbaker classification (embalmed cadavers,
authors’ own material). (A) Type 0: no hepatic bridge, where the base of the round ligament is visible.
(B) Type I: less than one-third of the umbilical fissure is covered by liver parenchyma; (C) Type II: the
hepatic bridge covers up to two-thirds of the fissure; (D) Type III: more than two-thirds is covered by
the liver parenchyma. LL—left liver lobe; RL—right liver lobe; QL—quadrate lobe; GB—gallbladder;
LTH—ligamentum teres hepatis; HB—hepatic bridge.

The spread of peritoneal tumors, including OC, can invade the walls of the tunnel. In
such cases, the hepatic bridge should be resected to assess the tunnel. The possibility of
tumor implants in the tunnel is high when there is macroscopic peritoneal disease at the
base of the round ligament, as it is a continuation of peritoneal tissue [58]. Surgeons should
remain vigilant about the base of the round ligament even without the presence of a hepatic
bridge, as it can harbor macroscopic tumor tissue (Figure 12). Gulmez et al. investigated
101 patients with peritoneal carcinomatosis who underwent cytoreductive surgery and
hyperthermic intraperitoneal chemotherapy. Patients were diagnosed with mucinous
adenocarcinoma of the appendix, malignant peritoneal mesothelioma, and colorectal and
ovarian cancers. The authors found tumor implants in 18 patients (28.6%) among 63 who
underwent distal round ligament resection. The study concluded that in OC patients, the
round ligament should be resected in cases of PCI ≥ 10 [59]. However, the absence of
peritoneal metastases at the Glisson capsule or PH can be an indication that the tunnel is
not affected by the tumor [56]. The frequency of OC spread to the distal round ligament
and hepatic bridge is not well reported.
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Figure 12. Metastatic spread to the base of the ligamentum teres hepatis (authors’ own material).
(A,B) Metastases at the base of the round ligament ((A) laparoscopic surgery, (B) open surgery).
(C) Transection of ligamentum teres hepatis (open surgery). (D) Postoperative specimen of the
ligament. LTH—ligamentum teres hepatis; FL—falciform ligament; LL—left liver lobe, RL—right
liver lobe; GB—gallbladder; MD—metastatic disease.

The presence of peritoneal implants on the round ligament of the liver is an indication
for ligament resection down to its entrance into the liver parenchyma. Transection of the
round ligament of the liver starts with resection of the falciform ligament close to the
anterior abdominal wall. Cranial traction of the falciform ligament provides control and
precise peritoneal dissection at the base of the round ligament of the liver. The base of the
ligament is clamped, resected and sutured with absorbable stitches. The suture is used
to prevent bleeding from a patent umbilical vein (a patent connection between the fetal
umbilical vein and the portal system). From a practical point of view, it should be also
noted that there is a risk of injury of the left portal vein during resection at the base of the
round ligament [56–58].

Dissection of the hepatic bridge could be associated with injury of vital structures,
which pass into the left lobe of the liver. The left hepatic duct and left hepatic artery are at
risk of iatrogenic injury during resection of the hepatic bridge. Therefore, just after opening
the posterior and anterior aspects of the hepatic tunnel, it is advisable to use a vessel loop
that passes through the hepatic bridge. This maneuver will enable a safe and bloodless
dissection [56]. An interdisciplinary team approach with biliary surgeons is required
for the transection of the base of the round ligament of the liver and the hepatic bridge,
as an oncogynecologist will hardly manage intraoperative and especially postoperative
complications (biliary leak) [56,59].



Cancers 2024, 16, 285 20 of 40

5. Hilum of the Spleen

Three types of metastatic patterns of splenic involvement in AEOC have been pro-
posed: hilar, capsular and parenchymal patterns [65,66]. Transcoelomic involvement of
the splenic hilum is possible by two routes, via the OB and the greater omentum. Ovarian
tumor cells spread to the OB and then reach the splenic hilum through the posterior part
of the gastrosplenic ligament [5]. The splenic hilum is also affected in the case of massive
metastatic omentum majus involvement (omental cake). The greater omentum is attached
to the spleen, and the splenorenal ligament is considered part of the omentum. Moreover,
as mentioned above, the greater omentum is continuous on the left side with the gastro-
splenic ligament (Figure 13) [11,15]. Sugarbaker emphasized that some types of splenic
parenchymal metastases should be considered as peritoneal dissemination rather than
hematogenous metastases. He reported that splenectomy might be beneficial for AEOC
patients with peritoneal carcinomatosis and no other distant parenchymal metastases. In
such cases, splenic parenchymal metastases are actually peritoneal, and splenectomy is
part of optimal cytoreduction [66]. This theory is supported by the fact that parenchymal
spleen involvement is also observed in patients with pseudomyxoma peritonei, a disease
with progressive dissemination through the peritoneal cavity [66]. The incidence of hilar
splenic metastases varies in the literature. However, the majority of authors reported a rate
equal to or more than 50% in patients with AEOC, and hilar metastases are more common
than parenchymal metastases [65,67–70]. Women with splenic hilar metastases have a
significantly shorter survival time compared to patients without hilar disease. In addition,
women with parenchymal splenic involvement have a decreased OS rate compared to
women with hilar metastases [65]. Therefore, assessment of the splenic hilum remains
mandatory in all patients with AEOC. It should be remembered that involvement of the
OB and involvement of the greater omentum are predictors of splenic hilar metastases.
Splenic flexure and cutting the peritoneum posterior to the spleen elevate the spleen from
the deep fossa and provide a detailed exposure. This approach also improves the dissection
of the greater omentum at the splenic level. Currently, oncogynecologists often perform
splenectomy. However, the incidence of injury to the tail of the pancreas is not rare. In such
cases, interdisciplinary discussion on postoperative management could be required (biliary
surgeons) due to an eventual pancreatic ductal leak or fistula [68,70].
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Figure 13. Dissemination of advanced ovarian cancer to the spleen (authors’ own material). (A) Spleen
and its connection with the greater omentum. The red arrows show the extension of the spread
through the greater omentum into the splenic hilum. (B) Contrast-enhanced CT of the upper abdomen
in a transverse plane. Spleen is shown. The arrows point to pathological lymph nodes at the splenic
hilum. S—stomach; SP—spleen; L—liver; TCD—tumor cell dissemination; GO—greater omentum;
GSL—gastrosplenic ligament; SRL—splenorenal ligament; SH—splenic hilum; PHCL—phrenicocolic
ligament; SCL—splenocolic ligament; SH—splenic hilum.

Extraperitoneal Lymph Node Zones and Lymphadenectomy

The extraperitoneal lymph node zones aside from the pelvic and infrarenal lumboaor-
tic zone are suprarenal, retrocrural, cardiophrenic and inguinal. The lymphadenectomy in
ovarian neoplasms (LION) trial showed that patients (group 1) with normal lymph nodes
(before and during surgery) who underwent infrarenal paraaortic lymph node dissection
were not associated with increased overall or progression-free survival compared to pa-
tients in the no-lymphadenectomy group (group 2). Additionally, patients in group 1 had
an increased incidence of postoperative complications compared to patients in group 2 [34].
This study gives insights into the role of lymphadenectomy in normal lymph nodes. Since
then, selective lymph node dissection in AEOC (irrespective of lymph node locations) has
only been performed in cases of suspected lymph nodes (enlarged and debulked lymph
nodes) as part of optimal cytoreduction. Systematic pelvic lymph node dissection remains
as a staging procedure only in cases of early-stage OC [34,71].

6. Suprarenal Lymph Nodes

The suprarenal lymph nodes lie cranial to the renal veins. They are divided into two
groups. The first group is located on the left side of the aorta, inferior to the origin of
the superior mesenteric artery and medial to the left adrenal gland. The second group
is located between the IVC and the abdominal aorta, below the inferior surface of the
right liver lobe and below the origin of the superior mesenteric artery. The boundaries of
the dissection are as follows: cranial—inferior surface of the left liver lobe; caudal—left
inferior suprarenal vein; left—medial portion of the left suprarenal gland; right—medial
aspect of the IVC [72]. The importance of suprarenal lymph node metastases, previously
considered a predictor of suboptimal cytoreduction, has been increasingly recognized as
recent data reported improved feasibility of suprarenal lymphadenectomy using modified
surgical techniques (instead of the conventional infrarenal paraaortic approach) [48,72–74].
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Whereas most authors recommend the Kocher maneuver or its modification to gain access
to the suprarenal lymph nodes [70,72,74], Daia et al. described a left lateral approach to
the suprarenal nodes (modification of the Mattox maneuver) and concluded that the left
approach provides a better exposure compared to the right one [73]. Surgeons should
exercise caution when dissecting the adrenal glands, the suprarenal and renal vessels
(anatomical variations of the renal vessels are common), the cisterna chyli and the lumbar
lymphatic trunk.

Komiyama et al. conducted the only study examining the metastatic pattern of
suprarenal lymph nodes in AEOC [72]. The authors reported involvement of the suprarenal
lymph nodes in 15% of cases. Nevertheless, the study looked at a small cohort of patients,
including women with early-stage OC. In patients with advanced disease, the percentage
rises to 36%. Notably, a preoperative CT scan revealed suprarenal disease in only one
patient. The authors also noted that no patient developed isolated suprarenal lymph
node metastases, as these were always associated with infrarenal involvement. Based on
these findings, they suggested that patients with suprarenal lymph node involvement
should be classified as stage IV because suprarenal disease may represent distant rather
than regional dissemination [72,75]. Suprarenal lymph node dissection is managed by
oncogynecologists [72].

7. Retrocrural Lymph Nodes

The retrocrural space (RCS) is a triangular area bounded antero-inferiorly by the two
diaphragmatic crura, postero-superiorly by the mediastinal pleura and posteriorly by the
thoraco-lumbar vertebra. The following anatomical structures are part of the RCS: ves-
sels (aorta, azygos and hemiazygos veins), lymph nodes, fatty tissue, neural components
(sympathetic trunk, splanchnic nerves), thoracic duct and cisterna chyli [76,77]. The RCS
communicates with the retrocardiac space, the posterior mediastinum and the retroperi-
toneum. Moreover, this space provides communication between the thoracic paravertebral
region and the celiac ganglion (Figure 14) [77]. Lymph nodes in this space are called
“retrocrural” lymph nodes. These nodes communicate with the posterior mediastinal and
paraaortic lymph nodes [78]. The progressive spread of lymph node metastases in a cranial
direction can reach the retrocrural lymph nodes. A diameter of these nodes greater than
6 mm can be considered suspicious [76]. Im et al. investigated 67 OC patients at stage IV of
the disease. The authors used 18F-FDG PET/CT to detect the presence of retrocrural lymph
node metastases. The study found that 27 patients (40.3%) had metastases to the retrocru-
ral lymph nodes [78]. Studies also reported that retrocrural lymph node metastases are
associated with supradiaphragmatic lymph node involvement [77,78]. Retrocrural lymph
nodes have recently been discovered for OC surgery [77,79]. However, there remains a
need and potential for greater awareness of this space, relevant to surgical dissection and
lymph node assessment. Therefore, preoperative evaluation of retrocrural lymph nodes
through various imaging techniques can be of interest, although the diagnostic accuracy
has to be determined. Relevant for the surgical practice is that iatrogenic injury of the
cisterna chyli during exploration of the RCS can result in chylous leakage and chyloperi-
toneum [76,78]. The retrocrural space is not widely investigated in gynecologic oncology.
Therefore, we recommend multidisciplinary surgical team management (general surgeons,
oncogynecologist and thoracic surgeons) during retrocrural lymph node dissection.
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Figure 14. Retrocrural space (authors’ own material). (A) RCS: contrast-enhanced abdominal CT in
the transverse plane. The arrows are pointing to the left and right diaphragmatic crura (authors’ own
material). (B) RCS: 3D volume-rendered abdominal CT in the coronal plane. The arrows are pointing
to the left and right diaphragmatic crura and the RCS. RC—right diaphragmatic crus; LC—left
diaphragmatic crus; RS—retrocrural space.

Surgery of the retrocrural lymph nodes was first introduced in thoracic surgery and
urologic surgery. Kern et al. reported on 211 patients with testicular malignant tumors,
who underwent retrocrural dissection. The authors stated that their surgical approach has
changed over the years. The study stated that the transabdominal/transdiaphragmatic
approach at the time of midline retroperitoneal lymph node dissection was the most
preferable option. Moreover, this approach was associated with fewer complications. The
authors also reported that a multidisciplinary surgical team with urological and thoracic
surgeons is beneficial for patients [80].

Sponholz et al. reported two approaches among germ cell cancer patients who un-
derwent 50 retrocrural metastasectomies. The abdominal approach was performed in
collaboration between a thoracic surgeon and a urologist. A bilateral transverse upper
abdominal laparotomy was used. The liver and the right kidney were further mobilized,
followed by the incision of the diaphragmatic crus. Mobilization of the spleen, left colonic
flexure and left kidney was performed in cases of left-sided disease. The abdominal
approach was preferable in cases of lower retrocrural, bilateral retrocrural and further
abdominal metastases. The thoracic approach was performed in cases of upper retrocrural
metastases. The authors concluded that the abdominal approach was associated with
less tension at the spinal arteries and decreased risk of paresis compared to the thoracic
approach [81].

Another urologic study described the dissection of the retrocrural lymph nodes by
using a left thoraco-abdominal incision. The authors performed the Mattox maneuver in
order to gain access to the retroperitoneal structures together with the retrocrural lymph
nodes. The Mattox maneuver represents a left medial visceral rotation–medialization of
the spleen, tail of the pancreas, left kidney and stomach. The initial incision starts at the
line of Toldt from the sigmoid colon to the splenic flexure [82–84].

In gynecologic oncology, two studies analyzed the surgical access to the retrocrural
lymph nodes. Song et al. performed the Kocher maneuver in order to access the retrocrural
lymph nodes [85]. Another study described the resection of the gastrocolic and gastros-
plenic ligaments with exposure of the pancreas in order to gain access to the retrocrural
lymph nodes [86]. However, it seems that these two studies mixed the concept and exact
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anatomical location of the retrocrural lymph nodes, as they described a surgical dissec-
tion of the suprarenal lymph nodes [85,86]. More studies are needed to describe the safe
and feasible surgical approach to the retrocrural lymph nodes in gynecologic oncology.
The procedure should be performed by a multidisciplinary surgical team that includes
oncogynecologists and thoracic surgeons.

8. Cardiophrenic Lymph Nodes

Cardiophrenic lymph nodes (CPLNs) are situated in the cardiophrenic region, which
lies between the mediastinum, the base of the heart, the diaphragm and the chest wall. This
region is composed of fatty tissue and lymph nodes that drain lymph from the diaphragm
and abdominal organs. There are three groups of CPLNs. The anterior right group is
bounded posteriorly by the pericardium and anteriorly by the xiphoid process. This group
is further divided into two subgroups: the right subgroup (located to the right of the
heart and in the inferior part of the mediastinum) and the left subgroup (located to the
left of the sternum and anterior to the heart in the inferior part of the mediastinum). The
middle group contains lymph nodes situated medial to the pericardium and lateral to
the hilus of the lung at the region where the phrenic nerves pass. The posterior group of
CPLNs is found near the esophagus, medial and posterior to the IVC at the level of the
hiatus of the aorta. OC mainly affects the anterior group [87,88]. The optimal size cut-off
for metastatic CPLNs is controversial and varies among authors. Some studies suggest
a cut-off of 5 mm, whereas others propose a size greater than 7 or even 10 mm [87–99].
One study reported that preoperative PET/CT is more effective than CT scans in the
detection of pathologic CPLNs [91]. Of note, most authors used a radiological cut-off of
more than 5 mm [80,85,94,97]. Prader et al. found that 62% of patients with AEOC had
suspicious CPLNs (>5 mm). The authors also observed that 84% of radiologically suspected
CPLNs were metastatic [87]. Two studies using the same cut-off values found radiological
CLPN adenopathy in 40.3% and 50% of the examined patients, respectively [92,94]. Cowan
et al. emphasized that normal CPLNs usually measure less than 5 mm. Consequently,
radiologically suspicious lymph nodes should have a diameter greater than 5 mm [97].
However, a cut-off of more than 7 mm used in other studies also showed good sensitivity
(63%) and specificity (83%) [98]. The varying cut-offs used in different studies could
contribute to an unequal incidence of radiologically detected CPLN adenopathy in AEOC
patients. However, most studies reported a frequency of more than 50 percent, with
malignancy being confirmed on the pathologic specimen in 45–95% of cases [87–99].

Most studies showed a strong correlation between radiographically enlarged CLPNs
and more advanced peritoneal carcinomatosis in the abdomen [87,89,90,92]. Prader et al.
showed that the right upper abdomen was the most affected region in patients with positive
CLPNs [87]. Moreover, CLPN adenopathy is commonly associated with ascites and extra-
abdominal disease [90]. Patients with radiologically positive CPLNs have decreased PFS
and OS compared to women without radiological CPLN adenopathy. Luger et al. reported
that CPLN adenopathy (>5 mm) and high CA-125 levels are independent prognostic
factors for reduced PFS [92]. The therapeutic effect of removing metastatic CPLNs at the
time of cytoreduction in patients with AOEC remains unclear [87,89,90,92,93]. However,
suspicious CPLNs should not represent a contraindication to possible complete abdominal
cytoreduction, as the latter remains the most favorable prognostic factor [92,99].

Surgical access to the CPLNs can be achieved through video-assisted thoracic surgery,
trans-diaphragmatic or subxiphoid resection (substernal approach) [97,98,100]. The trans-
diaphragmatic approach is particularly suitable for gynecologic cytoreductive procedures
as it often does not require the use of a chest tube, and the patient’s position is not changed
during surgery. The thoracic cavity is assessed by direct opening of the diaphragm to
reach the CPLNs. Yoo et al. suggested that the trans-diaphragmatic approach might
replace the video-assisted approach as it can be performed by oncogynecologists without
significant complications [96]. This approach requires liver mobilization and diaphragmatic
opening [90,96–99]. Therefore, some authors prefer the subxiphoid approach, where the
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pleural space is entered while the diaphragm is kept intact. Minig et al. recommended
this approach for cases where the diaphragm remains intact after diaphragmatic stripping,
to reduce postoperative complications related to entering the thoracic cavity (such as
pleural effusion, pneumothorax, pneumonia) [100]. When dissecting the anterolateral
cardiophrenic space, surgeons should exercise caution to avoid injury to the left phrenic
nerve and the left pericardiophrenic artery and vein [15,100]. We do not suggest using
monopolar energy devices during cardiophrenic lymph node dissection, as they could
cause fatal heart arrhythmia. Oncogynecologists could perform cardiophrenic lymph node
dissection in cases of trans-diaphragmatic surgery, whereas the thoracic approach requires
thoracic surgeons [97,98,100]. The anatomy and metastases of cardiophrenic lymph nodes
are shown in Figures 15 and 16.
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Figure 15. Cardiophrenic lymph nodes (authors’ own material). (A) Anatomical location of the
anterior cardiophrenic lymph nodes (yellow circles—anterior group location; green circles—middle
group location; red circles—posterior group location). (B) Contrast-enhanced CT in the axial plane.
The arrow points to the metastatic cardiophrenic lymph node. (C) Contrast-enhanced CT in the
coronary plane. The arrow indicates the metastatic cardiophrenic lymph node. (D) Three-dimensional
CT volume-rendered image. The arrow points to the metastatic cardiophrenic lymph node. PER—
pericardium; Es—esophagus; IVC—inferior vena cava; DP—diaphragmatic part of parietal pleura;
Ca—caudal, R—right.
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9. Inguinal Lymph Nodes Anatomy

Metastases to the inguinal lymph nodes (IGLNs) from OC are rare. Consequently,
the inguinofemoral zone is often neglected during preoperative clinical and radiological
examination. The incidence of metastases is approximately 3% to 5% among patients with
AEOC [101–107], although metastatic enlargement of the IGLN as the first manifestation of
AEOC has also been reported [108]. However, these data should be interpreted with caution,
as some studies included autopsies of patients with advanced disease, whereas others fo-
cused on recurrent disease without detailed clinico-pathological information (e.g., possible
association with pelvic or paraaortic metastases) [104–106]. Only a few reports described
an interesting scenario with isolated IGLN metastases and OC [102,103,109,110]. IGLN
adenopathy may be the first and only manifestation of lymphatic spread in OC [102,109].

The exact mechanism of OC metastases to IGLNs remains unclear. Lymphatic spread
through the round ligament or hematogenous spread are thought to be the two main
routes [101–109]. Kleppe et al. examined the drainage pathways of the ovaries of three
female fetuses and one fresh cadaver, identifying two major and one minor drainage
pathways. While the major pathways followed the course of the proper ovarian ligament
(towards the obturator and internal iliac nodes) and the infundibulopelvic ligament (to-
wards the paraaortic and paracaval lymph nodes), the third (inguinal) pathway drained
the ovaries through the round ligament to the IGLNs. This pathway was not present
bilaterally in all fetuses and tended to disappear during embryogenesis, while only a
few lymph vessels may persist in a small percentage of patients. Therefore, the rarity
of IGLN metastases in AEOC can be explained by the embryological development of
the lymphatic system [111]. Nonetheless, it has been confirmed that peritoneal spread
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could also play a role in metastases to the IGLNs. Giri et al. documented peritoneal
spread (“transcoelomic dissemination”) to the IGLNs along the inguinal hernia track in
two patients with AEOC [101].

Palpation and imaging of the inguinofemoral region should be part of the diagnostic
evaluation of every gyneco-oncological patient. If in doubt, a biopsy or advanced imaging
(PET/CT) can be applied to confirm the diagnosis [101,108,112].

Some data questioned the classification of IGLN metastases as FIGO stage IV [102,113].
In a retrospective study, Nasioudis et al. compared the survival of patients with stage III
and stage IV OC. The authors categorized the patients into four groups: group 1 (stage
IV—IGLN metastases), group 2 (stage III—paraaortic/pelvic node metastases), group 3
(stage IV—metastases to distant nodes) and group 4 (stage IV—distant metastases). The
study revealed that patients in groups 1 and 2 had similar outcomes. Additionally, patients
in group 1 had a higher survival rate compared to those in groups 3 and 4 [113]. Another
recent retrospective evaluation confirmed that the presence of IGLN metastases did not
imply worse clinical outcomes compared to all stage III/IV patients, and R0 resection in
AEOC patients with inguinal lymphadenopathy resulted in improved PFS [104].

The IGLNs are divided by the fascia lata into superficial and deep. The superficial
IGLNs are located beneath the Scarpa fascia and separated into five groups, depending
on the separation point of the great saphenous vein. The deep lymph nodes are located
medial to the femoral vein and posterior to the fascia lata. The lymph node that makes the
connection between the IGLNs and the iliac lymph nodes is called Cloquet’s node. This
node is located anterosuperior to the femoral vein [114].

A skin incision (8–10 cm) is performed between the anterior superior iliac spine
and the pubic tubercle. The incision is located parallel to and 2 cm below the inguinal
ligament. Superficial IGLNs are removed between Scarpa’s fascia and the fascia lata. Deep
IGLNs are removed after dissection of the cribriform fascia. It should be remembered
that the anatomy of vital structures in the inguinal region, from lateral to medial, is as
follows: femoral nerve, femoral artery, femoral vein, great saphenous vein. The great
saphenous vein should be preserved in order to decrease the percentage of the most serious
complication—lymphedema [114,115].

Metastatic inguinal lymph nodes from ovarian cancer are shown in Figures 17 and 18.
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Figure 17. Imaging of metastatic inguinal lymph nodes in ovarian cancer (authors’ own material).
(A) Contrast-enhanced axial CT image of the pelvis. The arrows point to pathologic inguinal lymph
nodes. (B) Contrast-enhanced coronal CT image of the pelvis. Arrows point to pathologic inguinal
lymph nodes. (C,D) PET/CT—inguinal lymph node metastases.
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Figure 18. Inguinofemoral anatomy and metastatic bulky lymph nodes (surgical archive of author
IS). (A) dissection of metastatic inguinal lymph node at the left inguinal region. (B) inguinofemoral
anatomy after dissection. (C) excised metastatic inguinal lymph node.



Cancers 2024, 16, 285 29 of 40

10. Perioperative Scores Predicting Optimal Cytoreduction in Advanced Ovarian Cancer

Scores that predict the chance of achieving optimal cytoreduction in AEOC include
combinations of imaging scores and intraoperative scores.

Various radiological scores have been proposed, of which the most widely used remain
the preoperative peritoneal cancer index score and the Suidan score [116–121]. The Suidan
score is a predictive score based on three clinical (age ≥ 60 years, CA-125 ≥ 500 U/mL, ASA
3–4) and six imaging criteria (suprarenal or cardiophrenic lymph nodes larger than 1 cm;
diffuse small bowel adhesions/thickening; and lesions more than 1 cm in the mesentery of
the small bowel, in the root of the superior mesenteric artery, around the spleen and lesser
sac area). The rate of suboptimal cytoreduction correlates with a higher score. Authors
reported that a lesser sac lesion of more than 1 cm is a higher predictor for suboptimal
cytoreduction. The authors of [116] did not mention retrocrural lymph nodes in their study.
However, the limitations of imaging studies were associated with a low success rate when
cross-validation datasets were used [116–119].

Jacquet and Sugarbaker developed the preoperative and intraoperative peritoneal
cancer index (PCI) score for patients with mesothelioma and colorectal cancer (mucinous
adenocarcinoma). Preoperative CT is used to define the degree of peritoneal carcinomatosis
in the abdomen. The PCI includes nine abdominal regions. Additionally, four regions of the
gastrointestinal tract are included—upper jejunum/lower jejunum and upper ileum/lower
ileum. There is a scoring system from 0 to 3 for each of these regions (V0—absence of
cancer, V1—tumor implants < 0.5, V2—tumor 0.5–5 cm, V3—tumor more than 5 cm).
The score ranges from 0 to 39. A higher PCI is associated with suboptimal debulking, a
higher rate of surgical complications and a worse prognosis [121]. One study found that
patients with a PCI of more than 24 should be referred to neoadjuvant treatment [122].
However, the cut-off value reported in medical literature is between 10 and 20 [113–115].
A study by Climent et al. estimated that the highest sensitivity of PCI is observed with a
cut-off of more than 20 [123]. Authors also concluded that the PCI is the best predictor of
determining suboptimal cytoreduction for patients with peritoneal cancers [123]. The PCI
score does not describe tumor implants in retroperitoneal lymph nodes, as it was validated
for mesothelioma and mucinous rectal adenocarcinoma, although its higher index is often
associated with lymph node involvement [124]. However, we believe that some areas of
lymph node metastases could be neglected by using the PCI score as the only predictor
for optimal cytoreduction. Moreover, the PCI score is not applicable in cases of OC with
isolated lymph node dissemination [125,126].

The most widely used laparoscopic score in clinical practice is the Fagotti score. Fagotti
et al. created a score based on laparoscopic predictive index value in order to estimate the
probability of achieving optimal cytoreduction (residual tumor < 1 cm was the criterion
during the study). Initially, the Fagotti score was based on the laparoscopic evaluation of
seven parameters: peritoneal carcinosis, omental cake, diaphragmatic carcinosis, mesen-
teric retraction, stomach infiltration, liver metastases and bowel infiltration. Each parameter
is valued as 0 (absence) or 2 (present). The total value varies between 0 and 14. Fagotti
et al. stated that a score equal to or more than 8 is associated with suboptimal cytoreduc-
tion [127–129]. Later, with the advances in upper abdominal gynecologic oncology surgery,
the Fagotti score was updated. A cut-off value of 10 was applied. Mesenteric retraction was
excluded from the score [130–132]. Moreover, the score was also implemented for patients
undergoing interval debulking surgery [129]. However, laparoscopic evaluation of cases of
AEOC has some limitations—observation of the lesser sac, hilus of the spleen, gastrosplenic
ligament, mesenteric root and retroperitoneal lymph nodes. Nevertheless, Fagotti et al.
mentioned that the purpose of the score is to avoid an inappropriate lack of exploration,
instead of unnecessary laparotomies [127,128]. Furthermore, disease involvement in ar-
eas unexplored by laparoscopy in the upper abdomen could be predicted regarding the
dissemination of the disease [127,128]. There are other studies that try to estimate the
role of laparoscopy in AEOC [133–135]. Di Donna et al. stated diagnostic laparoscopy
should be integrated into the decision-making algorithm for patients with AEOC [120].



Cancers 2024, 16, 285 30 of 40

However, a Cochrane review concluded that laparoscopic evaluation is useful in identifying
unresectable disease, whereas it has some limitations regarding the prediction of optimal
cytoreduction [136]. The ENGOT (European Network of Gynaecological Oncology Trial)
group reported that laparoscopy to access resectability was performed in only 25.4% of
European centers, and among these, the laparoscopic score was not routinely used as a
predictor model for treatment strategy [137]. The British Gynaecological Cancer Society
guidelines do not recommend the routine use of laparoscopy to predict the resectability of
the disease [138].

A laparoscopic assessment of the left upper abdomen is shown in Figure 19.
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Figure 19. Laparoscopic evaluation of the feasibility of primary cytoreduction, control of left up-
per abdomen (laparoscopy performed by author IS). Peritoneal diaphragmatic carcinomatosis and
absence of metastases to the greater omentum and spleen are seen.

The Eisenkop score intraoperatively estimates the extent of the OC disease in five
regions in the abdomen—the right and left upper quadrants, pelvis, central abdomen and
retroperitoneum. Each parameter is valued between 0 and 3. The total value varies between
0 and 15. Suprarenal, retrocrural and cardiophrenic lymph nodes are not mentioned in
the scoring system [139]. However, suprarenal lymph nodes could be included as it
was mentioned that retroperitoneal lymph nodes are removed below the crura of the
diaphragm [139].

Aletti et al. created a score based on surgical complexity during surgery for AEOC. The
authors included 12 surgical procedures, of which liver resection, splenectomy, diaphragm
stripping/resection and large bowel resection were valuated with 2 points. Rectosigmoidec-
tomy with anastomoses was 3 points. Other surgical complex procedures were valuated
with 1 point—total hysterectomy with bilateral salpingo-oophorectomy, omentectomy,
pelvic and paraaortic lymphadenectomy, stripping of the pelvic peritoneum, abdominal
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peritoneum stripping and small bowel resection. The authors estimated that a score of
more than or equal to 8 is associated with high-complexity procedures [140]. However,
celiac, suprarenal, retrocrural and cardiophrenic lymph node dissection was not described
or included in the study [140].

Although the Aletti, Eisenkop, Sugarbaker and Suidan scores are from relatively old
studies, their implementation in different scoring systems is still applicable [141–143].
However, a scoring system exploring the majority of neglected areas that may harbor
residual disease and predicting preciously optimal cytoreduction in AEOC has not been
validated yet. This unresolved issue is visible worldwide, as even artificial intelligence is
used to predict optimal cytoreduction [144].

11. Preoperative Management for Patients Undergoing Surgery for Advanced Epithelial
Ovarian Cancer

OC patients who undergo either a primary debulking surgery (PDS) or interval de-
bulking surgery (IDS) should be preoperatively managed [145–148]. Recently, the European
Society of Gynecological Oncology (ESGO) introduced guidelines for perioperative manage-
ment of AEOC patients undergoing debulking surgery. The guidelines include preoperative
management of patients through preoperative fluid replacements, bowel preparation, in-
traoperative prevention of hypothermia, etc. One of the aspects of the guidelines also
highlighted the management of fragile patients [145]. The frailty index includes at least
30 parameters such as help with activities of daily living, lost weight in the last three months,
muscle strength through hand grip test, the presence of diabetes, high blood pressure and
nutritional screening. It is recommended to include at least 30 parameters in the frailty
index. Studies show that a high frailty index is strongly associated with worse surgical
outcomes and poorer OS [146,147]. Therefore, preoperative screening for frail patients
is mandatory. Such patients are not candidates for primary optimal debulking surgery
in AEOC [146,147]. Narasimhulu et al. estimated that a high risk of surgical morbidity
and mortality during AEOC surgery is exhibited by a patient with one of the following
three criteria—albumin levels < 35 g/dL, age ≥ 80, age 70–79 (and one of the following:
ECOG status > 1, stage IV disease, complex surgery extended more than hysterectomy
with bilateral salpingo-oophorectomy, omentectomy). Optimal cytoreduction was strongly
associated with increased morbidity and mortality in patients in a high-risk group [148].

12. Primary Debulking Surgery Followed by Chemotherapy or Neoadjuvant
Chemotherapy Followed by Interval Debulking Surgery

It is imperative to mention the difference in OS after a complete cytoreduction at the
time of PDS or IDS for patients with AEOC. Chiva et al. performed a systematic review of
the topic and observed a higher rate of complete cytoreduction in the IDS group compared
to the PDS group. However, the authors reported longer median survival for women who
underwent PDS compared to the group with IDS [149]. In 2010, Vergote et al. published
EORTC 55971, the first prospective randomized trial comparing PDS followed by platinum-
based chemotherapy versus platinum-based neoadjuvant chemotherapy (NACT) followed
by IDS. The trial showed similar OS values between the two groups. However, patients
in the IDS group had a higher rate of optimal debulking compared to the PDS group.
Moreover, morbidity and mortality were lower in the IDS group [150]. The CHORUS trial
was the second randomized, controlled trial that also investigated the difference in OS
between PDS and IDS. The trial showed the non-inferiority of IDS and supported data from
the EORTC 55971 trial [151,152]. The SCORPION trial was a randomized, single-institution
trial that tried to show the superiority of NACT followed by IDS compared to PDS followed
by chemotherapy for patients with AEOC. The trial failed to demonstrate the superiority
of OS and PFS for patients in the IDS group compared to the PDS group. However, the
trial also reported a lower level of postoperative complications in the IDS group. The rate
of complete cytoreduction was significantly higher in the IDS group [153]. Despite the
findings that NACT followed by IDS is not inferior to PDS followed by chemotherapy, IDS
has not been widely accepted due to conflicting data [152]. Most guidelines for surgical
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treatment of AEOC still recommend PDS followed by chemotherapy for all patients who are
surgical candidates for optimal cytoreduction [154,155]. It should also be noted that IDS of
the anatomical neglected areas would be more challenging due to chemotherapy-induced
fibrosis [150]. However, NACT followed by IDS is an option for patients who are poor
surgical candidates and/or have inoperable disease [152].

Neglected anatomical areas and recommendations for their dissection during surgery
for AEOC are summarized in Table 1.

Table 1. Recommendations concerning neglected anatomical areas of ovarian cancer. PCI—peritoneal
cancer index; PH—porta hepatis; HDL—hepatoduodenal ligament.

Anatomical Area Evaluation—Recommended Evaluation—Not Supported by
Available Evidence

Omental bursa—transcoelomic dissemination
[5,7,13,30,32,33,35]

PCI ≥ 17, peritoneal carcinomatosis in
the upper abdomen, ascites, Morison’s

pouch and diaphragmatic
peritoneum dissemination

Adhesion in Winslow’s foramen

Omental bursa—lymph node dissemination
(celiac, portal, triad) [5,7,13,30,32,33,35]

Enlarged paraaortic, mesenteric and
suprarenal lymph nodes

Normal paraaortic, mesenteric and
suprarenal lymph nodes

Suspicious metastatic mediastinal lymph
nodes as judged using

imaging techniques

Morison’s pouch [51–55]

High PCI, ascites, peritoneal
carcinomatosis, diaphragmatic
dissemination, transcoelomic

dissemination to the HDL

Isolated lymph node dissemination in the
upper abdomen

Base of the round ligament of the liver
[56,58,60]

PCI ≥ 10, ascites, peritoneal
carcinomatosis at Glisson capsule and PH

Absence of peritoneal carcinomatosis at
Glisson capsule and PH

The hepatic bridge [56,58,60] Transcoelomic involvement of the round
ligament, PCI ≥ 10

Absence of peritoneal carcinomatosis at
Glisson capsule and PH

Hilum of the spleen [5,66–70] Omental cake (greater omentum),
transcoelomic OB involvement

Isolated lymph node dissemination in the
upper abdomen

Suprarenal lymph nodes [72,74,75] Enlarged infrarenal paraaortic
lymph nodes Normal infrarenal lymph nodes

Retrocrural lymph nodes [77,78] Enlarged paraaortic, suprarenal, celiac
and cardiophrenic lymph nodes

Normal paraaortic, suprarenal, celiac and
cardiophrenic lymph nodes

Cardiophrenic lymph nodes [87,89,90,96]

Transcoelomic and lymphatic
dissemination in the right upper

abdomen, ascites,
extra-abdominal disease

Not applicable

Inguinal lymph nodes [101,103,109,110] Every patient. Particular attention should
be paid for patients with inguinal hernia Not applicable

Table 1 shows that high PCI and ascites strongly correlate with transcoelomic dissem-
ination of the neglected areas in the upper abdomen [5,7,13,33,35]. Extensive peritoneal
carcinomatosis is a predictor of the peritoneal metastatic involvement of these areas. Studies
suggest that dissection of OB could be omitted in cases of adhesions of Winslow’s foramen
and the absence of enlarged paraaortic, mesenteric and suprarenal lymph nodes [5,7,13].
The liver area should be carefully evaluated in cases of peritoneal carcinomatosis at the
Glisson capsule and PH [51–56,58]. The spleen should be always investigated for hilum
metastases in the case of transcoelomic dissemination of the omental bursa and the pres-
ence of omental cake [5,67–70]. Suprarenal, retrocrural and cardiophrenic lymph nodes
should be evaluated in cases of bulky paraaortic lymph nodes. Enlarged lymph nodes
could be estimated preoperatively using imaging techniques. However, they should be
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also intraoperatively investigated by the surgeon, especially in cases of enlarged lymph
nodes in other areas in the retroperitoneum [72,74,75,78,87,89]. As shown in the table, the
available evidence in medical literature does not support the evaluation of some of the
areas, and further studies are needed.

Finally, it is imperative to mention that optimal cytoreduction in AEOC patients is not
always feasible despite the appropriate preoperative evaluation of the patients, favorable
frailty index, surgical technique and evaluation of all of the neglected areas. Zivanovic
et al. observed that optimal cytoreduction was performed in 81%, 63% and 39% of women
with no, minimal and bulky upper abdominal disease, respectively. However, the authors
reported a significant increase in optimal cytoreduction over the years, especially for
patients with bulky upper abdominal disease [156]. It should be stressed that favorable
treatment outcomes strongly correlate with hospital ovarian cancer surgical volume and
the medical facilities where the patients are treated. High-volume hospitals provide the
opportunity for women to receive care from surgeons with higher comprehensive surgery
rates [157–159]. Therefore, in 2020, the ESGO published an updated version of quality
indicators for AEOC surgery in order to offer the patients the specific skills, experience,
organization and surgical care required for achieving optimal treatment [160].

13. Conclusions

OC is a malignant disease with different ways of tumor dissemination. Unlike other
gynecological malignancies, AEOC often spreads through peritoneal and lymphatic dissem-
ination to the upper abdomen. Surgeons should be familiar with the neglected anatomical
areas that may contain residual disease in order to perform optimal cytoreduction when-
ever possible. These areas are commonly involved and should be rigorously evaluated
in every patient with AEOC as they often preclude optimal cytoreduction. Conversely,
leaving the neglected anatomical sites unexplored inadvertently leads to compromised
treatment outcomes.
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