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Simple Summary: Cervical lymph node (LN) metastasis is a critical prognostic factor for patients with
head and neck squamous cell carcinoma (HNSCC), rendering accurate diagnosis of LN metastasis
crucial for improving patient outcomes. Our study aimed to develop deep learning models for
metastatic LN detection using YOLOv7, the fastest single-stage object detection model, on B-mode
and power Doppler (D-mode) ultrasonography in patients with HNSCC and investigate their utility
in supporting the diagnosis by comparing their performance to that of highly experienced radiologists
and less experienced residents. A total of 462 B- and D-mode ultrasound images were used to train,
validate, and test the B- and D-mode models, respectively. The detection performances of the
B- and D-mode models for metastatic LNs were higher than those of less experienced residents;
the performance of the D-mode model was comparable to that of highly experienced radiologists,
suggesting that YOLOv7-based models are useful for supporting the diagnosis.

Abstract: Ultrasonography is the preferred modality for detailed evaluation of enlarged lymph
nodes (LNs) identified on computed tomography and/or magnetic resonance imaging, owing to
its high spatial resolution. However, the diagnostic performance of ultrasonography depends on
the examiner’s expertise. To support the ultrasonographic diagnosis, we developed YOLOv7-based
deep learning models for metastatic LN detection on ultrasonography and compared their detection
performance with that of highly experienced radiologists and less experienced residents. We enrolled
462 B- and D-mode ultrasound images of 261 metastatic and 279 non-metastatic histopathologically
confirmed LNs from 126 patients with head and neck squamous cell carcinoma. The YOLOv7-
based B- and D-mode models were optimized using B- and D-mode training and validation images
and their detection performance for metastatic LNs was evaluated using B- and D-mode testing
images, respectively. The D-mode model’s performance was comparable to that of radiologists and
superior to that of residents’ reading of D-mode images, whereas the B-mode model’s performance
was higher than that of residents but lower than that of radiologists on B-mode images. Thus,
YOLOv7-based B- and D-mode models can assist less experienced residents in ultrasonographic
diagnoses. The D-mode model could raise the diagnostic performance of residents to the same level
as experienced radiologists.

Keywords: metastatic lymph node; squamous cell carcinoma; ultrasonography; YOLOv7; deep
learning; computer-assisted diagnosis
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1. Introduction

Cervical lymph node (LN) metastasis is one of the most relevant prognostic factors
for patients with head and neck squamous cell carcinoma (HNSCC) [1–4]. Therefore, it
is important to detect and treat metastatic LNs as early as possible to improve patients’
prognosis. Computed tomography (CT), magnetic resonance imaging (MRI), ultrasonogra-
phy (US), and positron emission tomography/CT (PET/CT) are used to detect metastatic
LNs [5–8]. As each modality has advantages and disadvantages, a multimodal assessment
can yield an effective imaging diagnosis of metastatic LNs. Contrast-enhanced CT and
contrast-enhanced MRI are the most commonly used due to their superior anatomical
resolution [5,9–11]. They are useful for detecting LNs with internal necrosis characteristic
of lymph nodes in HNSCC [10]. In particular, the high contrast resolution of MR makes it
easier to detect internal abnormalities than CT [5]; however, the long scan time of MRI can
produce motion artifacts, which impact LN evaluation. In contrast, CT has a shorter scan
time and is the most useful modality for surveying large LNs; however, it has the disadvan-
tage of ionizing radiation exposure. PET/CT also involves exposure to ionizing radiation.
Although Sun et al. reported that the sensitivity and specificity of 18FDG-PET/CT were
0.84 and 0.96, respectively, for detecting regional LN metastasis [12], PET/CT is still com-
plementary to the conventional radiological investigations [13,14]. Recently, PET/MRI has
been reported to have better diagnostic ability for LN metastasis than contrast-enhanced
CT [1,15,16]; however, PET/MRI has not been widely used.

US is a simple, ionizing-radiation-free, non-invasive, and low-cost imaging modal-
ity; owing to its higher spatial resolution, it can facilitate better detection of intranodal
architectural changes compared with CT and MRI [5–7,17]. Although US cannot evaluate
deep LNs, such as the retropharyngeal nodes, it is the first-line modality for the intensive
evaluation of relatively superficial LNs that appear enlarged on CT and/or MRI in patients
with HNSCC [7,18–20].

The US diagnosis of metastatic LNs is usually made using gray-scale (B-mode) US,
which provides morphological information on the size, shape, borders, echotexture, and
power, or color Doppler US, which provides vascular information [5,18]. Metastatic LNs
are reportedly associated with absent hilar echoes, increase in the short-axis length, near
circular form, and heterogeneous internal echoes in B-mode images; and compressed
hilar flow, peripheral flow, and/or scattered parenchymal flow signals in power or color
Doppler US [5,7,20]. Power Doppler US is more sensitive than color Doppler US for
visualizing smaller blood vessels because its greater dynamic range enhances the visibility
of microvascularity [5,21]. However, US is examiner-dependent, i.e., accurate diagnosis
depends on the operator’s expertise [6,19,22,23], making accurate diagnosis a challenge
for inexperienced examiners. Furthermore, experienced radiologists may face difficulty
maintaining high diagnostic performance for metastatic LNs due to the diagnostic work
overload. This leads to patients missing appropriate treatment. To address this issue,
implementing a computer-assisted diagnosis (CAD) system using deep learning (DL)
that automatically identifies metastatic LNs can benefit inexperienced and experienced
radiologists by compensating for inexperience and preventing mistakes.

Recently, DL applications have been reported for the diagnosis of metastatic LNs in
patients with HNSCC [11,24–27]. Santer et al. reported that the mean diagnostic accuracy
of artificial intelligence for LN classification was 86% (range: 43–99%) [25], and Ariji et al.
reported that metastases were diagnosed more accurately in the segmented lymph nodes
in contrast-enhanced CT images using the DL model compared with the radiologists’
interpretation [26]. However, most previous studies have used CT and PET-CT images for
DL [25].

Currently, DL using US images is being used for the diagnosis of breast lesions [28–31],
submandibular gland inflammation [32], Sjögren’s syndrome [33], and thyroid nodules [34,35].
The application of DL to the US diagnosis of LNs has been reported for axillary LNs (accu-
racy = 72.6%) [36] and metastatic LNs from thyroid cancer (accuracy = 83%) [37]. Recently,
Zhu et al. reported that a DL radiomics model based on B-mode and color Doppler
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US images showed better diagnostic performance than skilled radiologists for four com-
mon etiologies (metastatic, lymphoma, tuberculous, and reactive) of unexplained cervical
lymphadenopathy [19]. However, few DL models have been devised for metastatic LN
detection using US images in patients with HNSCC. Thus, we aimed to develop DL models
for CAD for the US diagnosis of cervical metastatic LNs in patients with HNSCC.

The following CNN models were utilized for the LN metastasis diagnosis using CT
in HNSCC: ResNet, DIGITS, BoxNet, SmallNet, DualNet [25], U-net [26], Xception [24],
AlexNet [27], DetectNet [11], and DualNet [38]. The AUCs for diagnosing metastatic LNs
were as follows: 0.91 using DualNet [38], 0.8 using AlexNet [27], 0.95 using U-net [26], 0.898
and 0.967 at level I–II and level II, respectively, using Xception [24]. We selected the You
Only Look Once (YOLO) real-time multiple object detector, which has high efficiency and
remarkable speed of operation [39], as the ideal algorithm for US diagnostic models. This is
because, in actual US examinations, US videos are used for assessment, and YOLO allows
real-time multiple detection of metastatic LNs in live US video examinations. While this
study employed static images as a preliminary step in the development of the DL model
for US diagnosis, our ultimate goal is to create a DL model capable of real-time detection
of metastatic LNs during live US video examinations. In this study, the YOLO version
7 (YOLOv7) algorithm was used since previous studies have suggested that YOLOv7
provides greater accuracy and requires less computation time [40–45]. The salient features
of YOLOv7 used in this study are as follows:

1. Incorporates a trainable bag-of-freebies to improve real-time object detection perfor-
mance without increasing inference costs;

2. Integrates extended and composite scaling to effectively reduce model parameters
and calculations for faster detection; and

3. Provides predesigned freebies to facilitate model fine-tuning and simplifies the addi-
tion of modules and the creation of new models, which are characterized by higher
detection accuracy, speed, and convenience [40–45].

Therefore, this study aimed to develop YOLOv7-based models using B-mode im-
ages and D-mode images (B-mode superimposed power Doppler images) for detecting
metastatic LNs and investigate the utility of the models for CAD by comparing the detec-
tion performance for metastatic LNs with those of highly experienced radiologists and less
experienced residents.

2. Materials and Methods
2.1. Patients

This study was approved by the Institutional Review Board (IRB) of Nagasaki Uni-
versity Hospital (No. 11072593-13). The IRB waived the requirement for informed consent
from the participants owing to the retrospective study design. The study protocol con-
formed with the ethical guidelines of the Declaration of Helsinki and the Ethical Guidelines
for Medical and Health Research involving Human Subjects by the Ministry of Health,
Labor, and Welfare of Japan.

A radiologist (S.E.) with 26 years of experience in neck US diagnosis selected the
ultrasonographic images of LNs from our hospital imaging database of patients who
underwent neck US examination for the assessment of nodal metastasis from HNSCC and
neck dissections between October 2008 and January 2022.

The inclusion criteria for the LNs used in this study were as follows:

• Both axial-oriented B- and D-mode US images were available;
• Short-axis diameter >2 mm (the longest nodal axis perpendicular to the long axis of

the node with the maximal nodal area in an axially oriented US image);
• Identifiable on dissection specimens; and
• Histologically proven metastasis or non-metastasis.
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The identification of the dissected nodes and US images was facilitated by LN schema
maps that recorded the location of US-scanned LNs relative to the surrounding anatomic
structures, such as vessels, salivary glands, bones, and muscles, as reference. LNs with
unclear images due to artifacts or incomplete operations were excluded.

Consequently, 540 LNs (261 metastatic and 279 non-metastatic LNs) of 126 patients
with HNSCC, including 78 men and 48 women with a mean age of 63 years (range,
31–91 years), were enrolled in this study, and one B-mode and one D-mode image of each
LN were used. Since 2–3 LNs were often observed in one US image, a total of 462 B-mode
and 462 D-mode images for 540 LNs were prepared.

The number of LNs at each cervical level was 16, 203, 210, 70, 29, and 12 for levels IA,
IB, II, III, IV, and V, respectively. The primary sites of SCC nodes were the tongue (n = 49),
gingiva (n = 52), oropharynx (n = 8), buccal mucosa (n = 5), maxillary sinus (n = 1), maxilla
(n = 1), palate (n = 1), oral floor (n = 6), and lip (n = 3).

2.2. US Image Acquisition

US examinations were performed using a 9-unit LOGIQ (GE Healthcare, Milwau-
kee, WI, USA) equipped with a wide-bandwidth (range, 9–14 MHz) transducer by three
radiologists with 26 years’ or more experience in neck US. B-mode US was performed
at a frequency of 14 MHz. D-mode US was performed at 6.6 MHz, and standardized
power Doppler settings were chosen to optimize the detection of vascular signals in and
around the LNs, which had low-velocity flow. Common settings of 900 Hz pulse repetition
frequency and a wall filter of 133 Hz were used. Both B- and D-mode images of the largest
diameter on the transverse orientation of each detected LN were saved; the B-mode and
D-mode images of each LN were almost identical in positioning. The area set by each
radiologist to detect the Doppler signal of the LNs during the US examination was bounded
by a square line around the LNs (indicating areas containing metastatic and non-metastatic
LNs) only in the D-mode image.

2.3. Preparation of US Datasets

The 462 B-mode and 462 D-mode images (373 × 393 pixels, 3.8 × 4 cm) of 540 LNs
were downloaded from our imaging database, and the deepest area (373 × 20 pixels,
3.8 × 0.2 cm) with almost no echo signal from each image was cropped by a radiolo-
gist with 26 years’ experience in neck US diagnosis. Finally, all images were resized to
640 × 640 pixels and saved in the PNG format for input into YOLOv7 (Figure 1) [44].

The B- and D-mode images were assigned to the training (n = 324), validation (n = 92),
and testing datasets (n = 46) so that the distribution of images was approximately 7:2:1
(Table 1 and Figure 1). None of the images of patients assigned to the testing dataset crossed
over to the training or validation datasets.

Table 1. Number of images and LNs for B-mode and D-mode training, validation, and testing datasets.

Training
Datasets

Validation
Datasets

Testing
Datasets Total

No. of images 324 92 46 462
No. of LNs 365 116 59 540

No. of metastatic LNs 183 50 28 261
No. of non-metastatic LNs 182 66 31 279
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Figure 1. Flowchart of the development of YOLOv7-based models.

2.4. YOLOv7 Model Procedure

Metastatic LN detection models were created using the YOLOv7 network [31] on a
Windows 10 Pro (Microsoft) desktop computer with a 24 GB GPU (NVIDIA GeForce RTX
3090, Santa Clara, CA, USA). The YOLOv7 network was downloaded from the GitHub
repository “https://github.com/WongKinYiu/yolov7” (accessed on 21 April 2023).

YOLOv7 was separately trained for the detection of metastatic LNs on B-mode and
D-mode images to create optimized models for each mode (B-mode and D-mode models,
respectively) using 324 images for training and 92 images for validation; the bounding
boxes indicated metastatic LNs with annotation labels specifying the coordinates. These
annotations were generated using the image data annotation software “LabelImg version
1.8.1” (accessed on 8 March 2023) by a radiologist (S.E.) with 26 years of experience in neck
US diagnosis. She annotated each LN using a bounding box to encompass the entire LN
without overlapping its margins by comparing the LN schema maps with the pathology
findings. Subsequently, another radiologist (M.SU.) with 27 years of experience in neck US
diagnosis confirmed the accuracy and consistency of all images.

The network architecture of YOLOv7 consists of three main components: backbone,
neck, and prediction (Figure 1) [44,45]. The backbone incorporates CBS layers, which con-
sist of convolution, batch normalization, and SiLU activation functions; max pooling layers;
and efficient layer aggregation network (ELAN) layers [44,45]. In the neck, the SPPCSPC
layer is created by integrating the spatial pyramid pooling (SPP) and convolutional spatial
pyramid (CSP) architectures. The feature map output of the SPPCSPC layer is divided
into two parts, which enhances the perceptual range of the network [44]. The CUC layer
serves as the basic unit for combining feature maps, involving convolution, up-sampling,
and combining feature maps. The REP layer is an innovative concept that uses structural

https://github.com/WongKinYiu/yolov7
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reparameterization to modify the structure during inference to improve the model’s per-
formance. The prediction layer of YOLOv7 generates feature maps of three different sizes
during the prediction process [45]. In our study, the architecture of YOLOv7 remained
unchanged, and the initial learning rate was set at 0.01 and 1000 epochs for training.

YOLOv7 presents multiple bounding boxes, their class labels, and confidence scores [41].
The confidence score is calculated as the product of the predicted value (object) and the
intersection over the union of the bounding box around the object. This score serves
as a measure of how well a given bounding box matches the actual object, with higher
confidence scores indicating greater accuracy of detection. In this study, the B- and D-
mode models, which were optimized for metastatic LNs in the B- and D-mode images,
respectively, displayed boxes surrounding the objects determined to be metastatic LNs and
their confidence scores for the test images. While evaluating the detection performance
of the B- and D-mode models, the following types of thresholds were established for the
confidence score:

• A low threshold (confidence score ≥ 0.1) to obtain a higher recall (B-mode model-1
and D-mode model-1), and

• An investigated threshold to obtain the largest area under the receiver operating
characteristic curve (AUC) for the test images (B-mode model-2 and D-mode model-2).

2.5. Evaluation of Detection Performance and Comparison with Observers

The detection performance of the metastatic LNs was evaluated using recall, precision,
F1-scores, false-positive rate for non-LN areas, accuracy (Table 2), and AUC. The false-
positive rate for non-LN areas was calculated as the number of non-LN areas incorrectly
detected as metastatic LNs in one test image (number of test images = 46) [11]. The accuracy
and AUC were evaluated for all LNs for the test images, under the assumption that the
undetected LNs were non-metastatic LNs. Additionally, the recall for the metastatic LNs at
each cervical level (levels I, II, and III + IV) was examined.

Table 2. Evaluation indicators for the detection performance of metastatic LNs.

Detection Result

Detected as
Metastatic LNs

Not Detected as
Metastatic LNs

Pathology
Metastatic LNs N (A + B) = 28 True positive: A False negative: B

Non-metastatic LNs N (C + D) = 31 False positive: C True negative: D

Non-LN areas detected as metastatic LNs False positive for
non-LN area: E

A–E indicate the number (N) of LNs or non-LN areas incorrectly detected as LNs. The evaluation indicators
of detection performance for metastatic LNs were determined using the following equation: recall = A/28,
precision = A/(A + C + E); F1-score = 2 × precision × recall/(precision + recall); false-positive rate for non-LN
area (= false positives for non-LN area in one test image) = E/46; accuracy = (A + D)/59.

Furthermore, two highly experienced radiologists (M.SA. and Y.T., with 27 years of
experience in neck US diagnosis) and two less experienced dental residents (H.M. and
M.K.) evaluated the same testing datasets after calibration. Calibration was performed
using 20 randomly selected images (the first 10 metastatic and 10 non-metastatic LN images
numbered within each of the metastatic and non-metastatic LN groups from the B- and D-
mode training datasets). Although the selected images represented typical metastatic and
non-metastatic LNs, they may not have been representative of the entire dataset. However,
they were sufficient for understanding the typical diagnostic criteria for metastatic and
non-metastatic LNs using B- and D-mode images.

The four observers were blinded to the patient’s clinical information and instructed to
interpret the test images after calibration. There was an interval of more than one week
between the B-mode- and D-mode image evaluations. Thereafter, the performances of the
models were compared with those of the observers.
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The interobserver agreement between the two highly experienced radiologists for the
identification of metastatic LNs in the B- and D-mode images was substantial and almost
perfect (Cohen’s weighted kappa coefficient: 0.894 and 0.682 for the B-mode and D-mode
images, respectively). Therefore, disagreements on imaging interpretation between the two
radiologists were resolved by discussion, and the evaluation results of the two radiologists
were combined into a single finding for use in the subsequent analysis. The two residents,
unlike the radiologists, were less experienced; therefore, all test cases were evaluated
consensually by the two residents, culminating in a single evaluation result.

2.6. Statistical Analysis

The optimal thresholds for the confidence score at which the B- and D-mode models
had the largest AUCs, respectively, were obtained using the Youden index. The recalls for
metastatic LNs and accuracies for all LNs in the test images were compared between the
models and observers using the binominal test. The AUCs of the diagnostic performance
for all LNs in the test images were compared between the models and three observers
using the DeLong test [46]. Statistical significance was set at p < 0.05. Agreements on the
identification of metastatic LNs between the models and observers were assessed using Co-
hen’s weighted kappa coefficient. The kappa coefficients were interpreted as follows: 0–0.2,
poor agreement; >0.2 and ≤0.4, fair agreement; >0.4 and ≤0.6, moderate agreement; >0.6
and ≤0.8, substantial agreement; and >0.8 and ≤1.0, almost perfect agreement. Statistical
analyses were performed using JMP Pro (version 17.0.0; SAS Institute Inc., Cary, NC, USA)
and IBM SPSS, version 27.0.1 (IBM, Armonk, NY, USA).

3. Results
3.1. Detection Performance for Metastatic LNs

The detection results for metastatic LNs in the B- and D-mode images using the B-
and D-mode models, respectively, are shown in Figure 2. The optimal thresholds for the
confidence score at which the B- and D-mode models had the largest AUCs were 0.23 and
0.48, respectively (Figure 3). The recall, precision, F1-score for metastatic LNs, false-positive
rate per non-LN area, accuracy, and AUC of B- and D-mode model-1 (confidence score of
0.1 for both) and B- and D-mode model-2 (confidence score of 0.23 and 0.48, respectively),
highly experienced radiologists, and less experienced residents are shown in Table 3 and
Figure 3.

For the B-mode images, B-mode model-1 and model-2 had the same recall value of
0.75; however, the other evaluation metrics besides recall were higher for B-mode model-2
than those for B-mode model-1. All evaluation metrics of B-mode model-1 and model-2
were lower than those of the radiologists, and the accuracy and AUC of B-mode model-1
were significantly lower than those of the radiologists (p = 0.031 and 0.0166, respectively).
Moreover, all evaluation metrics of B-mode model-2 and evaluation metrics other than the
accuracy and AUC of B-mode model-1 were higher than those of the residents; however,
the differences in recall, accuracy, and AUC between B-mode model-1 and model-2 and
the residents were not significant. The recall, accuracy, and AUC of the radiologists were
significantly higher than those of the residents (p = 0.008, 0.012, and 0.0022, respectively)
(Table 4).

For the D-mode images, the recall values of D-mode model-1 and model-2 for metastatic
LNs were 0.821 and 0.75, respectively. The recall of D-mode model-1 was not only higher
than that of the residents (0.714) but also that of the radiologists (0.75), although the differ-
ence lacked statistical significance (Table 4). However, the evaluation metrics other than
recall were higher in D-mode model-2 than those in D-mode model-1, and all evaluation
metrics of D-mode model-2 (recall = 0.75, precision = 0.84, F1-score = 0.792, false-positive
rate for non-LN area = 0, accuracy = 0.814, and AUC = 0.81) were comparable to those of
the radiologists. All evaluation metrics of D-mode model-1 and model-2 were higher than
those of the residents, although there were no statistically significant differences in recall,
accuracy, or AUC between them (Table 4).
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mode model-1 exhibited a false negative (FN) for LN-5, while D-mode model-1 achieved a TP result. 

Figure 2. Successful and unsuccessful examples of metastatic lymph node detection by B- and
D-mode model-1 (confidence score of 0.1 for both) in B- and D-mode model images, respectively.
(a) Both B- and D-mode model-1 exhibited true negatives (TN) for LN-1 and -3 and false positives
(FP) for LN-2. However, B-mode model-1 registered a false positive (FP*) for the cross-section of
the sternocleidomastoid muscle in B-mode image 2, and D-mode model-1 registered a false positive
(FP**) for the internal jugular vein in D-mode image 3 (this was the only FP for the non-LN area by
D-mode model-1). (b) Both B- and D-mode model-1 demonstrated true positives (TP) for LN-4 and
-6, but B-mode model-1 exhibited a false negative (FN) for LN-5, while D-mode model-1 achieved a
TP result.
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Figure 3. Receiver operating characteristic (ROC) curves. ROC curves of the B- and D-mode models
were based on confidence scores of ≥0.1. (a) ROC curves for B-mode images. The threshold of the
B-mode model for obtaining the largest area under the ROC curve (AUC) was a confidence score of
0.23 (arrowhead). (b) ROC curves for the D-mode images. The threshold of the D-mode model for
obtaining the largest AUC was a confidence score of 0.48 (arrowhead).
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Table 3. Detection performance for metastatic LNs.

B-mode images B-mode model-1 B-mode model-2 Radiologists Residents

Recall 0.75 0.75 0.821 0.536
Precision 0.618 0.724 0.958 0.517
F1-score 0.677 0.737 0.885 0.526

False-positive rate for non-LN area 0.087 0.043 0 0.261
Accuracy 0.729 0.78 0.898 0.746

AUC
(95% CI)

0.73
(0.601–0.829)

0.778
(0.652–0.868)

0.895
(0.786–0.951)

0.736
(0.62–0.826)

D-mode images D-mode model-1 D-mode model-2 Radiologists Residents

Recall 0.821 0.75 0.75 0.714
Precision 0.719 0.84 0.875 0.606
F1-score 0.767 0.792 0.808 0.656

False-positive rate for non-LN area 0.022 0 0 0.022
Accuracy 0.78 0.814 0.831 0.661

AUC
(95% CI)

0.782
(0.657–0.870)

0.81
(0.689–0.892)

0.827
(0.707–0.904)

0.664
(0.533–0.773)

Comparison of accuracy, recall, and AUC between B-mode and D-mode images

p value for recall * 0.687 1 0.687 0.063
p value for accuracy * 0.549 0.727 0.289 0.359

p value for AUC ** 0.365 0.518 0.169 0.270

p-values by * binomial test and ** DeLong test.

Table 4. Comparison of recall, accuracy, and AUC between the models and observers.
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D-mode model-1 and model-2 showed higher precision, F1-score, accuracy, and AUC
than those of B-mode model-1 and model-2, respectively, although the differences in recall,
accuracy, and AUC were not significant. Additionally, the false-positive rates for non-LN
areas in D-mode model-1 and model-2 (0.022 and 0, respectively) were lower than those
of B-mode model-1 and model-2 (0.087 and 0.043, respectively). B-mode model-1 had
three false positives for the cross-section of the sternocleidomastoid muscle and one false
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positive for the internal jugular vein, while D-mode model-1 had one false positive for the
cross-section of the internal jugular vein (Figure 2a).

All evaluation metrics of the radiologists were higher for the B-mode images than the
D-mode images, and all values other than the accuracy and AUC of the residents were
higher for the D-mode images than the B-mode images, although there was no statistically
significant difference in recall, accuracy, and AUC between them (Table 4).

3.2. Recall at Each Cervical Level

The recall for metastatic LNs at each cervical level is shown in Table 5. For the B-mode
images, recalls at level I of B-mode model-1 and -2 and the radiologists had the same high
values of 0.909, which were significantly greater than those of the residents. However,
the recalls of B-mode model-1 and model-2 at level III + IV (0.429 for both) were lower
than those of the radiologists and residents. For the D-mode images, the recall of D-mode
model-1 and the radiologists was the same for levels I and II (0.727 and 1, respectively);
however, the recall of D-mode model-1 (0.714) for level III + IV was higher than that of the
radiologists and residents.

Table 5. Recall at each cervical level.

B-mode images B-mode model-1 B-mode model-2 Radiologists Residents

Level I 0.909 0.909 0.909 0.364
Level II 0.8 0.8 0.9 0.7

Level III + IV 0.429 0.429 0.571 0.571

D-mode images D-mode model-1 D-mode model-2 Radiologists Residents

Level I 0.727 0.636 0.727 0.636
Level II 1 1 1 0.7

Level III + IV 0.714 0.571 0.429 0.857

3.3. Agreement on the Identification of Metastatic LNs between the Models and Observers

The agreement of identification for metastatic LNs between the B-mode models and
the radiologists’ reading of B-mode images was fair and moderate (kappa values = 0.392
and 0.483 for B-mode model-1 and model-2, respectively), and those between the D-mode
models and the radiologists for D-mode images were moderate (kappa values = 0.496 and
0.546 for B-mode model-1 and model-2, respectively) (Table 6).

Table 6. Agreement in the identification of metastatic LNs between the models and observers.

B-Mode Images Kappa Value D-Mode Images Kappa Value

B-mode model-1 vs. B-mode model-2 0.898 D-mode model-1 vs. D-mode model-2 0.798
B-mode model-1 vs. Radiologists 0.392 D-mode model-1 vs. Radiologists 0.496

B-mode model-1 vs. Residents 0.361 D-mode model-1 vs. Residents 0.149
B-mode model-2 vs. Radiologists 0.483 D-mode model-2 vs. Radiologists 0.546

B-mode mode-2 vs. Residents 0.437 D-mode model-2 vs. Residents 0.230
Radiologists vs. Residents 0.595 Radiologists vs. Residents 0.199

The numbers indicate Cohen’s kappa values.

4. Discussion

This study devised YOLOv7-based B- and D-mode models to detect metastatic LNs
in B- and D-mode US images, respectively. To the best of our knowledge, this is the first
study to develop DL models for the detection of metastatic LNs on US in patients with
HNSCC. In addition, this study is novel in that it implemented the fastest and most accurate
real-time object detection algorithm, YOLOv7. Further, this study provides valuable
information regarding the performance of B- and D-mode models under the following
types of confidence score thresholds: (1) a low threshold to obtain a higher recall (0.1 for
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both B- and D-mode model-1), and (2) a higher threshold to obtain the largest AUC (0.23
and 0.48 for B- and D-mode model-2, respectively), resulting in D-mode model-2 having a
trade-off of decreasing not only false positives but also true positives.

In our study, the recall of D-mode model-1 for metastatic LNs was 0.821, which was
the highest among the B- and D-mode models and higher than that of the experienced
radiologists’ (0.75) and residents’ (0.714) reading of D-mode images, suggesting that D-
mode model-1 can enhance the detection performance of metastatic LNs for not only
residents but also experienced radiologists in D-mode images. In addition, the D-mode
model-2 with a higher confidence score threshold had a recall of 0.75, precision of 0.84,
F1-score of 0.79, accuracy of 0.814, and AUC of 0.81, which means that all the evaluation
metrics (except recall) were higher than those of D-mode model-1, owing to fewer false
positives, which was comparable to the reading by radiologists with 27 years’ experience
and higher than the residents’ reading of D-mode images. Therefore, D-mode model-2 is a
useful CAD system to raise the detection performance of residents to the same level as that
of experienced radiologists for D-mode images. Furthermore, the recall of B-mode model-1
and model-2 for metastatic LNs was 0.75, which was lower than that of the radiologists but
higher than that of the residents for B-mode images, suggesting that B-mode models are
beneficial for improving the detection rate of metastatic LNs by less experienced residents.

Compared with radiologists, the B- and D-mode models had lower precision owing
to the greater rate of false positivity. B-mode model-1 had four false positives for non-LN
structures in the B-mode test images, leading to poor detection performance. In the D-mode
images, blood vessels can be distinguished from other tissues based on blood flow signals,
which is not possible in B-mode images; thus, less experienced residents found many false
positives by misinterpreting blood vessels as metastatic LNs (12 false positives). In contrast,
the experienced radiologists had no false positives for non-LN structures in either the B- or
D-mode images, probably because they were completely familiar with the neck anatomy
and had no difficulty distinguishing LNs from blood vessels and other structures. Therefore,
the B-mode model, which was only trained on B-mode images, was also assumed to have
many false positives for blood vessels; however, contrary to this assumption, B-mode
model-1 had only one false positive for the internal jugular vein, and the other three false
positives were for cross-sections of the sternocleidomastoid muscle (Figure 2a). Thus, we
opine that the B-mode model could distinguish between metastatic LNs and blood vessels
based on features other than blood flow signals (size, internal signals, location, etc.), but
that learning the present image data was not sufficient to distinguish metastatic LNs from
the muscle. Training with more B-mode image data would help in learning neck anatomy,
such as muscle location, and decrease the false positive rate for the non-LN area.

D-mode model-1 had only one false positive case for the non-LN area, most likely
because of the following advantages over B-mode models: (1) LNs could be distinguished
from blood vessels and muscles by the Doppler blood flow signal, and (2) the area delin-
eated by the radiologist during the US examination for the investigation of blood flow
findings in detected LNs was bounded by a square in each D-mode image. Therefore, the
D-mode model might have prioritized the detection of metastatic LNs within the square’s
boundaries. Only one false positive for the non-LN area by D-mode model-1 was registered
for the internal jugular vein, which spanned both the inside and outside of the square and
was centrally located on the outside, as shown in Figure 2a, suggesting that the D-mode
model may have been learning not only the inside but also the outside of the square. How-
ever, this was the only instance in which metastasis was registered outside of the square.
Therefore, if the entire image, not only the LN area, is bounded by a square, the detection
performance might differ.

However, unlike inexperienced residents, experienced radiologists usually do not
misdiagnose non-LNs as LNs, as observed in our study. It is more difficult to identify
whether the detected LN is metastatic; thus, they determine whether the LN detected in the
B-mode image is metastatic by adding the blood flow information in the D-mode image.
Therefore, the D-mode model trained on D-mode images with square-shaped bounded LN
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areas was similar to the actual evaluation method of radiologists; D-mode model-1 showed
a higher recall than that of radiologists, suggesting that the D-mode model is beneficial
for radiologists.

The higher detection performance of radiologists’ reading of B-mode images than on
D-mode images is consistent with a study by Chikui et al., who reported that vascular
information in D-mode images offered fewer predictive advantages for experienced radiol-
ogists in the diagnosis of metastatic LNs, whereas it can assist less experienced observers in
distinguishing between LNs and blood vessels [23]. However, the recall of D-mode model-1
was higher than that of the radiologists. The kappa values between D-mode model-1 and
radiologists were not high (0.496), suggesting that the D-mode models may have employed
more accurate vascular information criteria than those used by the radiologists for the diag-
nosis of metastatic LNs. An improved D-mode model trained with more data is expected
to further improve the detection performance of metastatic LNs.

This study had some limitations. First, the number of patients and LNs was small
because this was a single-center study that used only US images acquired with the same
apparatus and imaging parameters. However, especially at level III + IV, which had the
fewest LN images, the recalls of the B- and D-mode models were lower than those of the
other levels. Since the detection performance is related to the amount of training data,
the performance can be improved by using more data. In addition, multicenter studies
should be conducted to accumulate more data, which would allow for the construction of
models with better generalization performance. Further, supplementing real-life data with
generative adversarial network (GAN) [47,48] and computational fluid dynamics (CFD)
simulations [49,50] can effectively expand the dataset.

Second, we did not conduct a model interpretability analysis such as Grad-CAM [51,52];
therefore, the basis for the model’s decision is unknown. The high kappa values of 0.894
and 0.682 for the B- and D-mode images between the two radiologists suggest that they
used similar diagnostic criteria, whereas the lower kappa values between the models
and the radiologists suggest that the models used different diagnostic criteria from the
radiologists. The low kappa values between the B-mode models and the radiologists (0.392
and 0.483 for B-mode model-1 and -2, respectively) suggest that the B-mode model failed
to learn the various subtle features that distinguish between metastasis and non-metastasis,
which resulted in lower performance of B-mode models; experienced radiologists have
learned this over the years as diagnostic criteria. In particular, the precision of radiologists
was 0.958 for B-mode images, which was much higher than those of the B-mode models,
suggesting that radiologists have fewer false positives and better criteria for identifying non-
metastatic LNs than B-mode models. Possible reasons are as follows: the radiologists are
more experienced than our study’s dataset in diagnosing metastatic and non-metastatic LN
images, and they are familiar with the various US features of metastatic and non-metastatic
LNs; since the number of non-metastatic LNs is much larger than that of metastatic LNs,
radiologists may be particularly sensitive to the various features of non-metastatic LNs.
In contrast, the dataset in this study was too small for the model to learn the variety of
metastatic and non-metastatic US features and was insufficient for the generalizability of
non-metastatic LN images. For example, the B-mode model may have mainly used size
and rounded morphology to determine LN metastasis. However, since our study did not
conduct a model interpretability analysis, the basis for the model’s diagnosis could not be
confirmed. To enhance the reliability of the models, it is essential to clarify the basis for the
model’s diagnosis using techniques such as Grad-CAM and confirm the differences in the
diagnostic criteria between the radiologists and the models. In addition to learning with
more data, insights into the basis of the model’s diagnosis can improve overall performance
and reveal its strengths and limitations.

Third, the US images used in this study did not include images of neck masses other
than LNs, such as thyroglossal duct cysts [53], branchial cleft cysts, lymphangiomas, or
salivary gland tumors [54]. In clinical practice, some patients may have neck masses other
than LNs. It should be noted that our models may produce false-positive results for neck
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masses other than metastatic LNs. Therefore, at this stage, the application of our models
would be limited to screening; however, it would still aid the inexperienced examiner
in diagnosis.

Fourth, distinct models were created in this study using the B- and D-mode images
separately. However, in actual US examination, the radiologist combines the findings
of both the B- and D-mode images for diagnosis. Zhu et al. developed a fusion model
based on B-mode and D-mode images and achieved higher diagnostic performance for
unexplained cervical lymphadenopathy than radiologists [19]. Therefore, the development
of models to evaluate combined B- and D-mode images is expected to improve the detection
performance of metastatic LNs in patients with HNSCC.

Fifth, since this was a retrospective study, only the largest static transverse section
of each LN saved by a radiologist during the examination was used. Recently, it was
reported that the model performance is superior with ultrasound videos compared to static
ultrasound images [22]. YOLOv7, used in our study, and the latest version, YOLOv8 [55],
are the fastest and most accurate real-time object detection models, which are suitable for
multiple object detection from video files in real time. The development of a YOLO-based
model that can detect metastatic LNs in real time during US examinations will be one of
the most important themes of future research, necessitating multicenter studies with vast
quantities of US video data.

5. Conclusions

The results of this study suggest that the B- and D-mode models based on YOLOv7
are valuable tools in supporting the US detection of metastatic LN in patients with HNSCC,
particularly the D-mode model, which could improve the diagnostic performance of less
experienced residents to the same level as experienced radiologists. Further performance
improvements may be achieved by using more US data from multicenter studies and
insights into the basis of the model’s diagnosis using interpretability analysis. Notably, the
diagnostic accuracy of the radiologists in the actual US examination is expected to be higher
than the results of this study, as radiologists also consider other relevant clinical findings,
such as the location of the primary tumor and the detected LN, which are important clues
for the diagnosis of metastatic LNs. Therefore, a CAD system using a multimodal model
incorporating CT and/or MRI scans of the primary tumor and other clinical findings would
be more practical and perform best in metastatic LN diagnosis with patients with HNSCC.
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