
Citation: Wu, Q.; Li, X.; Yang, Y.;

Huang, J.; Yao, M.; Li, J.; Huang, Y.;

Cai, X.; Geller, D.A.; Yan, Y. MICA+

Tumor Cell Upregulated

Macrophage-Secreted MMP9 via

PROS1-AXL Axis to Induce Tumor

Immune Escape in Advanced

Hepatocellular Carcinoma (HCC).

Cancers 2024, 16, 269. https://

doi.org/10.3390/cancers16020269

Academic Editor: Dan G. Duda

Received: 29 November 2023

Revised: 21 December 2023

Accepted: 6 January 2024

Published: 8 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Article

MICA+ Tumor Cell Upregulated Macrophage-Secreted MMP9
via PROS1-AXL Axis to Induce Tumor Immune Escape in
Advanced Hepatocellular Carcinoma (HCC)
Qiulin Wu 1, Xicai Li 1, Yan Yang 1, Jingquan Huang 1, Ming Yao 1, Jianjun Li 1, Yubin Huang 1, Xiaoyong Cai 1,
David A. Geller 2,* and Yihe Yan 1,*

1 Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University,
Nanning 530007, China; wuqiulin2020@163.com (Q.W.); lixicai20213@163.com (X.L.);
yangyanmail0804@163.com (Y.Y.); hjq08287712@163.com (J.H.); yaoming20130703@163.com (M.Y.);
lijianjunmail@163.com (J.L.); efy9916@126.com (Y.H.); cxy0771@163.com (X.C.)

2 Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh Medical Center,
Pittsburgh, PA 15260, USA

* Correspondence: gellerda@upmc.edu (D.A.G.); yanyihe12@sr.gxmu.edu.cn (Y.Y.);
Tel.: +1-412-692-2001 (D.A.G.); +86-13978896704 (Y.Y.)

Simple Summary: The effect of macrophages on tumor cells in the tumor microenvironment of
hepatocellular carcinoma (HCC) has attracted more attention. In this study, expression levels of
MMP9 and MICA were significantly elevated in macrophages and tumor cells, respectively. The
IFN-γ pathway was activated in MICA+ tumor cells and MMP9+ macrophages. The interaction
between MICA+ tumor cells and MMP9+ macrophages was mediated through the PROS1-AXL
pathway. MMP9 was mainly expressed in M2-like macrophages. IRF1 induced the upregulation
of PROS1 and MICA in HCC cells. MICA+ tumor cells stimulated the secretion of MMP9 from
macrophages through the PROS1-AXL axis, thereby facilitating the proteolytic shedding of MICA
into soluble MICA. This study provided valuable insights and supported the therapeutic application
of AXL inhibition in HCC.

Abstract: Background: tumor-associated macrophages (TAMs) constitute a significant proportion of
non-cancerous cells within the intricate tumor microenvironment (TME) of hepatocellular carcinoma
(HCC). Understanding the communication between macrophages and tumor cells, as well as inves-
tigating potential signaling pathways, holds promise for enhancing therapeutic responses in HCC.
Methods: single-cell RNA-sequencing data and bulk RNA-sequencing data were derived from open
source databases Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). Through
this analysis, we elucidated the interactions between MICA+ tumor cells and MMP9+ macrophages,
primarily mediated via the PROS1-AXL axis in advanced HCC. Subsequently, we employed a range
of experimental techniques including lentivirus infection, recombinant protein stimulation, and AXL
inhibition experiments to validate these interactions and unravel the underlying mechanisms. Results:
we presented a single-cell atlas of advanced HCC, highlighting the expression patterns of MICA and
MMP9 in tumor cells and macrophages, respectively. Activation of the interferon gamma (IFN-γ)
signaling pathway was observed in MICA+ tumor cells and MMP9+ macrophages. We identified
the existence of an interaction between MICA+ tumor cells and MMP9+ macrophages mediated via
the PROS1-AXL axis. Additionally, we found MMP9+ macrophages had a positive correlation with
M2-like macrophages. Subsequently, experiments validated that DNA damage not only induced
MICA expression in tumor cells via IRF1, but also upregulated PROS1 levels in HCC cells, stimulating
macrophages to secrete MMP9. Consequently, MMP9 led to the proteolysis of MICA. Conclusion:
MICA+ HCC cells secreted PROS1, which upregulated MMP9 expression in macrophages through
AXL receptors. The increased MMP9 activity resulted in the proteolytic shedding of MICA, leading
to the release of soluble MICA (sMICA) and the subsequent facilitation of tumor immune escape.
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1. Introduction

Hepatocellular carcinoma (HCC) is the predominant form of liver cancer, accounting
for 80–90% of cases [1]. It is a significant global health concern, particularly in countries
such as China [2]. While early-stage HCC can be effectively treated with surgical resection,
ablation, or liver transplantation, the majority of patients are diagnosed at advanced stages,
resulting in poor prognosis and limited treatment options [3]. Despite advancements in
systemic therapies including immunotherapy, molecular targeted therapy, and chemother-
apy, the complex tumor microenvironment (TME) of HCC poses challenges to treatment
efficacy [3,4]. Within the TME, tumor-associated macrophages (TAMs) contribute to vari-
ous tumor-promoting processes, such as immune suppression, metastasis, angiogenesis,
maintenance of cancer cell stemness, and therapeutic resistance [5]. Consequently, it is
imperative to elucidate the molecular mechanisms by which TAMs contribute to treatment
resistance in HCC.

Our previous investigations have revealed the pivotal role of interferon regulatory
factor 1 (IRF1) as a central transcription factor in the interferon (IFN) pathway, exerting
significant influence on cell proliferation, apoptosis, tumorigenesis, and the TME [6–8].
Subsequent study demonstrated that DNA damage response induced by chemotherapy and
molecular targeted therapy upregulated the expression of major histocompatibility complex
(MHC) class I associated chains A (MICA) in HCC cells through IRF1 mediation [9], and
increased the number of natural killer (NK) cells and CD8+ T cells through the activation
of natural killer group 2D (NKG2D) receptors [10]. Conversely, matrix metalloproteinases
(MMPs) and a disintegrin and metalloproteinases (ADAMs) secreted by tumor cells or
non-cancerous cells within the TME have been implicated in the proteolytic shedding of
MICA [11]. However, the mechanisms underlying the release of soluble MICA (sMICA)
from cancer cell membranes remained poorly understood [12].

Matrix metalloproteinase 9 (MMP9) possesses the ability to hydrolyze various struc-
tural and signaling proteins, and is considered a potential inhibitor of immune response
and immune cell transport. The elevation of MMP9 was associated with tumor growth
and metastasis promotion in some cancers [13]. Wang et al. found that the expression of
MMP9 was positively correlated with the infiltration of Th1 cells, T follicular helper cells,
neutrophils, and macrophages [14]. Moreover, the expression of MMP9 was predominantly
observed in monocytes rather than hepatoma cells [15]. MMP9-positive macrophages
have been shown to play crucial roles in tumor tissue remodeling, monocyte migration,
tumor cell migration and metastasis, as well as tumor immune evasion and response to
immunotherapy [15].

Protein S 1 (PROS1) has been identified as a ligand for the Tyro3, AXL, and Mer
(TAM) family of tyrosine kinase receptors [16], making it a potential target for various
cancer types [17]. Additionally, AXL has been implicated in innate or acquired resistance
to chemotherapy, molecular targeted therapy, and radiotherapy [18]. Furthermore, the
AXL signaling pathway not only contributes to the progression and resistance phenotypes
of HCC [19], but also exerts suppressive effects on both adaptive and innate immune
responses against malignancies [20,21]. However, the precise role of the PROS1-AXL axis in
regulating MMP9 secretion from macrophages and its consequent impact on the proteolytic
shedding of MICA remains incompletely understood.

In this study, we presented a single-cell atlas of advanced HCC, revealing distinct
expression patterns of MICA and MMP9 in tumor cells and macrophages, respectively.
Furthermore, it was observed that MICA-positive HCC cells induced MMP9 secretion from
macrophages through the PROS1-AXL axis. This highlighted that MMP9 secretion subse-
quently facilitated the proteolysis of MICA, thereby promoting the evasion of the tumor
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from immune surveillance. These groundbreaking discoveries revealed the mechanism
enabling the evasion of NKG2D-mediated immune responses.

2. Materials and Methods
2.1. Acquirement of scRNA-Seq and Bulk-RNA-Seq Data

In order to reduce the influence of different hepatitis backgrounds and tumor stages
on the cellular components in TME, the scRNA-seq data of 4 samples (GSM4505960,
GSM4505961, GSM4505963 and GSM4505964) of GSE149614 [15] were downloaded from the
Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo (accessed
on 13 August 2022)). A total of 10,649 cells and 25,712 genes from two patients including
two tumor samples and two adjacent non-cancerous samples data were obtained [15],
comprising 5,615 cells from tumor tissue and 5034 cells from non-tumor tissue. The details
on gene numbers (nFeature_RNA), sequencing depth (nCount_RNA), and the percentage
of mitochondrial genes (percent.mt) were demonstrated (Supplementary Figure S1a). The
Pearson correlation coefficient between gene count and sequencing depth was determined
to be 0.92 for tumor samples and 0.71 for normal samples (Supplementary Figure S1b),
indicating a positive correlation. Quality control measures were implemented for the
single-cell transcriptome data, including a feature gene count ranging from 200 to 6000 and
a threshold of less than 15% for mitochondrial proportion (percent.mt) for data screening
and filtering. Consequently, a total of 10,338 cells (5359 tumor cells and 4979 normal cells)
were included in subsequent analyses. The bulk RNA-sequencing data and corresponding
clinical information of HCC patients were downloaded from The Cancer Genome Atlas
(TCGA) database (https://portal.gdc.cancer.gov (accessed on 20 August 2022)) containing
50 normal samples and 374 tumor samples. After excluding tumor patients without survival
data, 365 tumor patients were maintained in this analysis.

2.2. Patient Samples

All tumor and adjacent liver tissues were captured from patients at the Department of
General Surgery, the Second Affiliated Hospital of Guangxi Medical University (Nanning,
China). This study was approved by the Second Affiliated Hospital Ethics Committee
(No. 2022-KY-0208) and conducted in accordance with the Declaration of Helsinki.

2.3. scRNA-Seq Data Underwent Preprocessing and Analysis

The scRNA-seq data underwent preprocessing and analysis using the R software pack-
age “Seurat” (v 4.2.0). The conversion of scRNA-seq data into Seurat objects was carried
out to ensure the retention of high-quality data. To achieve this, raw matrices were filtered
to eliminate cells with transcript counts below 200 and those with mitochondria genes
constituting more than 15% of the total genes. Similarly, genes with expression detected in
less than three cells were also removed. The “NormalizeData” function from the “Seurat”
package was then employed to normalize the data, utilizing the “LogNormalize” method.
Principal component analysis (PCA) was used to select the top 20 principal components
(PCs) according to the results obtained from the JackStraw and ElbowPlot functions of the
Seurat package in R software (v 4.2.1). The “FindNeighbors” and “FindClusters” functions
of the Seurat package were used for cell cluster analysis. Subsequently, cells were clustered
and visualized using the “RunTSNE” and “RunUMAP” functions. The “FindAllMarkers”
function was applied to identify difference-expressed genes between one cluster and all
other clusters, employing a |log2 (fold change)| threshold of >1 and an adjusted p-value
threshold of <0.05. Marker genes for each cluster were found based on these criteria. Finally,
cell cluster annotation was accomplished by referencing marker genes from the CellMarker
2.0 databases [22] and genes reported in the relevant literature.

2.4. Differentially Expressed Genes (DEGs) Analysis and Signaling Pathways Investigation

Differential gene expression analysis and signaling pathway investigation were con-
ducted to elucidate the molecular mechanisms involved. The “edgeR” package was em-

https://www.ncbi.nlm.nih.gov/geo
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ployed to identify DEGs in both MICA-positive (MICA+) and MICA-negative (MICA−)
HCC cells, as well as in macrophages with high MMP9 expression (MMP9+) and low
MMP9 expression (MMP9−). The selection criteria for DEGs were set at |log2 fold change
(FC)| > 0.5 and a false discovery rate (FDR) < 0.05. Volcano plots depicting the DEGs
were generated using the “EnhancedVolcano” R package. Furthermore, gene set enrich-
ment analysis (GSEA) was performed utilizing the 50 hallmark gene sets available in the
MSigDB databases. This analysis aimed to confirm the pathways that were either induced
or repressed in different experimental groups. The GSEA software (version 4.3.1) was
employed to calculate the enrichment score for each gene set, with screening criteria set at
|normalized enrichment score (NES)| > 1, nominal p-value < 0.05, and FDR q-value < 0.05.

2.5. Cell-Cell Communication Analysis and Protein-Protein Interaction (PPI) Network Construction

Cell-cell communication analysis and PPI network construction were conducted to
investigate the interactions between various cell types. The “Cellchat” package (v 0.0.2;
R package) [23] was utilized to explore these interactions. The CellChat results provided
insights into cellular communication patterns through assessing the expression of ligand-
receptor pairs. Furthermore, we performed a comprehensive analysis of differential ligand-
receptor pairs between different phenotypes of cancer cells and macrophages. To obtain
PPI relationships for DEGs within the same signaling pathways, we applied the search
tool for the retrieval of interacting genes (STRING, https://stringdb.org/ (accessed on 3
August 2023)) database. Subsequently, the PPI network was visualized using Cytoscape
(version 2.1.6).

2.6. Single-Cell Data Trajectory Analysis

Single-cell data trajectory analysis was conducted to investigate the differentiation
patterns of macrophage subpopulations using the “monocle” R package. Initially, the
macrophages were positioned along an inferred trajectory. Subsequently, the reversed
graph embedding algorithm of Monocle was employed to shape the trajectory by assigning
genes that passed quality control. The data underwent dimensionality reduction and the
cells were ordered in pseudotime by Monocle. This analysis facilitated the identification of
differentiation trajectories and key genes associated with these trajectories. Macrophages
were classified according to CD86 and CD206 expression [24].

2.7. Immune Cell Infiltration and Kaplan-Meier (K-M) Curve Evaluation

The levels of immune cell infiltration, specifically 22 types, were analyzed using the
CIBERSORT algorithm [25]. The Wilcoxon test was employed and the results were visual-
ized. Survival analysis was conducted using the Kaplan-Meier method, and the statistical
significance of differences was determined using the log-rank test. The prognostic predic-
tive accuracy of genes and cells was evaluated by measuring the time-dependent receiver
operating characteristic (ROC) curves and calculating the area under the curve (AUC).

2.8. Cell Line and Reagents

Liver cancer cell line Huh-7, HepG2 and Hepa1-6, and human monocytic leukemia
cell THP-1 (Chinese Academy of Sciences, Shanghai, China) were maintained in DMEM
(Gibco, New York, NY, USA) and RPMI-1640 (Gibco, New York, NY, USA), respectively,
contained with 100 µg/mL streptomycin, 100 U/mL penicillin (Invitrogen, Waltham, MA,
USA) and 10% fetal bovine serum (FBS) (Sigma, Clayton, Australia). The trypsin (Gibco,
New York, NY, USA) was used during cell passage. In certain experiments, the cells
were treated with phorbol-12-myristate-13-acetate (PMA) (MedChemExpress, Monmouth
Junction, NJ, USA, catalog no. HY-18739/CS-6053), human recombinant Pros1 protein (R&D
Systems, Minneapolis, MN, USA, catalog no. 9489-PS) or cabozantinib (MedChemExpress,
Monmouth Junction, NJ, USA, catalog no. HY-13016).

https://stringdb.org/
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2.9. THP-1 Differentiation, Treatment and Cell Co-Culture

To induce differentiation of THP-1 cells into macrophages, a seeding density of
1 × 105 cells/well was used in 6-well plates, followed by treatment with 300 nM PMA
for 24 h. Subsequently, the medium was replaced with fresh RPMI 1640 medium to support
macrophage culture. For treatment experiments, macrophages were exposed to 2 µg/mL
of human recombinant Pros1 protein for 72 h. Co-culture assays were performed us-
ing Transwell chambers (0.4 µm, Corning Inc., Kenneburg, ME, USA), where the bottom
chamber contained macrophages and the upper chamber was seeded with Huh-7 cells
(1 × 105 cells/well) suspended in DMEM medium. The co-culture system was maintained
in a 5% CO2, 37 ◦C incubator for 72 h. Additionally, 5 µM cabozantinib was added to
the macrophages stimulated with recombinant human Pros1 protein and the co-cultured
macrophages. Following the experimental procedures, total RNA and proteins were ex-
tracted from the macrophages for subsequent analyses. We configured the conditioned
medium and the normal medium in a 1:1 ratio to meet the necessary nutrients of the
cells [26].

2.10. Immunofluorescent (IF) Staining and Enzyme-Linked Immunosorbent Assay (ELISA)

Huh-7 cells were seeded in 6-well plates and allowed to adhere for 24 h. Subsequently,
the cells were washed three times with phosphate-buffered saline (PBS) and fixed using a
4% paraformaldehyde solution for 15 min. To facilitate permeabilization, the cells were
treated with 0.5% Triton x-100 for 20 min at room temperature. Following permeabilization,
the cells were incubated overnight at 4 ◦C with a primary PROS1 antibody (ab280885,
abcam, Burlingame, CA, USA). Subsequently, the cells were incubated with Alexa Fluor
594 anti-rabbit antibody (CST, Danfoss, MA, USA) at 37 ◦C for 1 h. After washing with
PBS, the slides were stained with 4′,6-diaminine-2′-phenylindole dihydrochloride (DAPI)
and observed using an Olympus Fluview FV1000 III microscope (Olympus, Tokyo, Japan).
To determine the levels of soluble MMP9 and MICA in the culture medium, an ELISA kit
(mlbio, Shanghai, China) was utilized according to the manufacturer’s specification. The
optical density of the samples was measured at 450 nm using a microplate reader.

2.11. Immunohistochemistry (IHC) Staining

Each tissue specimen collected in this study underwent formalin fixation and paraf-
fin embedding. Subsequently, the tumor and adjacent liver tissue were co-embedded in
the same block. Consecutive sections, measuring 5 microns in thickness, were then cut
from each block and mounted onto glass slides. Following dewaxing, rehydration, and
antigen retrieval, the anti-AXL (13196-1-AP), MMP9 (10375-2-AP) (Proteintech, Wuhan,
China), anti-MICA (BS-0832R, BioSS, Beijing, China), and anti-PROS1 (ab280885, abcam,
Burlingame, CA, USA) antibodies were applied to the sections in accordance with standard-
ized institutional protocols. All slides were counterstained with hematoxylin, dehydrated,
and sealed using neutral resin.

2.12. Lentivirus Infection

A lentiviral vector containing human IRF1 cDNA, MICA cDNA, or an empty vector
was generated by Genechem (Shanghai, China). Huh-7 cells were seeded following stan-
dardized protocols and infected with lentivirus for 48 h the next day, using the experimental
MOI. Subsequently, the culture medium was replaced, and the cells expressing the desired
gene were sorted and expanded using flow cytometry. Total RNA and cell lysate protein
were separately extracted for subsequent experiments.

2.13. Real-Time RT-PCR

Total RNA was extracted using TRIzol reagent and subsequently reverse transcribed
into single-stranded cDNA using PrimeScriptTM RT Master Mix (Takara Bio, Kyoto, Japan).
Real-time quantitative polymerase chain reaction (PCR) was conducted using the SYBR
Premix Kit (Takara Bio, Kyoto, Japan). The reaction volume for the all-in-one qPCR
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Mix was 20 µL, comprising 1 µL of cDNA, 10 µL of 2× all-in-one qPCR Mix, 1 µL of
2 mmol/L reverse primer, 1 µL of 2 mmol/L forward primer, and 6 µL of nuclease-free
water. The primer sequences utilized are provided in Supplemental Table S1. The relative
changes in gene expression were normalized to GAPDH mRNA and determined using the
2−∆∆Ct method.

2.14. Western Blot

Cells were collected after intervention, and lysed on ice with high-efficiency RIPA
(Solarbio, Beijing, China) for 30 min, then centrifuged at 12,000 R/min for 15 min at 4 ◦C.
The cell debris was removed, the supernatant was collected, and the protein content was
determined using the BCA protein assay kit (P0012, Beyotime, Shanghai, China). The
protein was separated with SDS-PAGE and transferred onto a 0.45 µm PVDF membrane
at low temperatures; the membrane was then blocked with 5% skimmed milk for 1 h.
The membrane was incubated with primary antibodies overnight at 4 ◦C. The primary
antibodies applied to western blot analysis contained anti-IRF1 (11335-1-AP), MICA (12619-
1-AP), and MMP9 (10375-2-AP) from Proteintech (Wuhan, China), anti-PROS1 (ab280885,
abcam, Burlingame, CA, USA), and anti-GAPDH (CST, Danfoss, MA, USA). The mem-
branes were incubated for 1 h with fluorescent secondary antibodies at a 1:20,000 dilution
and subsequently an Odyssey imaging system (Odyssey CLX, LI-COR, Lincoln, NC, USA)
was used to visualize the result. The acquired bands intensities were quantified using
Image J software (version 1.8.0) with the formula: relative abundance (RA) = (target band
intensity)/(GAPDH band intensity).

2.15. Statistical Analysis

All statistical analyses were conducted using the R software version 4.3.0 (http://www.
R-project.org (accessed on 3 July 2023). Unless otherwise noted, p < 0.05 was considered as
statistical significance.

3. Results
3.1. The Expression Levels of MMP9 and MICA Were Found to Be Significantly Elevated in
Macrophages and Tumor Cells, Respectively, as Observed in the Single-Cell Atlas of Advanced HCC

In order to make the cells finely classified, the clustering analyses were performed
using a threshold of 10 resolutions, resulting in the acquisition of 78 distinct clusters.
Subsequently, the scRNA-seq data was visualized and the distribution of cell clusters in
the multi-dimensional HCC patient tumor and adjacent non-tumor liver was examined
using uniform manifold approximation and projection (UMAP) and t-SNE techniques.
The identification of cell clusters was accomplished by annotating them based on marker
genes sourced from the “Cellmarker” database and relevant references (Figure 1a). Notably,
the tumor exhibited a reduction in the number of NK cells, T cells, and B cells, while
the proportion of macrophages increased in comparison to the adjacent non-tumor liver
tissue (Figure 1b), which was consistent with our previous research [9]. This observation
suggested that immunosuppressive cells migrated and accumulated within the tumor mi-
croenvironment as the tumor progressed towards a higher malignancy state. Furthermore,
our investigation revealed a notable upregulation of several matrix metalloproteinases
(MMPs) in tumor-infiltrating macrophages, including MMP9, MMP12, MMP19, ADAM8,
ADAM9, and ADAM17. Among these, MMP9 exhibited the most substantial increase in
expression levels (Figure 1c,d,f,g). Additionally, we observed a significant upregulation of
MICA in tumor cells (Figure 1e,g).

http://www.R-project.org
http://www.R-project.org
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Conversely, the growing number of corruption types being considered will lead to a rapid
increase in testing and validation time. To ensure the quality of benchmark datasets and
facilitate rapid testing and validation in the initial phases of system development, this
study also proposes a corruption similarity analysis algorithm. The goal of the algorithm
is to efficiently filter similar types of corruption while maintaining high testing coverage.
This is achieved by compressing the benchmark dataset to reduce the testing and validation
time. To achieve this goal, we will analyze the effect of corruption overlapping threshold
settings on the number of representative corruption types, testing scenario coverage and
effectiveness, and benchmark complexity and testing time cost. Next, we will demonstrate
the process of enhancement by employing data augmentation techniques with efficient
training datasets to improve the robustness of object detection models. Finally, we will
validate the feasibility and effectiveness of the proposed process for verifying and enhanc-
ing robustness. The process of generating benchmark datasets related to corruption for
validating the robustness and improving object detection models is illustrated in Figure 1
and described in the following subsections.

Figure 1. The process of generating benchmark datasets for robustness validation and enhancement
of object detection models.

3.1. Automated Test Scenario Generation

The perception system of autonomous vehicles encounters a variety of road scenarios,
including city, mountainous, rural, and highway environments. These scenarios involve
various types of traffic participants, such as vehicles, pedestrians, motorcycles, and bicycles.
In this study, we utilize the Vires VTD simulation tool, which is specifically designed for
the development and testing of autonomous vehicles and ADAS. This tool enables the
simulation of various sensors and the adjustment of relevant sensor parameters. By creating
diverse road scenarios, including various types of traffic participants, and simulating dif-
ferent weather conditions, we can quickly generate a large number of traffic scenarios. This
will provide a dataset with a wide range of scenarios for testing and validation purposes.

Furthermore, in comparison to real-world testing and validation on actual roads,
vehicle simulation software not only facilitates the creation and recording of various driving
scenarios but also permits the repetitive reproduction of the same scenarios for testing
and validation purposes. It ensures that all traffic participants and vehicle movement

Figure 1. MMP9 and MICA expression on single cell atlas of advanced HCC. (a) UMAP plots of 4979
cells from no-tumor and 5359 cells from tumor tissue are shown for 9 clusters in each plot. Each
cluster is illustrated by a different color. (b) Proportions of the various types of cells in the tumor
and non-tumor samples. (c,d) Dot plots of MMPs and ADAMs expression are shown in each cell
cluster. The size of the dot indicates the percentage of the gene expression in each cluster. The depth
of color is related to the intensity of gene expression. (e,f) The statistical analysis of MICA and MMP9
expression level in HCC tumor and non-tumor tissue. (g)The expression of MICA and MMP9 in
tumor and non-tumor profiled on the UMAP plots.

To further elucidate the intricate interplay between MICA+ HCC cells and MMP9+
macrophages, we conducted a meticulous analysis of scRNA-seq data derived from tumor
samples. Following data normalization, the top 2000 highly variable genes were selected
(Supplementary Figure S2a). Subsequently, we employed the find integration anchors
function to integrate two distinct single-cell transcriptome sequencing datasets obtained
from tumor and adjacent non-tumor liver samples, based on the highly variable genes.
Although a merged dataset was generated through this integration process, it was unable
to effectively eliminate the batch effect. Therefore, we opted to utilize the non-merged
data, as it minimized the potential errors arising from variations across different experi-
mental batches. Following this, PCA and UMAP dimensionality reduction techniques were
applied to the dataset, and the outcomes were visually represented through a heat map,
JackstrawPlot, and ElbowPlot (Supplementary Figure S2b–d).

The tumor cells were stratified into two distinct groups based on their MICA ex-
pression levels: the MICA high expression group (comprising MICA+ malignant cells)
and the MICA low expression group (comprising MICA−malignant cells). Similarly, the
macrophages were categorized into two groups based on their MMP9 expression levels:
the MMP9 high expression group (consisting of MMP9+ macrophages) and the MMP9
low expression group (comprising MMP9− macrophages). Identification and classification
of cell subpopulations were accomplished via leveraging marker genes obtained from
the “Cellmarker” database and relevant references. The marker genes of each cell cluster
are provided in Supplemental Table S2. In total, we identified and delineated 12 distinct
clusters, namely NK cell, CD4 T cell, CD8 T cell, B cell, dendritic cell, MMP9+ macrophage,
MMP9− macrophage, MICA+ malignant cell, MICA− malignant cell, endothelial cell,
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hepatic stellate cell, and epithelial cell (Figure 2a). Some typical marker genes for major
clusters are also depicted (Figure 2b,c).

Sensors 2024, 24, 301 7 of 36

paths remain consistent, with variations limited to safety-related weather and sensor
noise corruptions. This is beneficial for testing and validating the perception system of
autonomous vehicles, enabling a comparative analysis of the impact of these corruptions
on the system’s robustness.

As depicted in Figure 2, the process commences with the setup of scenes in the Vires
VTD simulation platform, comprising two primary components: static and dynamic con-
figurations. The static configuration involves constructing an OpenDrive map, placing
buildings and roadside elements, and designing road surfaces. The OpenDrive map can be
created by manually drawing it or by using open-source OpenStreetMap data with specific
area selections for conversion. For more specialized high-definition maps, professional
mapping tools are required for scanning and measurement. The dynamic configuration
includes adjusting traffic light settings, adding vehicles or other traffic participants, modi-
fying traffic, planning routes, and adapting driving styles. Dynamic configuration enables
the realization of various critical scenarios or hazardous situations. These test scenarios can
be saved in the OpenScenario format.

Figure 2. An overview of the automated testing scenario generation process using VTD.

Additionally, the road scenes and test scenarios created through VTD support both
OpenDrive and OpenScenario formats, which are two standard formats commonly used
for exchanging information between simulation tools. Therefore, the identical test scenarios
can be imported into other simulation tools that support these standard formats, making it
easier to collaborate on testing and validation using different tools.

Every time we run the VTD simulation, even if we set a fixed traffic density, the flow
of traffic and the behavior of traffic participants are generated randomly. This variability
leads to different vehicle positions, types, and movement paths in each simulation run. To
ensure consistency in each simulation run, we use a scene recording approach to capture
every unique test scenario and traffic participant. This allows us to precisely replay these
scenarios, ensuring the reproducibility of each test.

As shown in Figure 3, this research has developed an automated test scenario gen-
eration tool to facilitate the automated generation of various test scenarios and simulate
different weather conditions. This tool is intended to be used in conjunction with the Vires
VTD simulation software (version 2022.4). Users only need to select a base scenario from

Figure 2. MMP9 and MICA expression on single cell atlas of advanced HCC respectively significantly
increased in macrophages and tumor cells. (a) UMAP plots of 5359 cells from tumor tissue. The
tumor cells and macrophages were further grouped according to the expression levels of MICA and
MMP9, respectively. (b) Dot plot of marker genes expression in each cluster. The size of the dot
indicates the percentage of the gene expression in each cluster. The depth of color is related to the
intensity of gene expression. (c) The feature map depicts single-cell gene expression of individual
marker genes.

3.2. The Activation of the IFN-γ Pathway was Observed in MICA+ Tumor Cells and MMP9+
Macrophages

In order to investigate the differential expression of genes in MICA+ tumors and
MMP9+ macrophages, we initially compared MICA+ HCC cells with MICA− HCC cells
(Figure 3a), resulting in the identification of 53 downregulated genes and 5391 upregulated
genes, as depicted in the volcano plot (Figure 3b). Subsequently, we compared MMP9+
macrophages with MMP9−macrophages (Figure 3c), which revealed 27 downregulated
genes and 1362 upregulated genes, as illustrated in the volcano plot (Figure 3d).

To further explore the pathway enrichment associated with the regulation of tumor
immunity by MICA and MMP9, we performed GSEA using the all differentially expressed
genes (FDR q-value < 0.05) obtained from the previous analyses in MICA+ HCC cells
and MMP9+ macrophages. We presented the main enriched pathways separately for
MICA+ HCC cells and MMP9+ macrophages (Supplementary Figure S3a,b). Interestingly,
the GSEA enrichment analysis indicated a close association between MICA expression
in HCC cells and MMP9 expression in macrophages with the IFN-γ signaling pathway
(Figures 3e,f and S3a,b).
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a list of previously recorded test scenarios and configure relevant weather parameters in
the weather configuration file. Each test scenario includes detailed traffic environment
information, including weather conditions. Finally, users have the option to specify the
output directory for the generated image dataset. VTD can simulate the base scenario
based on the weather configuration file, rapidly generating image datasets for different test
scenarios with various weather conditions.

Figure 3. Workflow diagram of the automated testing scenario generation tool.

3.2. Test Benchmark Dataset Generation

Self-driving perception systems encounter numerous real-world challenges, such as
diverse traffic conditions and varying levels of interference, primarily classified as weather-
related environmental corruption and sensor noise interference. When the object detection
models of self-driving perception systems are exposed to different types and levels of
corruption, it can impact the reliability and robustness of these models. Therefore, in this
study, we utilize the Vires VTD simulation tool along with an automated test scenario
generation tool to create a dataset of weather-related corruption, including raindrop cor-
ruption on the vehicle’s windshield and camera noise corruption images. This approach
enables us to generate a benchmark test dataset containing multiple types of corruption in
different scenarios.

3.2.1. Weather-Related Corruptions

In real driving scenarios, the most common weather-related environmental corruptions
are rain and fog. These corruptions are typically characterized by units of rainfall intensity
and visibility to represent different levels of severity. However, many image datasets do
not explicitly distinguish between these factors or only categorize rainy conditions into a
few severity levels. But how can we align these severity levels with actual units of rainfall
intensity to ensure that the selected severity ranges meet the requirements? In real-life
scenarios, heavy rain can have a significantly more severe impact than light rain. If the
entire benchmark dataset only captures instances of light rain, evaluating the robustness
and reliability of object detection models under rainy conditions may lack objectivity. Even
if the test results show high accuracy, we still cannot guarantee the perception system’s
performance in heavy rain, which could pose potential hazards.

Figure 3. The IFN-γ pathway was activated in the MICA+ tumor cells and MMP9+ macrophages.
(a) Feature plots depicting single-cell tumor cell expression of MICA. (b) Volcano plots showing the
single-cell transcriptional profile difference between MICA+ and MICA− tumor cells. (c) Feature
plots depicting single-cell macrophage expression of MMP9. (d) Volcano plots showing the single-cell
transcriptional profile difference between MMP9+ and MMP9- macrophage. (e,f) GSEA analysis
revealed single-cell MICA and MMP9 expression involved in the IFN-γ signaling pathway. Red
indicated that gene was highly expressed in the MICA+ tumor cells/ MMP9+ macrophage, and blue
indicated that gene was highly expressed in the MICA− tumor cells/ MMP9−macrophage.

3.3. The Interaction between MICA+ Tumor Cells and MMP9+ Macrophages was Mediated
through the PROS1-AXL and CCL15-CCR1 Pathways

To investigate the interplay between MICA+ tumor cells and MMP9+ macrophages, we
employed CellChat, a computational tool, to unravel the intricate cell-cell communication
and predict significant biological insights from scRNA-seq data. Given that the tumor
microenvironment primarily comprises close interactions between tumor and immune
cells, our initial focus was on analyzing the cellular associations within the tumor tissue. By
constructing an aggregated cell-cell communication network, we visualized the intensity
and frequency of interactions across all cell types. Notably, the network analysis revealed
that MICA+ HCC cells exhibited the highest degree of interactions with other cell types
(Figure 4a,b).
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becomes possible to efficiently generate more realistic weather-related scenario-based test
benchmarks using the VTD simulation tool.

VisR = −863.26RPR
0.003 + 874.19 (1)

Figure 4. VTD environmental simulation of different weather conditions. (a) No rain; (b) rain; (c) rain
with visibility influence.

Table 4. Severity levels of hourly rainfall and their corresponding visibility.

Type Number of Severity Region (Rn) R1 R2

Rain
mm/h 2

43~48 mm/h 48~55 mm/h
Visibility ≈ 300~200 m Visibility ≈ 200~100 m

3.2.2. Noise-Related Corruptions

In addition to being affected by weather-related factors that impact reliability and
robustness, self-driving perception systems may also be susceptible to various image noise
corruptions. Examples of image noise corruptions include single-pixel defects, column pixel
defects, and cluster pixel defects, which have the potential to cause object detection failures.
To enable thorough testing and validation, we have created a tool for injecting image noise.
This tool enables the quantification of parameters to adjust various types of image noise
and corruption percentages, thereby generating image corruptions of different severities.

Furthermore, in addition to the image noise caused by the camera itself, some cameras
used in self-driving perception systems or advanced driver assistance systems are mounted
behind the vehicle’s windshield. Consequently, when vehicles operate in rainy conditions,
numerous raindrops adhere to the windshield, obstructing the camera’s view. The size
of these raindrops varies, and the density of raindrops varies with different rainfall rates.
Examining the impact of raindrop interference on the reliability and robustness of object
detection in varying levels of rainfall is a key focus of this research.

As illustrated in Figure 5, we utilize the VTD simulation platform along with an auto-
mated test scenario generation tool to produce image frames free from weather corruption.
Subsequently, we input the original clean image datasets into our developed image noise
injection tool, as well as an artificial raindrop generation tool built on the Unreal Engine
platform. This enables us to create image datasets with measurable variations in corruption
severity or different raindrop sizes and densities within the same test scenarios.

Figure 4. MICA+ tumor cells communicated with MMP9+ macrophages via the PROS1-AXL and
CCL15-CCR1 pathways. (a,b) The interaction net count and interaction weight plot of HCC cells.
The thicker line indicates the higher number of interactions and the stronger weights/strength of
interactions between the two cell types. (c) Chord diagram showing all the significant interactions
(ligand-receptor pairs) between MICA+/MICA− tumor cells and MMP9+/MMP9− macrophage.
(d) The violin plot showing PROS1-AXL/CCL15-CCR1 (ligand-receptor pairs) and some macrophage
marker genes expression in different cell clusters. (e) PROS1-AXL/CCL15-CCR1 ligand-receptor
pairs and some major IFN-γ signaling pathway genes inside tumor cells and macrophage. Diamonds
represent genes that are upregulated in macrophages. Octagons represent genes that are upregulated
in tumor cells. The triangles represent transcription factors.

Next, we employed CellChat to conduct pathway-based analyses of ligand-receptor (L-
R) interactions between MICA+/MICA− tumor cells and MMP9+/MMP9−macrophages.
Notably, we observed the presence of L-R interactions involving PROS1-AXL and CCL15-
CCR1 between MICA+ tumor cells and MMP9+ macrophages (Figure 4c). To further
validate these findings, a violin plot of the aforementioned genes in the CellChat analyses
confirmed that PROS1 and CCL15 were exclusively expressed in MICA+ tumor cells, while
AXL and CCR1 were exclusively expressed in MMP9+ macrophages (Figure 4d). Moreover,
we utilized STRING and GSEA analyses to construct protein-protein interaction (PPI)
networks, which revealed a close association between PROS1, AXL, CCL15, CCR1, MICA,
MMP9, and the IFN-γ response pathway (Figure 4e).

3.4. The Predominant Expression of MMP9 Was Observed in M2-Like Macrophages

We subsequently elucidated the phenotype and functional characteristics of macrophages
expressing MMP9. To achieve this, we employed the “Monocle” approach to identify
the dynamic polarization of macrophages within the TME. Our analysis categorized
macrophages into five distinct groups based on their expression of MMP9, CD86, and
CD206: MMP9−CD86−CD206−, MMP9−CD86+CD206−, MMP9−CD86+CD206+, MMP9+
CD86+CD206−, and MMP9+CD86+CD206+. Notably, all cells were projected onto a single
root and two branches, revealing an intriguing pattern. Specifically, MMP9+ macrophages
were predominantly located at the terminal end of the differentiation pathway, while
MMP9−macrophages were predominantly found at the initiation stage (Figure 5a).
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Figure 5. Workflow for generating noise-related and raindrop images.

Figure 6a displays an image frame with clear blue skies and no image noise corruption,
where the object detection model accurately identifies and labels each vehicle object. How-
ever, when there is image noise corruption and the same object detection model is used,
it is evident that several vehicles cannot be successfully identified. This could potentially
lead to a failure in the self-driving perception system, as depicted in Figure 6b. Conducting
a significant number of tests with various levels of camera image noise corruption during
real-world autonomous driving validation is challenging because it does not allow for
controlled adjustments of different image corruption types and severity levels. Therefore,
in order to improve the test coverage of autonomous driving perception systems, it is
essential to be able to test and analyze the robustness and reliability of object detection
models under various image noise corruption conditions.

Figure 6. Comparative analysis of the impact of noise corruption on object detection models in
images: (a) no corruption, (b) noise corruption.

To simplify the process of generating image noise corruption, users only need to
configure the original clean image data and specify the type of image noise to be injected.
Users can also specify various levels of image noise corruption. Once this configuration
is prepared, it can be imported into the image noise injection tool. The tool randomly
selects pixel positions in the images according to the specified corruption type and percent-
age, and then injects noise into those positions. It ensures that the pixel errors meet the
specified percentage requirements, enabling the rapid generation of diverse image noise
datasets. Figure 7 illustrates the configuration parameters for different types of image noise
corruption and the severity regions. The six types of image noise corruption include Hot
pixel defect, Single pixel defect, Column pixel defect, Cluster 2 × 2 pixel defect, Cluster
3 × 3 pixel defect, and Cluster 4 × 4 pixel defect.

Figure 5. MMP9 mainly expressed in M2-like macrophages. (a) Pseudotime analysis explored the
development trajectories of macrophage. Each dot corresponds to a single cell, the macrophage
subtype is depicted according to specific markers expression level, and arrows indicate the initial
position and direction of differentiation. (b) Representative gene expression plotted as a function of
pseudotime. (c) Genes associated with M2-like macrophages in the TCGA dataset. Red represents
positive correlation, and blue represents negative correlation.

Furthermore, pseudotime analysis demonstrated that the tree structure originated
from M0-like cells characterized by CD68+CD86-CD206−, followed by M1-like cells
marked by CD68+CD86+CD206−, and M2-like cells marked by CD68+CD86−CD206+
(Figure 5b). Importantly, MMP9 exhibited significant expression in M2-like macrophages.
Additionally, our investigation revealed a positive correlation between AXL and CCR1
with M2-type macrophages in the TCGA dataset (Figure 5c). Collectively, our findings
indicate that MMP9+ macrophages possess a phenotype and function consistent with
M2-like macrophages.

3.5. IRF1 Induced the UpRegulation of PROS1 in HCC Cells and Also Enhanced the Expression of
PROS1 Specifically in MICA+ HCC Cells

Given the pronounced expression of PROS1 and AXL compared to CCL15 and CCR1
in HCC (Figure 4d), we proceeded to focus on investigating the PROS1-AXL pathway for
experimental validation. Initially, we assessed the mRNA and protein expression levels of
PROS1 and AXL across various human tumor types using the Human Protein Atlas (HPA)
database. Notably, IHC staining revealed medium/high PROS1 and AXL expression in
liver cancers (Supplementary Figure S4a,c). Furthermore, we observed high PROS1 mRNA
expression in Huh7 cells rather than immune cells, while high AXL mRNA expression
was detected in some immune cells rather than Huh7 cells (Supplementary Figure S4b,d).
Additionally, analysis of TCGA database confirmed the upregulation of MICA and MMP9
expression in HCC (Supplementary Figure S4e,f).

In line with the aforementioned findings, our IHC staining results provided further
validation by demonstrating elevated protein expression levels of PROS1, AXL, MICA, and
MMP9 in HCC tissues compared to normal liver tissues (Figure 6a). Moreover, scRNA-seq
analyses revealed a significant increase in PROS1 expression in HCC tumor cells exhibiting
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positive expression of IRF1 or MICA (Figure 6b,c). This observation suggested a positive
correlation between IRF1 and MICA expressions and PROS1 in HCC cells.

Cancers 2024, 16, x FOR PEER REVIEW 12 of 18 
 

 

scRNA-seq analyses revealed a significant increase in PROS1 expression in HCC tumor 

cells exhibiting positive expression of IRF1 or MICA (Figure 6b,c). This observation sug-

gested a positive correlation between IRF1 and MICA expressions and PROS1 in HCC 

cells. 

 

Figure 6. IRF1 upregulated PROS1 in HCC cells and also enhanced PROS1 expression in MICA+ 

HCC cells. (a) The typical IHC images of MICA, MMP9, PROS1, and AXL in non-tumor and tumor 

live (×400 magnification). Scale bars are 200 µm. (b,c) PROS1 expression levels of IRF1 and MICA 

positive tumor cells in scRNA-seq data. (d) PROS1 mRNA expression levels of Huh-7 cells infected 

by lentivirus IRF1 cDNA or empty vector (NC) (50 MOI) for 48 h. (e) PROS1 protein level of Huh-7 

cells infected by lentivirus IRF1 cDNA or empty vector (NC) (50 MOI) for 48 h. The quantitative 

analyses are shown on the right. (f) PROS1 mRNA expression level of Huh-7 cells infected by lenti-

virus MICA cDNA or empty vector (NC) (50 MOI) for 48 h. (g) PROS1 protein level of Huh-7 cells 

infected by lentivirus MICA cDNA or empty vector (NC) (50 MOI) for 48 h. The quantitative anal-

yses are shown on the right. (h,i) The typical IF images show PROS1 protein level (red staining) in 

Huh-7 cells which were respectively transfected with lentiviral IRF1 and MICA (×200 magnifica-

tion). Scale bars are 150 µm. Quantification of PROS1 via relative fluorescent intensity is shown. ** 

p < 0.01, *** p < 0.001, via two-tailed unpaired t-test. The original uncropped western blot images are 

shown in Supplementary Figure S5. 

Building upon our previous findings that demonstrated the role of DNA damage in 

inducing MICA expression via IRF1 at the transcriptional level in HCC cells [9], we pro-

ceeded to investigate whether IRF1 acts as an upstream regulator of PROS1. To this end, 

we employed lentiviral IRF1 cDNA transduction to upregulate IRF1 expression in Huh-7 

cells. As anticipated, the mRNA and protein levels of PROS1 exhibited a significant in-

crease in IRF1+ Huh-7 cells (Figure 6d,e). Additionally, lentiviral transduction-mediated 

overexpression of MICA in Huh-7 cells resulted in a notable elevation in both PROS1 

mRNA and protein levels (Figure 6f,g). Consistently, immunofluorescence staining re-

vealed an upregulation of PROS1 protein expression in Huh-7 cells transfected with IRF1 

and MICA overexpression (Figure 6h,i). 

3.6. Stimulation of MICA+ HCC Cells Resulted in the Secretion of MMP9 through the PROS1-

AXL Axis, Thereby Facilitating the Proteolytic Shedding of MICA into Soluble MICA (sMICA) 

Since the CellChat analyses indicated the interaction between MICA+ HCC cells and 

MMP9+ macrophages through the PROS1-AXL axis (Figure 4c), we proceeded to validate 

the existence of this axis. Subsequently, we observed a significant increase in both MMP9 

mRNA and protein expression levels in macrophages upon stimulation with recombinant 

PROS1 protein, particularly after 72 h (Figure 7a,b). Additionally, we noted a significant 

Figure 6. IRF1 upregulated PROS1 in HCC cells and also enhanced PROS1 expression in MICA+
HCC cells. (a) The typical IHC images of MICA, MMP9, PROS1, and AXL in non-tumor and tumor
live (×400 magnification). Scale bars are 200 µm. (b,c) PROS1 expression levels of IRF1 and MICA
positive tumor cells in scRNA-seq data. (d) PROS1 mRNA expression levels of Huh-7 cells infected by
lentivirus IRF1 cDNA or empty vector (NC) (50 MOI) for 48 h. (e) PROS1 protein level of Huh-7 cells
infected by lentivirus IRF1 cDNA or empty vector (NC) (50 MOI) for 48 h. The quantitative analyses
are shown on the right. (f) PROS1 mRNA expression level of Huh-7 cells infected by lentivirus
MICA cDNA or empty vector (NC) (50 MOI) for 48 h. (g) PROS1 protein level of Huh-7 cells infected
by lentivirus MICA cDNA or empty vector (NC) (50 MOI) for 48 h. The quantitative analyses are
shown on the right. (h,i) The typical IF images show PROS1 protein level (red staining) in Huh-7
cells which were respectively transfected with lentiviral IRF1 and MICA (×200 magnification). Scale
bars are 150 µm. Quantification of PROS1 via relative fluorescent intensity is shown. ** p < 0.01,
*** p < 0.001, via two-tailed unpaired t-test. The original uncropped western blot images are shown
in Supplementary Figure S5.

Building upon our previous findings that demonstrated the role of DNA damage
in inducing MICA expression via IRF1 at the transcriptional level in HCC cells [9], we
proceeded to investigate whether IRF1 acts as an upstream regulator of PROS1. To this
end, we employed lentiviral IRF1 cDNA transduction to upregulate IRF1 expression in
Huh-7 cells. As anticipated, the mRNA and protein levels of PROS1 exhibited a significant
increase in IRF1+ Huh-7 cells (Figure 6d,e). Additionally, lentiviral transduction-mediated
overexpression of MICA in Huh-7 cells resulted in a notable elevation in both PROS1 mRNA
and protein levels (Figure 6f,g). Consistently, immunofluorescence staining revealed an
upregulation of PROS1 protein expression in Huh-7 cells transfected with IRF1 and MICA
overexpression (Figure 6h,i).

3.6. Stimulation of MICA+ HCC Cells Resulted in the Secretion of MMP9 through the
PROS1-AXL Axis, Thereby Facilitating the Proteolytic Shedding of MICA into Soluble MICA
(sMICA)

Since the CellChat analyses indicated the interaction between MICA+ HCC cells
and MMP9+ macrophages through the PROS1-AXL axis (Figure 4c), we proceeded to
validate the existence of this axis. Subsequently, we observed a significant increase in
both MMP9 mRNA and protein expression levels in macrophages upon stimulation with
recombinant PROS1 protein, particularly after 72 h (Figure 7a,b). Additionally, we noted a
significant increase in AXL mRNA expression and a significant increase in protein levels
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in macrophages induced via recombinant PROS1 protein (Figure 7a,b). These findings
suggested that the upregulation of MMP9 in TAMs occurs via a PROS1-AXL-dependent
pathway. Furthermore, we observed a noticeable upregulation of CD163 and CD206,
marker associated with M2-type macrophages (Figure 7a), which aligns with our previous
analyses of single-cell and TCGA data, indicating that MMP9+ macrophages may exhibit a
propensity towards an M2-like phenotype (Figure 5c).
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Figure 7. MICA+ HCC cell stimulated MMP9 secretion via PROS1-AXL axis and promoted proteolytic
shedding of MICA into soluble MICA (sMICA). (a) MMP9, AXL, CD163 and CD206 mRNA expression
was detected via qPCR in Huh-7 cells stimulated by recombinant human PROS1 protein 2 µg/mL
for 72 h. (b) The whole lysate for PROS1 and AXL protein determined via western blot is shown in
macrophage stimulated by recombinant human PROS1 protein for 72 h. The quantitative analyses
are shown on the right. (c,d) The level of MMP9 and soluble MICA in the conditioned medium
was determined via an ELISA procedure. (e) MMP9 mRNA expression was detected via qPCR
in macrophage co-cultured with MICA+ and NC Huh7 cells. The whole lysate for MMP9 protein
determined via western blot is shown in macrophage cultured with MICA+ and NC Huh7 cells.
The quantitative analyses are shown on the right. (f) MMP9 mRNA expression was detected via
qPCR in macrophage co-cultured with IRF1+ and NC Huh7 cells. The whole lysate for MMP9
protein determined via western blot is shown in macrophage cultured by IRF1+ and NC Huh7 cells.
The quantitative analyses are shown on the right. (g) MMP9 protein expression was measured via
western blot in macrophage stimulated by preconditioned cabozantinib (5 µM) and recombinant
human PROS1 protein for 72 h. The quantitative analyses are shown on the right. (h) MMP9 protein
expression was measured via western blot in macrophage co-cultured with IRF1+ and NC Huh7
cells treated by cabozantinib (5 µM). The quantitative analyses are shown on the right. * p < 0.05,
** p < 0.01, *** p < 0.001, via two-tailed unpaired t-test. The original western blots are shown in
Supplementary Figure S5.

Furthermore, an ELISA assay was conducted to determine the MMP9 levels in the
culture medium of macrophages induced via the recombinant PROS1 protein, revealing
significantly higher levels compared to the negative control group (p = 0.009) (Figure 7c).
The culture medium from the two groups was extracted and designated as the MMP9+
group and MMP9− group. Subsequently, MICA+ Huh7 cells were cultured using a mixed
medium consisting of MMP9+ or MMP9− group conditioned medium and normal medium
in a 1:1 ratio. Interestingly, the soluble MICA level in the medium of MICA+ Huh7 cells
cultured with conditioned medium from the MMP9+ group was found to be significantly
higher than that of the MMP9- group (p = 0.026) (Figure 7d).

Given the activation of the IFN-γ pathway in MICA+ tumor cells (Figure 3e,f) and
the role of IRF1 as a key transcription factor in this pathway, which is also an upstream
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regulator of PROS1 (Figure 6b,d,e,h), along with the observed increase in PROS1 expression
coinciding with MICA expression in HCC cells (Figure 6c,f,g,i), our study aimed to inves-
tigate whether IRF1+ and MICA+ HCC cells induce MMP9 expression in macrophages
through a cellular co-culture model. To achieve this, we co-cultured IRF1+ and MICA+
Huh7 cells with macrophages and observed an upregulation of MMP9 mRNA and protein
in the macrophages (Figure 7e,f). To further validate the involvement of the PROS1-AXL
axis in the upregulation of macrophage MMP9 via MICA+ tumor cells, we introduced the
AXL inhibitor cabozantinib to macrophages stimulated via recombinant human PROS1
protein and co-cultured with IRF1+ Huh7 cells. Remarkably, the inhibition of macrophage
AXL resulted in the reversal of the PROS1-induced upregulation of macrophage MMP9
(Figure 7g,h).

4. Discussion

In this study, we conducted a comprehensive analysis at the single-cell level to char-
acterize the cellular composition of both cancerous and non-cancerous liver tissues in
patients with advanced hepatitis B-associated HCC. Specifically, we explored the potential
interaction between MICA+ tumor cells and MMP9+ macrophages. Subsequently, exper-
imental validation confirmed that MICA+ tumor cells upregulated MMP9 expression in
macrophages through the PROS1-AXL axis. Additionally, we confirmed that stimulation of
PROS1 results in the transformation of macrophages into the M2-like phenotype. Finally,
we observed that MMP9 secreted by macrophages hydrolyzed MICA, leading to the release
of sMICA and promoted immune evasion by the tumor (Figure 8). These findings certified
that AXL in macrophages may serve as a potential therapeutic target for HCC.
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Figure 8. System illustration of MICA+ tumor cell upregulated macrophage-secreted MMP9 via
PROS1-AXL axis to induce tumor immune escape in advanced HCC. (a) IRF1 transcriptionally
upregulated MICA expression to activate NKG2D-mediated anti-tumor immune responses by CD8+
T cells. (b) DNA damage induced MICA and PROS1 expression via IRF1. PROS1 activated MMP9
secreted from macrophages via AXL receptor to hydrolyze MICA. The release of soluble MICA
(sMICA) promoted immune evasion by the tumor.

Currently, immune checkpoint blockade (ICB) therapy is widely acknowledged as
a significant advancement in the field of systemic therapy for HCC. Nevertheless, the
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TME plays a crucial role in facilitating tumor immune evasion, as well as the development
of primary and secondary resistance, post-therapeutic tumor hyper-progression, and as-
sociated adverse effects, thereby presenting formidable challenges to the efficacy of ICB
treatment [27,28]. To address these challenges, the combination of ICB with molecular
therapy, chemotherapy, or radiotherapy has emerged as a promising approach. Notably,
the induction of DNA damage response (DDR) in HCC tumors via these combined ther-
apies has been shown to activate anti-tumor immunity and remodel the TME, thereby
enhancing the effectiveness of ICB therapy. However, both cancerous and non-cancerous
cells within the TME have demonstrated the ability to adapt to the microenvironmental
changes induced by DNA damage, thereby developing resistance to the therapy [29].

In our previous investigation, we observed that DNA damage-induced upregulation
of MICA expression resulted in the activation of NKG2D-mediated anti-tumor immune
responses by NK cells and CD8+ T cells [9]. Conversely, several studies have reported
that elevated MICA expression in HCC and small cell lung cancer (SCLC) is associated
with an unfavorable prognosis [30,31]. This association may be attributed to the hydrolytic
shedding of MICA mediated by the MMPs. Notably, the shedding of NKG2D ligands has
been validated in some cancers [31,32]. Furthermore, we observed a negative correlation
between the level of soluble NKG2D ligands and the infiltration of memory T cells, while
a positive correlation was found with the infiltration of CD163+CD206+ macrophages,
which are known to promote tumor growth [33]. Additionally, our study also confirmed
the prominent MMP9 upregulation in these M2-like macrophages (Figure 7a).

To elucidate the underlying mechanism of MICA+ tumor cells inducing MMP9 upreg-
ulation in macrophages and subsequent MICA shedding, further investigation is warranted.
We employed scRNA-seq analyses to investigate the communication between MICA+ tu-
mor cells and MMP9+ macrophages via the PROS1-AXL axis and revealed an upregulation
of the IFN-γ signaling pathway in MICA+ tumor cells. Our previous studies have demon-
strated that IFN-γ can upregulate the expression of IRF-1 in HCC cells [6], while DNA
damage can induce MICA expression in HCC cells through IRF1 [9]. Consistent with
our previous research, we observed a significant upregulation of PROS1 in MICA+ and
IRF1+ tumor cells (Figure 6d–i). Based on these observations, we hypothesized that IRF1
may simultaneously upregulate the expression of both MICA and PROS1. To support this
hypothesis, we utilized data from the ENCODE project (https://www.encodeproject.org)
and identified IRF1 as a transcription factor for PROS1.

PROS1 and Gas6 have been identified as ligands for the Tyro3, AXL, and Mer (TAM)
families of tyrosine kinase receptors [16]. Previous studies have demonstrated that Gas6
binds to all three TAM receptors, while PROS1 activates Tyro3 (with high affinity) and
Mer, but not AXL [34]. However, recent studies have provided evidence that PROS1 can
also activate AXL in tumor cells, thereby promoting tumor cell proliferation and invasive-
ness [21,35,36]. PROS1 and TAM receptors signaling pathways have been recognized as a
crucial negative regulator of the immune system, playing a role in limiting the intensity and
duration of immune responses [17,37]. Furthermore, AXL has been found to promote the
transition of macrophages from an anti-tumorigenic M1-like phenotype to a tumorigenic
M2-like phenotype [38], and it has been implicated in inducing sorafenib resistance in HCC
by increasing the population of M2-like macrophages [39]. Moreover, there is evidence
suggesting that activation of the AXL signaling pathway can upregulate the expression
of MMP9 [40,41]. Consistent with the research, HCC cells were found to secrete PROS1,
which subsequently upregulated the expression of MMP9 in macrophages through the
activation of AXL receptors (Figure 7a,b,e,f). Finally, we observed that MMP9 secreted by
macrophages hydrolyzed MICA, leading to the release of sMICA and promoting immune
evasion by the tumor (Figure 7c,d).

Cabozantinib, a recently approved second-line treatment for malignancies, has demon-
strated inhibitory effects on various receptor tyrosine kinases, including VEGFR, MET, and
AXL [42]. Notably, approximately 40% of HCC patients exhibit elevated AXL expression,
which has been associated with vascular invasion and poor survival outcomes [40]. The
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therapeutic application of cabozantinib in cancer involves the inhibition of AXL tyrosine
kinase activity and the subsequent blockade of downstream pathway activation [43]. In a
study of 707 patients with advanced HCC who had previously been treated with sorafenib,
cabozantinib significantly extended overall survival (10.2 vs 8.0 months) and progression-
free survival (5.2 vs. 1.9 months) compared to placebo [42], which similar results were
found in another Phase 3 CELESTIAL trial [44]. Furthermore, in a study of cabozantinib
combined with nivolumab as a neoadjuvant therapy for unresectable HCC, 12 patients
demonstrated a major/complete pathologic response rate of 42% (5/12) postoperatively,
and the study has also shown that cabozantinib and nivolumab produced a therapeutic
response by modulating tumor-associated macrophages [45]. Interestingly, patients who
developed bone metastases after hepatectomy also benefited from cabozantinib combined
with nivolumab, with progression-free survival of more than 25 months [46]. Hence, our
findings elucidated a novel mechanism whereby the PROS1-AXL axis induced the secretion
of MMP9 from macrophages, thereby providing valuable insights and supporting the
therapeutic application of AXL inhibition in HCC.

5. Conclusions

MICA+ HCC cells were found to secrete PROS1, which subsequently upregulated the
expression of MMP9 in macrophages through the activation of AXL receptors. This height-
ened MMP9 activity led to the proteolytic shedding of MICA molecules. Consequently, the
released soluble MICA (sMICA) played a pivotal role in promoting tumor immune evasion.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/cancers16020269/s1, Supplementary Figure S1: (a) Quality control of scRNA-
seq data from four HCC samples. (tumor: HCC09T/HCC10T, non-tumor: HCC09N/HCC10N). (b)
The Pearson correlation coefficient between gene count and sequencing depth in tumor and normal
samples. Supplementary Figure S2: (a) the variance plot showed 18,409 genes in all cells, red dots
represent the top 2000 highly variable genes. (b–d) PCA and UMAP dimensionality reduction were
performed on the data, and the results are visualized in the form of the heat map, the JackstrawPlot
and the ElbowPlot. Supplementary Figure S3: (a) bubble plots showed GSEA/pathway analysis
results of DEGs in macrophage. (b) Bubble plots showed GSEA/pathway analysis results of DEGs in
HCC cells. Supplementary Figure S4: (a) IHC staining for PROS1 expression in various tumors in
HPA database. (b) IHC staining for AXL expression in various tumors in HPA database. (c) PROS1
mRNA expression in various cell lines in HPA database. (d) AXL mRNA expression in various cell
lines in HPA database. (e) MMP9 mRNA expression in various tumors in TCGA database. (f) MICA
mRNA expression in various tumors in TCGA database. Supplementary Figure S5: original western
blots of Figures 6 and 7. Table S1: primer sequences. Table S2: cell marker.
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