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Simple Summary: The biggest obstacle to curing cancer is the fact that cancers often harbor mutant
cells, called resistant cells, that are unaffected by cancer drugs. We tested a strategy for maintaining
control over resistant cells called adaptive therapy. We tested this strategy on mice that had human
breast cancer. In adaptive therapy, we aim to keep alive many cancer cells that are sensitive to
cancer drugs and use them to compete with the resistant cells. We can prevent the sensitive cells
from growing out of control using occasional low doses of a cancer drug. Competition with the
sensitive cells prevents the resistant cells from growing out of control, resulting in long-term control
of the cancer. Thus, we turn cancer into a chronic, nonlethal disease. Our experiment showed
the effectiveness of this approach and how we might make it even better by switching between
two drugs.

Abstract: Adaptive therapy, an ecologically inspired approach to cancer treatment, aims to over-
come resistance and reduce toxicity by leveraging competitive interactions between drug-sensitive
and drug-resistant subclones, prioritizing patient survival and quality of life instead of killing the
maximum number of cancer cells. In preparation for a clinical trial, we used endocrine-resistant
MCF7 breast cancer to stimulate second-line therapy and tested adaptive therapy using capecitabine,
gemcitabine, or their combination in a mouse xenograft model. Dose modulation adaptive therapy
with capecitabine alone increased survival time relative to MTD but not statistically significantly
(HR = 0.22, 95% CI = 0.043–1.1, p = 0.065). However, when we alternated the drugs in both dose
modulation (HR = 0.11, 95% CI = 0.024–0.55, p = 0.007) and intermittent adaptive therapies, the
survival time was significantly increased compared to high-dose combination therapy (HR = 0.07,
95% CI = 0.013–0.42, p = 0.003). Overall, the survival time increased with reduced dose for both
single drugs (p < 0.01) and combined drugs (p < 0.001), resulting in tumors with fewer proliferation
cells (p = 0.0026) and more apoptotic cells (p = 0.045) compared to high-dose therapy. Adaptive
therapy favors slower-growing tumors and shows promise in two-drug alternating regimens instead
of being combined.
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1. Introduction

Therapeutic resistance and therapeutic toxicity are two of the biggest challenges in
oncology. However, resistance often comes at a fitness cost for the resistant cells [1,2]. Pest
managers have long ago understood that pesticide resistance also comes at a fitness cost [3].
Pests that are sensitive to pesticide can outcompete pests that are resistant in the absence
of or at low doses of pesticide. Pest managers have learned to use the minimum effective
dose (MED) of pesticides rather than the MTD [3]. Current cancer treatments are aimed
at killing as many tumor cells as possible in the shortest time, which is accomplished by
utilizing drugs at the maximum tolerated dose (MTD). This approach is highly toxic and
often results in a selective advantage for therapy-resistant cells, which eventually kills the
patient (Figure 1A) [4,5]. Prior to treatment, a tumor is assumed to be mainly composed of
drug-sensitive cells, with only a few pre-existing resistant cells. Treatment rapidly kills most
sensitive cells, resulting in a competitive release of the resistant cells. In fact, evolutionary
theory predicts that the fastest way to select for therapeutic resistance is to use the MTD [6].
Following this principle, we expect that in the absence of therapy, sensitive cancer cells
will probably proliferate at the expense of the less-fit resistant cells. Thus, according to
integrated pest management (IPM), a therapeutic strategy that is explicitly designed to
maintain therapeutically sensitive organisms could increase a patient’s survival by using
sensitive cells to suppress the growth of resistant cells. This is the inspiration for adaptive
therapy in cancer treatment [4,5].
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Figure 1. Schematic figure of comparing adaptive therapy protocols with standard therapy.
(A) Standard therapy selects for cells (red) that are resistant to treatment and tumor relapse. Adaptive
therapy maintains a stable tumor volume by preserving drug-sensitive cells (blue), suppressing
the growth of less fit, resistant cells (red). (B) Dose modulation adaptive therapy raises the dose if
the tumor grows and lowers the dose if the tumor shrinks. Previous mouse models have used a
tumor burden change of 20% to trigger a change in dose [2]. Our simulation studies suggest a lower
threshold is better [7], so we have used a 10% change in tumor burden to trigger a change in dose in
this study. (C). Intermittent adaptive therapy stops dosing altogether if the tumor burden falls below
a threshold (e.g., 50% of its initial value) and restarts treatment if the tumor recovers (e.g., to 100% of
its initial value) [8,9].
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Adaptive therapy exploits intratumor cell competition to prolong patient survival
by allowing sensitive cells to compete with resistant cells during periods of drug holiday
or low drug dose [2,8]. Initial tests of adaptive therapy have been conducted with single
drugs [2,4,8]. Two protocols have been tested in preclinical models: dose modulation
(also known as AT1) [2,4,8] and dose skipping (also known as AT2) [2,4,8]. The dose
modulation protocol compares the current size of the tumor to the previous measurement
and then raises the drug dose if the tumor has grown (>20%), lowers the dose if the
tumor has shrunk (>20%), and keeps the dose the same if the tumor burden has stayed
within 80–120% (Figure 1B). The dose skipping protocol uses the MTD dose but skips
a dose if the tumor has shrunk or remained stable since the last measurement. Results
from preclinical models have shown that adaptive therapy with dose modulation was
able to achieve indefinite control in mouse xenografts of metastatic triple-negative (MDA-
MD-231) and estrogen-receptor-positive (ER+) (MCF7) breast cancer [2,4,8] as well as
xenografts of ovarian cancer (OVCAR3) [4]. In contrast, the dose skipping (drug holiday)
protocol was unable to prevent tumors from growing compared to standard of care [2,4,8].
On/off regimens are generally ineffective for fast-growing tumors due to a loss of control
during the off cycle, but researchers have found application of this method in the context
of slow-growing tumors, leading to their implementation in a clinical trial for prostate
cancer [2,9,10].

The first clinical trial of single-drug adaptive therapy used a different protocol on
metastatic, castration-resistant prostate cancer. This intermittent adaptive therapy protocol
(Figure 1C) used MTD of single-agent abiraterone until the tumor burden (measured by
prostate-specific antigen (PSA) in the blood) fell below 50% of its initial level. At that point,
treatment was stopped and only resumed if the PSA level returned to its initial level. The
administration of abiraterone was determined using mathematical models informed by
evolutionary principles in order to prolong the emergence of resistance. This resulted in a
doubling of time to progression using less than half of the cumulative drug dose compared
to standard of care [8–10].

Our goal was to test if adaptive therapy can improve clinical outcomes, such as time
to progression, overall survival, and reduction in toxicity, in breast cancer and, more specif-
ically, to test multidrug adaptive therapies as well as single-drug therapy on endocrine-
resistant breast cancer. Although a variety of adaptive therapy protocols have been tested
in mice [2,4,8,11] and computational simulations [12–14], it remains an open question as
to which version of adaptive therapy is best and under which conditions one protocol
might be better than another [15]. Here, we tested different adaptive therapy protocols and
compared them to the time to progression (TTP) of MTD in a preclinical model of breast
cancer. We focused on endocrine-resistant ER+ breast cancer, which is an ongoing major
clinical challenge.

We conducted a preclinical experiment to study the effect of gemcitabine and capecitabine
on a xenograft model of endocrine-resistant ER+ cells in NOD SCID gamma (NSG) mice.
As potential long-term treatments, the ideal drugs for adaptive therapy should have lit-
tle cumulative toxicity and primarily affect proliferating cells. Many anticancer drugs
that are classified as cell cycle specific (e.g., antitumor antibiotics) actually affect both
proliferating and quiescent cells but only kill cells once they come out of quiescence. To
reduce the effect on normal cells, we focused on antimetabolites that only affect pro-
liferating cells and are used in breast cancer treatment, namely, gemcitabine [16] and
capecitabine [17], both of which interfere with the synthesis of DNA. Our primary goal
was to compare gemcitabine versus capecitabine for single-drug adaptive therapy. We
compared gemcitabine to capecitabine to help inform the choice of drug for a future
clinical trial. Furthermore, because we were interested in how multiple drugs might be
combined in adaptive therapy, based on previous simulation results [15], we tested four
different multidrug adaptive therapy protocols. Although the combination of gemcitabine
and capecitabine is not theoretically justified as they have the similar mechanisms of
action, there are some studies that suggest little cross-resistance between gemcitabine
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and capecitabine [18,19] (Supplementary Methods, Data S1). We capitalized on the oppor-
tunity to test multidrug adaptive therapies for the first time while also addressing the
primary goal with single-drug adaptive therapy. These studies provide a framework for
the rational design of adaptive combination chemotherapy protocols to control therapeutic
resistance in breast cancer.

2. Materials and Methods
2.1. Study Design

The aim of this study was to test an evolution-based strategy to treat ER+ endocrine-
resistant breast cancer. We first evolved the estrogen-positive (ER+) breast cancer cell line
MCF7 to be resistant to fulvestrant (a selective estrogen receptor modulator (SERM), Selleck
Chemicals LLC, Houston, TX, USA) and palbociclib (a CDK4/6 inhibitor, Selleck Chemicals
LLC, Houston, TX, USA), both of which are commonly used clinically for ER+ breast cancer.
We then tested a variety of adaptive therapy protocols and compared them to constant
MTD therapy as well as vehicle control (no therapy), measuring time until death as the
primary outcome. In all cohorts, the mice were randomly assigned to the treatment and
control groups presented in Table 1. The primary endpoint for the mouse experiments was
time to death (see below). We monitored tumor burden by the Xenogen IVIS Spectrum
(PerkinElmer, Waltham, MA, USA) in vivo imaging system.

Table 1. Treatment and control groups used in this preclinical experiment on endocrine-resistant
breast cancer. Each treatment group is shown in different colors: vehicle in light blue, control MTD
(single and combination therapy) in gray, gemcitabine single therapy in yellow, capecitabine single
therapy in pink, combination ping-pong strategy in dark blue, and combination tandem strategy in
dark purple.

Treatment and Control Groups

1. Control: No treatment control, apply saline (i.p. injection and orally)

0. Control: Standard therapy with maximum tolerated dose (MTD) of gemcitabine

0. Control: Standard therapy with maximum tolerated dose (MTD) of capecitabine

0. Control: Standard therapy with both MTD of gemcitabine and MTD of capecitabine

0. Dose modulation adaptive therapy with gemcitabine

0. Intermittent adaptive therapy with gemcitabine

0. Dose modulation adaptive therapy with capecitabine

0. Intermittent adaptive therapy with capecitabine

0. Ping-pong dose modulation adaptive therapy alternating between gemcitabine and
capecitabine

0. Ping-pong intermittent adaptive therapy alternating between both drugs

0. Tandem dose modulation adaptive therapy with both drugs

0. Tandem intermittent adaptive therapy with both drugs

2.2. In Vitro Experiments
Cell Culture
Preparing Endocrine-Resistant Cell Lines

Human bioluminescent human ER+ breast cancer cell line able to express firefly
luciferase (MCF7/luc) was cultured in RPMI 1640 (Gibco, ThermoFisher, Grand Island,
NY, USA) and supplemented with 10% fetal bovine serum (FBS, (Gibco, ThermoFisher))
and 1% penicillin–streptomycin, an antibiotic (Gibco, ThermoFisher). MCF7 human breast
cancer cell lines were provided by ATCC, then tagged with luciferase by the Gatenby lab at
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the Moffitt Cancer Center, which then shipped them to us. In order to select for resistance
to fulvestrant and palbociclib, 1 × 107 MCF7/luc cells from passage 3 were inoculated
into a hyperflask and grown for 1 week with RPMI 1640 medium (500 mL) + 10% FBS
until they reached approximately 1 × 109 cells. We then treated them for one month with
70% inhibitory concentration (IC70, 14.8 µM) of the drugs for the first two weeks, IC80 for
the third week (16 µM), and IC90 for the last week (18 µM). We started with a high dose
to model the clinic and moved to even higher doses in order to select for high levels of
resistance. We changed the medium of the hyperflask once per week when we added the
drugs to the medium. When changing the medium, it was poured into an empty bottle by
holding the hyperflask at an angle followed by addition of 100 mL of PBS to wash the flask.
Finally, the fresh medium with drugs was poured into the flask.

Drug Dose–Response Curve Analysis of Resistant Cell Lines

We analyzed the Drug dose–response curve (DDR) on MCF7/luc cells that evolved to
be resistant to fulvestrant and palbociclib versus the parental cell line (sensitive MCF7/luc
cells) to compare their sensitivity to the drugs. We cultured the cells in Petri dishes with
complete medium (RPMI 1640 medium +10% FBS), then harvested the cell using Accutase
(VWR, Radnor, PA, USA) to detach the cells, followed by incubation in the incubator until
the cells detached (about 5–10 min). Once the cells detached, equal amounts of complete
medium were added, washed, and pipetted to bring all the cells into suspension. The cells
were transferred into a tube and then counted, followed by centrifugation for 5 min at
1100 rpm. The medium was then removed, and the pellet was resuspended in a suitable
volume for plating cells in order to obtain 103 cells per well.

We used a 96-well plate with 2 controls (medium without drug and medium plus the
solvent of each drug, in which we used the same percentage of solvent that we used for the
highest concentration of each drug) and 10 treatments (drugs with different concentrations:
30, 40, 50, 60, 70, 80, 90, and 100 µM), with 8 replicates per treatment. Equal amounts of
cells were plated on all wells on Day 1. After 24 h, the cells were treated with the drugs at
the specified concentrations. The cells were incubated under the drugs for 72 h to cover
at least one doubling time of the cell lines (MCF7S cells had a doubling time of 41 h, and
MCF7R cells had a doubling time of 48 h). At the end of the experiment, an equal amount of
100 uL of CellTitre-Glo (Promega, Madison, WI, USA) was added to each well, followed by
incubation for five minutes. CellTitre-Glo releases ATP from live cells [20], so the quantified
luminescence data using a plate reader (SpectraMax M5 with the SoftMax Pro 6.2.2 software)
correspond to live cells under each condition. These values were then normalized to
construct a drug dose–response curve (DDR). Statistical analysis was performed on DDR
results using GraphPad Prism. First, we log-transformed the concentration and then used
a nonlinear regression with the following command: “(log(inhibitor) vs. response-variable
slope (four parameters))”, which gave us a corrected DDR curve and an IC50 value.

2.3. In Vivo Experiment
2.3.1. Xenograft Model of Human Breast Cancer

We orthotopically implanted endocrine-resistant MCF7 cell lines tagged with firefly
luciferase into the mammary fat pads of 8-week-old NOD/SCID gamma (NSG) mice.
We used 3 × 106 cells/100 uL for each mouse (suspended in DPBS/Matrigel 1:1). We
used 6 mice per treatment group and 4 mice for the control group based on a power
analysis: balanced one-way analysis of variance power calculation for 11 experimental
arms and controls (groups = 11, n = 6, f = 0.53, power = 0.8, sig. level = 0.05). A total of
70 mice were used for this study. Orthotopic mouse xenograft experimental protocols were
approved by the Institutional Animal Care and Use Committee (IACUC) at Arizona State
University. NSG mice are immunodeficient, so they were maintained and evaluated under
pathogen-free conditions in accordance with IACUC standards of care at the ASU vivarium.

For harvesting 3 × 106 cells/mouse, the cells were first washed with Dulbecco’s
phosphate-buffered saline (DPBS; CorningTM, Somerville, MA, USA) for 15 min to remove
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any trace of FBS from the cells. Then, the cells were detached using Accutase incubated at
37 ◦C, 5% CO2, for 5–10 min. Then, the cells were suspended in RPMI 1640 growth medium
+10% FBS to neutralize the Accutase followed by centrifugation for 5 min at 1100 RPM. The
pellet of cells was resuspended and mixed with 1:1 matrigel/PBS (3 × 106 cells/100 µL).
Matrigel was used to augment the tumor growth for our cancer cell lines [21].

For the MCF7 xenograft model, 17b-estradiol 90-day release pellets, 0.36 mg per pellet
(Innovative Research of America), were implanted on the dorsal region of the mice on the
day of cell injections in order to grow human breast cancer cells that are estrogen receptor
positive [22,23]. The incision was closed with surgical glue, and the mice were monitored
and kept warm while recovering from the anesthesia. They were returned to their cage once
they recovered. This was repeated every 90 days while the mice were under observation.

2.3.2. Tumor Burden Measurement

Tumor burden was measured by caliper and bioluminescence imaging under isoflu-
rane anesthesia twice a week. The tumor volume measured by the caliper was calculated
according to the following formula: volume = π (short diameter2) × (long diameter)/6.
Imaging of live mice using the IVIS® Spectrum (PerkinElmer, Waltham, MA, USA) re-
vealed tumor size and density. For live imaging, we injected 100 µL of diluted XenoLight
D-luciferin-K + salt, a bioluminescence substrate (PerkinElmer, Inc., Shelton, CT, USA),
intraperitoneally at a concentration of 150 mg/kg body weight. Then, mice were anes-
thetized with isoflurane (3% induction dose and 1.5–2% maintenance dose via a precision
vaporizer), followed by being placed in the chamber for fluorescent imaging using IVIS
Spectrum (PerkinElmer, Inc.) and imaged ventrally. We found that there were a number of
times when the caliper measures diverged from the bioluminescence measures of tumor
burden (r = −0.019, p = 0.4). In some cases, the caliper measures indicated a large tumor but
bioluminescence measured a low number of cancer cells. Upon histological examination,
these tumors were often filled with fat. In other cases, there was no measurable tumor by
calipers, but bioluminescence indicated significant cancer burden, either because the cancer
cells were diffuse, invading the body cavity, or metastatic. Due to these issues, we chose to
manage therapy based on bioluminescence measures as the most accurate indication of
the cancer burden. However, because caliper measures were part of the approved IACUC
protocol, mice were sacrificed if their tumor measured at least 2000 mm3 by calipers.

2.3.3. Starting Therapy and Drug Dosing

When the measured tumor volume exceeded 200 mm3 according to calipers or 3 × 108

(photons/s/cm2/sr) as measured by bioluminescence imaging, mice were randomly di-
vided into the control group and treatment groups. In treatment groups, we used gemc-
itabine (MedChemExpress, NJ, USA) at 50 mg/kg as the maximum tolerated dose (MTD),
which we injected intraperitoneally twice weekly, and capecitabine given at 40 mg/kg/day
as MTD, which we administered orally with a 20 uL pipette tip five days (Monday–Friday)
per week. For the control group (no treatment), we injected saline (the solvent for both
gemcitabine and capecitabine (Sigma-Aldrich, St. Louis, MO, USA)) twice a week (as a
control for the twice-weekly injection of gemcitabine) and applied saline orally twice a
week (as a control for the thrice-weekly oral application of capecitabine).

Standard Therapy Protocol

To model standard therapy, we applied the MTD of a drug continuously: 40 mg/kg/day
of capecitabine five days a week or 50 mg/kg of gemcitabine twice a week. In the com-
bined standard therapy, mice were given both drugs at MTD on those same schedules
(gemcitabine twice a week and capecitabine five days a week).

Dose Modulation Adaptive Therapy Protocol

We adjusted drug dosage based on the tumor burden twice per week and optimized
our experimental protocol according to the dose modulation strategy found in our agent-
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based modeling work [15]. Specifically, if tumor burden decreased by >10% since the last
measurement based on bioluminescence, we decreased the dose by 50%. If the tumor
burden increased by >10%, we increased the dose by 50% but not exceeding the MTD
(40 mg/kg/day for capecitabine and 50 mg/kg for gemcitabine). When the tumor shrank
below 2.25 × 108 (photons/s/cm2/sr) or a minimum volume cutoff of 150 mm3 based on
caliper measurements, we skipped the treatment until the tumor grew back to 3 × 108

(photons/sec/cm2/sr).

Intermittent Adaptive Therapy Protocol

In this protocol, we started with the maximum tolerated dose of the drug: 40 (mg/kg/day)
of capecitabine or 50 (mg/kg/2 days in a week) of gemcitabine. If the tumor burden fell
below 50% of its value at the start of treatment, we withdrew the treatment. If it rose above
the initial tumor burden at the beginning of treatment, we started the treatment again using
the MTD of each drug.

Ping-Pong Dose Modulation Adaptive Therapy Protocol

We used the dose modulation protocol as described above, except that we alternated
between applying gemcitabine and capecitabine as follows:

Monday: Dose with gemcitabine.
Tuesday: Measure tumor burden and set the dose for the next application of gemc-

itabine (the following Friday) based on the tumor burden difference since last Friday. Start
dosing with capecitabine.

Wednesday: Dose with capecitabine.
Thursday: Dose with capecitabine.
Friday: Measure tumor burden and set the dose for the next application of capecitabine

on the following Tuesday based on the change in tumor burden since Tuesday.
Dose with gemcitabine.
Weekend: No treatment.
The dose was adjusted as described in the dose modulation protocol, adjusting the

dose of a drug depending on whether the tumor grew or shrank the last time that drug
was applied. Note that gemcitabine has a half-life of less than 1 h in mice, and capecitabine
has a half-life of 1–4 h in mice [24].

Ping-Pong Intermittent Adaptive Therapy Protocol

We used one drug at a time, and like the single-drug intermittent adaptive therapy
protocol above, we stopped treatment when the tumor burden fell below 50%. The only
difference was that when the tumor burden returned to its initial value prior to treatment,
we switched drugs rather than continuing with the same drug.

Tandem Dose Modulation Adaptive Therapy Protocol

This protocol was the same as the dose modulation adaptive therapy protocol above,
except that both drugs were given and modulated in tandem (gemcitabine twice a week
and capecitabine five days a week on weekdays). We measured tumor burden twice a
week, and when the tumor grew more than 10% since the last measurement, we increased
the dose of both drugs by 50% (up to but never going above their MTD). Similarly, if the
tumor burden shrank by more than 10%, we decreased the dose of both drugs by 50%.

Tandem Intermittent Adaptive Therapy Protocol

This was the same as the intermittent adaptive therapy protocol, except that both
drugs were given at the same time. Both drugs were also withdrawn if the tumor burden
fell below 50% of its initial burden and restarted if the tumor burden ever grew above 100%
of its initial burden.



Cancers 2024, 16, 257 8 of 25

Endpoints

The primary endpoint for the mouse experiments was time to death. Mice were
monitored daily and euthanized if they developed excessive lethargy; inappetence; exces-
sive tumor burden; or other serious clinical conditions as determined by the veterinary
staff, such as difficult or labored breathing, tumor interfering with locomotor activity, or
reduced ability to obtain food or water. Excessive tumor burden was defined as 3 × 109

(photons/s/cm2/sr) according to the luminescence data from IVIS or 2000 mm3 based on
the calipers. Mice that had to be sacrificed due to the tumor interfering with locomotion
or that died during the surgery to implant estrogen pellets were coded as censored for
survival as long as the caliper measurements of tumor burden were below the threshold for
sacrifice. All other reasons for sacrifice were coded as a mortality event, including sacrifice
for excessive lethargy; inappetence; excessive tumor burden; or other serious clinical condi-
tions as determined by the veterinary staff such as difficult or labored breathing, hunching,
or reduced ability to obtain food or water (Tables S1–S4, Figure S7).

2.4. Ex Vivo Experiments
2.4.1. Derivation of Cancer Cell Lines from Mice

When mice were euthanized, we harvested the tumors. Half of the tumor was used
for deriving a cell line, and the other half was saved for tissue-based assays. To derive
a cell line, the tumor was sliced and diced into small pieces. Then, 7 mL of the digest
medium (6 mL collagenase (Burlington, Burlington, NJ, USA, 3 mg/mL PBS) + 10 mL
TrypLE Express (Gibco, ThermoFisher, Grand Island, NY, USA) + 34 mL 1X sterile PBS) was
added to the plate and incubated for 30 min at 37 ◦C. After incubation, the digest medium
and cells were separated from any remaining tissue and transferred into a conical tube.
Then, another 3 mL of digest medium was added to the remaining tissue and sliced again,
followed by addition of 7 mL of digest medium and incubation of the plate in a tissue
culture incubator for another 30 min. Next, we collected the medium and cells from the
dish and added them to the same conical tube we had. Finally, we plated the cells in a Petri
dish with a complete medium that contained Normocin (InvivoGen, San Diego, CA, USA)
at a 1:500 ratio and put them in the incubator to grow. Then, the cell lines were frozen and
kept at −80 ◦C.

2.4.2. Histological Analysis and Immunohistochemistry

The samples were embedded in a paraffin block for hematoxylin and eosin (H&E)
staining and immunohistochemistry (IHC). Tumor tissue was sectioned in 6 µm slices using
Leica Ultracut-R Microtome. We performed IHC using the following antibodies: Ki67,
which was used as a marker of proliferation to assess the proliferative activity of the tumor
and to determine tumor response to our treatment protocols (Ki-67 recombinant rabbit
monoclonal antibody (SP6), Invitrogen #MA5-14520) [25], and caspase 3 (Cleaved Caspase-
3 (Asp175) Antibody #9661, Cell Signaling) [26,27], which is an important component of
apoptosis (Supplementary Methods, Data S1).

2.5. Statistical Methods

We analyzed the survival results using Kaplan–Meier analyses and Cox proportional
hazard models. We analyzed our histology and IHC comparing MTD and adaptive therapy
groups with the Mann–Whitney test.

2.6. Computational Modeling

We modified our previously published hybrid-agent-based model [15], which is an
extension to the Hybrid Automata Library (HAL) agent-based modeling framework [28], to
simulate adaptive therapy using a single cytotoxic or two cytotoxic drugs. The description
of the model can be found in [15], with the following changes.

As noted in Section 2.2.2 (Entities, State Variables, and Scales), for treatment with
a single cytotoxic drug, we considered two different cell types: sensitive and resistant.
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As noted in Section 2.4.11 (Observation), we modified our criterion for progression. At
any point after the initiation of therapy, if the tumor burden equaled or exceeded 99% of
the carrying capacity or if the rolling average of the resistant cells (doubly resistant for
treatment with two drugs or singly resistant for treatment with one drug) over 500 time-
steps equaled or exceeded 50% of the carrying capacity, the particular run was scored as
“progressed”. As noted in Section 2.5 (Initialization), we considered two different cell types:
sensitive and resistant. As noted in Section 2.7.1 (Cell Death), for treatment with a single
cytotoxic drug, the equation for the probability of cell death was as follows: Probability
of cell death per hour = background death probability per hour + S1 × [Drug1] × Ψ1,
where S1 is the binary indicator variable for the cell’s sensitivity to drug 1, [Drug1] is
the concentration of drug 1 (non-negative real values), and Ψ1 is the drug potency (non-
negative real values) quantified as the probability of cell death per unit drug concentration
per hour. As noted in Section 2.7.2 (Cell Division), the cell division rate for the sensitive
cells was 0.06 per hour, and the cell division rate for the resistant cells was 0.02 per hour.
As noted in Section 2.7.4 (Mutation), for treatment with a single cytotoxic drug, the default
value for the mutation rate parameter was 1 × 10−3 per cell division, accounting for the
transition from sensitive to resistant cell types and vice versa. Protocols for treatment
with a single cytotoxic drug and two cytotoxic drugs are described in Supplementary
Method (Data S2). The parameter values used to run the model for treatment using a single
cytotoxic drug are shown in Table 2A, and those used to run the model for treatment using
two cytotoxic drugs are indicated in Table 2B. MTD dosage value for treatment using a
single drug was set to 2.5 units, and MTD dosage value for treatment using two cytotoxic
drugs was set to 2.5 units for each of the two drugs; thus, the total dosage equaled 5 units
for a cocktail application and 2.5 units of the specific drug for the ping-pong protocols.
This matched the mouse experiments, in which the dosage of gemcitabine and capecitabine
were not lowered when they were used in combination.

Table 2. A. Parameter values for matching the results of the mice experiments using a single cytotoxic
drug. B. Parameter values for matching the results of the mice experiments using two cytotoxic drugs.

A

Parameter Value

Cell division rate: sensitive 0.06 per hour

Cell division rate: resistant 0.02 per hour

Background death rate 0.01 per hour

Replacement probability 1.0

Delta Tumor 10%

Delta Dose 50%

Probability of death due to drug potency (Ψ) 0.04 per unit drug concentration

Maximum tolerated dose (MTD) 2.5 units

Minimum drug dose 0.5 units

Drug on time 1 h

Frequency of drug application Once every 24 h

Check tumor burden Every 3 days

Drug decay 10% per hour

Drug diffusion rate 2.0

Tumor size triggering treatment Tumor burden is 50% or more of the carrying
capacity

Mutation rate 1 × 10−3 per cell division
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Table 2. Cont.

A

Parameter Value

Measurement noise standard deviation (SD) 5 cells

Total grid size 100 by 100

Duration of simulation 5000 h

Stop dosing/initiate treatment vacation when
(DM protocols only)

Tumor burden is less than or equal to 25% of
carrying capacity

Doubling time of sensitive cells 13.86 h

Doubling time of resistant cells 69.3 h

B

Parameter Value

Cell division rate: doubly sensitive 0.10 per hour

Cell division rate: singly resistant 0.06 per hour

Cell division rate: doubly resistant 0.02 per hour

Background death rate 0.01 per hour

Replacement probability 1.0

Delta Tumor 10%

Delta Dose 50%

Probability of death due to drug potency (Ψ) 0.04 per unit drug concentration

Maximum tolerated dose (MTD): Drug 1 2.5 units

Maximum tolerated dose (MTD): Drug 2 2.5 units

Minimum drug dose 0.5 units

Drug on time 1 h

Frequency of drug application Once every 24 h

Check tumor burden Every 3 days

Drug decay 10% per hour

Drug diffusion rate 2.0

Tumor size triggering treatment Tumor burden is 50% or more of the carrying
capacity

Mutation rate 1 × 10−3 per cell division

Measurement noise standard deviation (SD) 5 cells

Total grid size 100 by 100

Duration of simulation 5000 h

Stop dosing/initiate treatment vacation when
(DM protocols only):

Tumor burden is less than or equal to 25% of
carrying capacity

Doubling time of doubly sensitive cells 7.7 h

Doubling time of doubly resistant cells 69.3 h

Doubling time of singly resistant cells 13.86 h

3. Results

We tested whether adaptive therapy works in preclinical mouse models with endocrine-
resistant breast cancer and compared adaptive therapy with standard therapy. We tested
the two leading protocols for adaptive therapy (dose modulation vs. intermittent) in mice
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using gemcitabine and/or capecitabine on the human breast cancer cell line MCF7 evolved
to be resistant to fulvestrant and palbociclib.

3.1. Endocrine-Resistant MCF7 Cell Line

Typically, it takes 6–18 months to select for therapeutically resistant cells in a cell
line [29]. However, resistance often emerges in the clinic in a matter of a few months [30–32].
We hypothesized that this discrepancy may be due to the use of unrealistically small cell
population sizes in vitro. Population size is a key parameter of the rate of evolution [33].
Using a hyperflask to culture a population of ~108 MCF7 cells, we were able to generate
cells that were resistant to five-fold higher doses of fulvestrant and palbociclib in one
month (Figure 2A). After a month of exposure to both fulvestrant and palbociclib, MCF7
resistant (MCF7 R) cells had evolved a half-maximal concentration inhibitory concentration
(IC50) value of 62.65 µM compared to 13.13 µM for the sensitive parental cells (MCF7 S).
Moreover, we tested gemcitabine and capecitabine on both of the sensitive and resistant
cells (Figure 2B). We found MCF7 sensitive cell lines showed IC50 values of 153 and 235 µM
to gemcitabine and capecitabine, respectively. Gemcitabine and capecitabine showed
IC50 values of 134 and 128 µM on MCF7 resistant cell lines (resistant to fulvestrant and
palbociclib), respectively.

3.2. Tumor Growth Control after Therapy Cessation

In 20 of the 48 mice on adaptive therapy protocols, the tumor burden shrank below
our minimum threshold at which we stopped therapy and then remained at low tumor
burden for many weeks until the mice died or had to be sacrificed for other reasons (noted
in Table S1 as “tumor remained stable after dosing stopped”). It is not clear why tumor cells
still detectable by bioluminescence did not grow in the absence of drugs or a functional
immune system, though in half of the cases, the tumor size did grow as measured by
calipers (Figure S6). In an additional seven mice, the tumor stayed stable after the cessation
of therapy but eventually did regrow.

3.3. Prolonged Survival Benefit of Adaptive Therapy
3.3.1. Single-Drug Therapy

In capecitabine, single-drug adaptive therapy (Figure 3) survival was better, though
not statistically significant, for dose modulation compared to no treatment (Cox propor-
tional hazards HR = 0.24, 95% CI = 0.042–1.4, p = 0.1) and compared to MTD (HR = 0.22,
95% CI = 0.043–1.1, p = 0.065). There was some evidence that dose modulation prolonged
survival compared to intermittent therapy (Figure 3, HR = 0.26, 95% CI = 0.049–1.4, p = 0.09).
There were no differences between intermittent therapy relative to no treatment (HR = 0.96,
95% CI = 0.247–3.7, p = 0.95) and MTD (HR = 0.78, 95% CI = 0.236–2.6, p = 0.68). There
was no significant benefit in prolonging survival between MTD therapy relative to no
treatment (HR = 1.2, 95% CI = 0.323–4.5, p = 0.78) (Figure 3A). In addition, a lower average
total drug dose was used in dose modulation (533.8 mg/kg) compared to intermittent
(1226.6 mg/kg) and MTD (1373.3 mg/kg) therapies (Table S5). In gemcitabine single-drug
adaptive therapy, there were no statistically significant differences in survival time for any
of the protocols (Figure 3B). However, we found that a lower average total drug dose was
used in dose modulation (256.9 mg/kg) compared to intermittent (333.3 mg/kg) and MTD
(783.3 mg/kg) therapies (Table S5).

3.3.2. Multidrug Therapy

When using both gemcitabine and capecitabine, survival was better for ping-pong in-
termittent treatment relative to no treatment (HR = 0.13, 0.13, 95% CI = 0.02–0.84, p = 0.032).
There was evidence that survival was also better for ping-pong dose modulation compared
to no treatment, but it was not quite statistically significant (Cox proportional HR = 0.2, 95%
CI = 0.038–1.09, p = 0.06). In comparison to MTD, both ping-pong dose modulation and
ping-pong intermittent protocols prolonged survival (dose modulation: HR = 0.11, 95%
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CI = 0.024–0.55, p = 0.007; intermittent therapy: HR = 0.07, 95% CI = 0.013–0.42, p = 0.003).
Survival under MTD with both drugs was worse than no treatment but not significantly
(HR = 1.9, 95% CI = 0.48–7.4, p = 0.36) (Figure 4A). Moreover, the average amount of drugs
used per day was lower for both AT therapies (GEM: 4.9 mg/kg, CAP: 6.1 mg/kg per day
for ping-pong dose modulation and GEM: 6.4 mg/kg, CAP: 8 mg/kg per day for ping-pong
intermittent) compared to MTD (GEM:20.6 mg/kg, CAP: 30.6 mg/kg per day) (Table S5).
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Figure 2. (A) Drug dose–response curves for sensitive and resistant MCF7/luc cell lines to combi-
nation of fulvestrant and palbociclib. MCF7 resistant (MCF7 R) and sensitive (MCF7 S) cell lines
showed IC50 values of 62.65 and 13.13 µM, respectively. The percentages of viability at 40, 50, and
60 µM were significantly different between MCF7 R and MCF7 S cell lines. Each data point represents
eight replicates. (B) Drug dose–response curves for sensitive and resistant MCF7/luc cell lines to
gemcitabine and capecitabine. Green lines show drug dose–response of endocrine-sensitive MCF7
cell lines to gemcitabine with IC50 value of 153 µM and capecitabine with IC50 value of 235 µM. Red
lines show drug dose–response of endocrine-resistant (resistant to fulvestrant and palbociclib) MCF7
cell lines to gemcitabine with IC50 value of 134 µM and capecitabine with IC50 value of 128 µM. Note
that, if anything, resistance to endocrine therapy led to increased sensitivity to antimetabolite therapy
in these cells.

With tandem combination adaptive therapy, where both drugs were used at the
same time, dose modulation and intermittent protocols were better than combined MTD
therapy, but the improvement was only statistically significant for dose modulation (Cox
proportional hazards for tandem dose modulation vs. MTD: HR = 0.22, 95% CI = 0.05–0.94,
p = 0.04; for intermittent vs. MTD: HR = 0.34, 95% CI = 0.07–1.6, p = 0.17). Neither
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form of tandem adaptive therapy was significantly better than no treatment (tandem dose
modulation relative to no treatment: HR = 0.34, 95% CI = 0.07–1.6, p = 0.17; tandem
intermittent relative to no treatment: HR = 0.73, 95% CI = 0.17–3, p = 0.66). MTD was worse
than no treatment in survival, but the difference was not statistically significant (HR = 1.9,
95% CI = 0.48–7.4, p = 0.36) (Figure 4B).
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Figure 3. Survival analysis of single-drug therapies. (A) Survival analysis of capecitabine protocols
using Cox regression (CAP dose modulation relative to no treatment: HR = 0.24, 95% CI = 0.042–1.4,
p = 0.1; CAP intermittent relative to no treatment: HR = 0.96, 95% CI = 0.247–3.7, p = 0.95; CAP MTD
relative to no treatment: HR = 1.2, 95% CI = 0.323–4.5, p = 0.78; CAP dose modulation relative to
MTD: HR = 0.22, 95% CI = 0.043–1.1, p = 0.065; CAP intermittent relative to MTD: HR = 0.78, 95%
CI = 0.236–2.6, p = 0.68). (B) Survival analysis of gemcitabine protocols. None of the protocols were
statistically significantly different using Cox regressions.

3.4. A Strong Correlation between the Percentage of Maximum Tolerated Drug Dose Used with
Survival Time

We calculated the cumulative total drug dose administered and divided it by the
number of days between the start of therapy and death to get the average drug dose per day,
normalized by the MTD. We found a strong negative correlation between the %MTD drug
dose per day and the survival time of mice in combination therapy (p < 0.0001, Figure 5A).
We also observed a significant negative correlation between the %MTD drug dose per
day and the survival time of mice in single-drug therapies (capecitabine or gemcitabine)
(p = 0.0074, Figure 5B). There was no relationship between the final tumor burden size and
the survival time (Figure S1), though there was a trend of higher concentrations of drug
resulting in larger tumors at the end of the experiment (p = 0.076, Figure S2).
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Figure 4. Survival analysis of multidrug therapies. (A) Multidrug ping-pong adaptive therapy
protocols versus MTD or no treatment (vehicle control). In ping-pong protocols, only one drug is
used at a time. Here, MTD is the application of MTD of both gemcitabine and capecitabine using
the same dose scheduling as a single drug. (B) Multidrug tandem adaptive therapy protocols versus
MTD or no treatment (vehicle control). In the tandem and MTD protocols, both gemcitabine and
capecitabine were given (and modulated) at the same time.

3.5. Different Chemosensitivity in Cell Lines Retrieved from Different Treatment Groups

To determine the chemosensitivity of the retrieved cell lines from the tumors, we gener-
ated drug dose–response (DDR) curves for single-drug therapies and combination therapies
(Figure S3). We generated DDR curves on parental pre-engrafted MCF7 breast cancer (ER+)
cell lines with single and combination treatment of capecitabine and gemcitabine. Then, we
compared the sensitivity of engrafted cell lines under different treatment strategies for each
drug to pre-engrafted MCF7 cell lines treated with that drug. In single-drug therapy using
gemcitabine and combination therapy, we found cell lines from MTD groups showed the
highest IC50s values, with the apparent exception of intermittent therapy with capecitabine
(Figure 6). However, the two cell lines from tumors that were treated with the capecitabine
intermittent protocol both came from tumors that never fell below 50% of their initial tumor
burden and so never had a drug holiday. Thus, they were treated the same as the MTD
condition, which may explain why they resulted in relatively high IC50 values.
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Figure 5. Correlation between the percentage of maximum tolerated drug dose used with survival
time. (A) Survival time as a function of the amount of combined gemcitabine and capecitabine that
was given per day. Mice that were given more chemotherapy tended to have a shorter survival time
(p < 0.0001, R2 = 0.56). (B) Survival time as a function of the amount of single drug (either gemcitabine
or capecitabine) that was given per day. Although there were a lot of variances associated with
different protocols, there was still a strong trend that mice treated with more drugs had a shorter
survival time (p = 0.0074, R2 = 0.19).

In capecitabine single therapy, we were able to retrieve cell lines from three mice of the
MTD group, two mice in the dose modulation group, two mice in the intermittent group,
and three mice that were not treated. Figure 6A shows the capecitabine IC50 values for
those cell lines (drug dose–response curves are shown in Figure S3).

Gemcitabine IC50 values for mice treated with gemcitabine alone are shown in Figure 6B
(drug dose–response curves are shown in Figure S3). For mice treated with the combination
of both drugs, there were more dramatic differences in the IC50 values between conditions
(Figure 6C). For the two cell lines from Mice 55 and 58 treated with the ping-pong dose
modulation protocol and the one cell line from Mouse 50 treated with the intermittent
tandem protocol, the cells were statistically significantly more sensitive to combination
therapy compared to the cell line from Mouse 38 treated with MTD of both drugs (t-test
p < 0.001 at 100, 150, and 250 µM comparing Mice 55 and 58 vs. 38; for Mouse 50 vs. 38,
p = 0.0026 at 100 µM and p < 0.0001 at both 150 and 250 µM; Supplemental DDR curves
in Figure S3). We were unable to derive a cell line from mice treated with the ping-pong
intermittent protocol, so they are not included in Figure 6C.

3.6. Correlation between IC50 Values with Both Tumor Burden and Drug Dose

We hypothesized that a growing tumor at the time of death might indicate therapeutic
resistance. We analyzed the relationship between the IC50 values of cell lines retrieved from
the mice and the last measured tumor burden in those mice based on bioluminescence. We
found a significant positive correlation (p = 0.0041, R2 = 0.43; Figure 7A). Moreover, there
was a positive correlation between the average drug dose applied per day for each mouse
and the resulting IC50 values of the cells derived from those tumors (p = 0.04, R2 = 0.25;
Figure 7B), but this result is not statistically significant after correcting for multiple testing.
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Figure 6. IC50 values for cell lines derived from tumors under different treatment conditions. In each
panel, the protocols have been ordered from lowest to highest mean IC50 values across the 1–3 cell
lines we were able to derive from the tumors for each condition. (A) Capecitabine IC50 values for
mice treated with capecitabine alone. (B) Gemcitabine IC50 values for mice treated with gemcitabine
alone. (C) Combined capecitabine and gemcitabine IC50 values for mice treated with both drugs
together. Error bars show the 95% confidence intervals on the IC50 values based on eight replicates at
each drug concentration in our drug dose–response experiments.
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3.7. Immunohistochemistry and Histological Analysis

We analyzed the percentage of apoptotic cells (caspase-3 positive) and percentage
of proliferating tumor cells (Ki-67 positive) out of the total number of cells examined (a
standard field of view was utilized to compare the proportion of positive cells) on our tumor
sections for all the tumors (Table S6). The maximum tolerated dose of both capecitabine
and gemcitabine in single and combination strategies led to higher expression of Ki-67
than adaptive therapy protocols (t-test p = 0.0026; Figure 8A). In contrast, the maximum
tolerated dose of both capecitabine and gemcitabine in single and combination strategies
had lower caspase-3 index (lower apoptosis) compared to all the adaptive therapy groups
(t-test p = 0.0457; Figure 8B), though this was not statistically significant after multiple
testing corrections. There was no evidence of a correlation between proliferation and
apoptotic indices in the tumors (Figure S4). We also assessed necrosis in tumors recovered
from mice at the end of the experiment, scoring it on a scale from 0 to 4 (Figure S5).

3.8. Computational Simulations Match the Rank Orders for the Different Adaptive Therapy
Protocols

We previously developed a hybrid-agent-based model to explore adaptive therapy
protocols using one [34] or two [7] cytotoxic drugs. Although our model is simple and
does not represent the details of breast cancer, the results of the simulations and mouse
experiments using gemcitabine or capecitabine are consistent with respect to the rank
order of their success. In both the modeling (Figure 9A) and experiments (Figure 9B) with
capecitabine alone, the dose modulation protocol worked best, and the intermittent protocol
was essentially equivalent to MTD. For the two-drug protocols, the dose modulation ping-
pong protocol, the dose modulation tandem protocol, and the ping-pong intermittent
protocol were all equivalent and better than the other protocols in both the simulation and
experimental results (Figure 9). The standard MTD protocol and the tandem intermittent
protocols are equivalent and worse than the other protocols in the mouse experiment,
though in three of the six mice in the tandem intermittent group, the tumor never shrank
below the threshold to stop dosing at MTD, so they actually received the same treatment as
the MTD group (Table S1). In the simulations, the tandem intermittent protocol did result
in treatment holidays and did better than MTD but still not as well as the dose modulation
and ping-pong protocols (Figure 9C).



Cancers 2024, 16, 257 18 of 25

Cancers 2024, 16, x FOR PEER REVIEW 18 of 26 
 

 

 

Figure 7. Correlation between IC50 values with both tumor burden and drug dose. (A) The relation-

ship between the tumor burden at death and the IC50 values of the cell lines derived from those 

tumors. (B) The relationship between the average amount of drug used per day to treat a mouse and 

the resulting IC50 of the cells derived from that mouse’s tumor. 

3.7. Immunohistochemistry and Histological Analysis  

We analyzed the percentage of apoptotic cells (caspase-3 positive) and percentage of 

proliferating tumor cells (Ki-67 positive) out of the total number of cells examined (a 

standard field of view was utilized to compare the proportion of positive cells) on our 

tumor sections for all the tumors (Table S6). The maximum tolerated dose of both capecit-

abine and gemcitabine in single and combination strategies led to higher expression of Ki-

67 than adaptive therapy protocols (t-test p = 0.0026; Figure 8A). In contrast, the maximum 

tolerated dose of both capecitabine and gemcitabine in single and combination strategies 

had lower caspase-3 index (lower apoptosis) compared to all the adaptive therapy groups 

(t-test p = 0.0457; Figure 8B), though this was not statistically significant after multiple 

testing corrections. There was no evidence of a correlation between proliferation and 

apoptotic indices in the tumors (Figure S4). We also assessed necrosis in tumors recovered 

from mice at the end of the experiment, scoring it on a scale from 0 to 4 (Figure S5). 

0.
0

1.
0×

10
8

2.
0×

10
8

3.
0×

10
8

4.
0×

10
8

5.
0×

10
8

6.
0×

10
8

7.
0×

10
8

8.
0×

10
8

9.
0×

10
8

1.
0×

10
9

1.
1×

10
9

1.
2×

10
9

0

100

200

300

400

500

600

Final Tumor Burden, Bioluminescence (p/sec/cm2/sr) 

IC
5
0
 

 MTD  (Capecitabine)

Dose Modulation (Capecitabine)

Intermittent  (Capecitabine)

Dose Modulation (Gemcitabine)

Intermittent (Gemcitabine)

 MTD   (Gemcitabine and Capecitabine)

Ping-pong Dose Modulation  (Gemcitabine and Capecitabine) 

 Tandem Intermittent (Gemcitabine and Capecitabine) 

P-value =0.0041

 MTD  (Gemcitabine)
Tandem Dose Modulation (Gemcitabine and Capcitabine)

0 10 20 30

0

100

200

300

400

500

600

Total Drug Dose (mg/kg)/ Total days

IC
5
0
 

 MTD  (Capecitabine)

Dose Modulation 
(Capecitabine)

Intemittent  (Capecitabine)

 MTD  (Gemcitabine)

Dose Modulation (Gemcitabine)

Intemittent (Gemcitabine)

 MTD   (Gemcitabine and Capecitabine)

Ping-pong Dose Modulation  (Gemcitabine and Capecitabine) 

Tandem Dose Modulation  (Gemcitabine and Capecitabine)

 Tandem Intermittent (Gemcitabine and Capecitabine) 

P-value = 0.0403

A

B

Figure 7. Correlation between IC50 values with both tumor burden and drug dose. (A) The rela-
tionship between the tumor burden at death and the IC50 values of the cell lines derived from those
tumors. (B) The relationship between the average amount of drug used per day to treat a mouse and
the resulting IC50 of the cells derived from that mouse’s tumor.



Cancers 2024, 16, 257 19 of 25
Cancers 2024, 16, x FOR PEER REVIEW 19 of 26 
 

 

 

Figure 8. Immunohistochemistry analysis. The percentage of (A) proliferating (Ki-67 positive) cells 

and (B) apoptotic (caspase-3 positive) cells in the tumors at the end of the different treatment pro-

tocols. Protocols have been ordered by increasing mean values (shown by the bars). 

3.8. Computational Simulations Match the Rank Orders for the Different Adaptive Therapy 

Protocols 

We previously developed a hybrid-agent-based model to explore adaptive therapy 

protocols using one [34] or two [7] cytotoxic drugs. Although our model is simple and 

Figure 8. Immunohistochemistry analysis. The percentage of (A) proliferating (Ki-67 positive) cells
and (B) apoptotic (caspase-3 positive) cells in the tumors at the end of the different treatment protocols.
Protocols have been ordered by increasing mean values (shown by the bars).



Cancers 2024, 16, 257 20 of 25

Cancers 2024, 16, x FOR PEER REVIEW 20 of 26 
 

 

does not represent the details of breast cancer, the results of the simulations and mouse 

experiments using gemcitabine or capecitabine are consistent with respect to the rank or-

der of their success. In both the modeling (Figure 9A) and experiments (Figure 9B) with 

capecitabine alone, the dose modulation protocol worked best, and the intermittent pro-

tocol was essentially equivalent to MTD. For the two-drug protocols, the dose modulation 

ping-pong protocol, the dose modulation tandem protocol, and the ping-pong intermit-

tent protocol were all equivalent and better than the other protocols in both the simulation 

and experimental results (Figure 9). The standard MTD protocol and the tandem intermit-

tent protocols are equivalent and worse than the other protocols in the mouse experiment, 

though in three of the six mice in the tandem intermittent group, the tumor never shrank 

below the threshold to stop dosing at MTD, so they actually received the same treatment 

as the MTD group (Table S1). In the simulations, the tandem intermittent protocol did 

result in treatment holidays and did better than MTD but still not as well as the dose mod-

ulation and ping-pong protocols (Figure 9C).  

 

 

Figure 9. Computational simulations match the rank orders for the different adaptive therapy pro-

tocols. Comparison of (A) simulation results to (B) mouse experimental results for adaptive therapy 

and MTD protocols using capecitabine alone. (C) Comparison of simulation results to (D) mouse 

experimental results for adaptive therapy and MTD protocols using both capecitabine and gemcita-

bine. 

  

Figure 9. Computational simulations match the rank orders for the different adaptive therapy
protocols. Comparison of (A) simulation results to (B) mouse experimental results for adaptive
therapy and MTD protocols using capecitabine alone. (C) Comparison of simulation results to
(D) mouse experimental results for adaptive therapy and MTD protocols using both capecitabine
and gemcitabine.

4. Discussion

Cancers are highly dynamic, and cancer cells evolve phenotypic strategies to deal with
the challenges of therapy. This suggests that our treatments should also be dynamic and
adjust to how the cancer is changing [2,4,8]. Standard therapy using MTD of cancer drugs
imposes the strongest selective pressure to select for resistant phenotypes [35]. Typically,
that eliminates sensitive populations, resulting in the competitive release of resistant cells
and ultimately treatment failure [6]. Adaptive therapy was translated from integrated pest
management as a strategy for preventing therapeutically resistant clones from growing out
of control, thereby improving patient survival, with the added benefit of reducing toxicity.

The innovation of this experiment was to test adaptive therapy with multiple drugs
and testing the ping-pong and intermittent protocols for the first time in mice. It is also the
first time that adaptive therapy has been tested on an ER+ but endocrine-resistant breast
cancer cell line. One advantage of the ping-pong protocol is that only one drug is applied
at a time, which should both reduce toxicity and limit selection for multidrug resistance.
These strategies worked best in both our simulations [7] and experiments. In general, dose
modulation adaptive therapies worked better than fixed (MTD) doses, probably because
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reducing the dose both reduced toxicity and selection for resistance (Figures 5 and 7).
Furthermore, in the intermittent protocol, we only stopped dosing if the tumor burden fell
below 50% of its initial value. This means that if the tumor never fell below that threshold,
we kept dosing at MTD. In those cases, there was no difference between the intermittent
and MTD protocols.

In many cases, adaptive therapy was able to maintain control over tumor growth with
low doses. In 27 of the mice treated with adaptive therapy, the tumor burden fell below
2.25 × 108 (photons/sec/cm2/sr) or 150 mm3, which triggered a cessation of treatment. In
20 of those 27, the tumor continued to shrink or stayed stable after therapy was stopped
(Table S1). This was a surprise. It may be due to some form of an Allee effect, in which
small, fragmented cancer cell populations have difficulty regrowing [36–38]. Alternatively,
it may be the result of neutrophils helping to control the tumors as NSG mice still have
functional neutrophils [39]. But the mechanism of that effect has yet to be determined. We
should also note that in three of the four control mice that were only treated with saline,
the tumor stayed relatively stable over time (Table S1).

By deriving cell lines from many of the tumors at the end of the experiment, we were
able to test levels of therapeutic resistance that had evolved under the different protocols.
We found that tumors exposed to long-term MTD tended to evolve more resistance than
tumors treated with adaptive therapies (Figure 6) and grow large (Figure 7A). The resistance
that evolved was correlated with the average dose applied per day (Figure 7B). It is unclear
why, in a few cases, mice treated with a vehicle alone evolved tumors that were resistant to
gemcitabine and/or capecitabine (Figure 6). The one mouse that evolved clear resistance
to both drugs (Mouse 68) also evolved metastasis (though the cell line we tested for
resistance came from the primary tumor). There may be a mechanistic association between
the capacity to metastasize and resistance to antimetabolite drugs. Another disturbing
possibility is that resistance to capecitabine and gemcitabine does not always come with a
fitness cost.

Evolutionary life history theory suggests that there is likely to be a tradeoff between
maximizing survival versus maximizing proliferation in cancer cells [40]. Populations in
stable environments tend to evolve slow life histories because they expand until resources
are scarce and then have to compete for those limited resources [41]. We had hypothesized
that adaptive therapy, by attempting to maintain a stable tumor size, might select for
cancer cells with a slower life history strategy than MTD. There are two counterarguments
to this hypothesis. The fact that we achieved stable population size through external
mortality (cytotoxic drugs) rather than resource limitations might select for fast life history
strategies. Furthermore, constant high dosing with cytotoxins might select for forms of
resistance that invest heavily in survival over reproduction. In fact, adaptive therapy is
based on the assumption that resistance has a fitness cost in the absence of drugs. However,
when therapy is applied at high dose with recovery periods between doses, there may be
selection for clones that can withstand therapy and then rapidly proliferate in the periods
between therapy. Our results showed that tumors that evolved under constant high-dose
treatment had high levels of proliferation and low levels of apoptosis despite being exposed
to cytotoxic drugs. In contrast, tumors that evolved under adaptive therapies had low
levels of proliferation and higher levels of apoptosis, which should lead to a slower net
proliferation rate compared to MTD (Figure 8). Thus, it appears that adaptive therapy
protocols selected for slower life history strategies.

We discovered a simple way to increase the speed with which we can evolve resistant
cell lines in vitro based on evolutionary theory. Theory suggests that the rate of evolution
is determined by five parameters: population size, generation time, mutation rate, selective
coefficients, and the heritability of those selected phenotypes. We hypothesized that the
reason acquired therapeutic resistance often evolves in the clinic in a matter of a few months
while most in vitro protocols require 6–18 months, often with slowly escalating doses, is
due to a difference in the population sizes. Clinical tumors are estimated to have 108 cells
per cm3 [42], whereas typical cell culture conditions often have only 105 cells. We treated
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108 cells in a hyperflask at IC70 of both fulvestrant and palbociclib and were able to evolve
a resistant variant of MCF7 cells in just one month.

4.1. Caveats

This study had some caveats that could be addressed in follow-up investigations.
First, with only six mice per group, our statistical power was limited for detecting survival
differences between the protocols. Second, we continued to dose at MTD in the control
condition as a control for the possibility that adaptive therapy may succeed simply by
continuing to dose. This matches clinical practice for capecitabine [43] but not gemcitabine,
which is usually given for a limited period of time [44]. Gemcitabine given at MTD may
have performed better if we had stopped dosing after a fixed number of applications.
Furthermore, we only tested a single cell line. Adaptive therapy is likely to work differently
on different tumors and with different drugs, particularly if there are differences in the cost
of resistance. We used two drugs with similar, though not identical, mechanisms of action.
Ideally, drugs that select for very different mechanisms of resistance should be used, which
suggests we should choose drugs with very different mechanisms of action. It is reassuring
that there may be little cross-resistance between gemcitabine and capecitabine [36–38].
Much of the advantage of adaptive therapies with multiple drugs that we observed was
likely due to comparison with our highly toxic, constant “MTD” dose control condition.
The fact that our multidrug “MTD” condition was worse than no treatment suggests that
the doses we used for the combined gemcitabine and capecitabine caused a lot of toxicity
and were actually above the maximum tolerable dose.

4.2. Future Challenges and Opportunities

The observation that dose modulation adaptive therapy with capecitabine appeared
to extend time to progression and reduced toxicity compared to MTD may justify clinical
trials in ER+ metastatic, endocrine-resistant but chemo-naive breast cancer. Furthermore,
the success of ping-pong dose modulation adaptive therapy suggests that we should try
interleaving different single-drug therapies to both reduce toxicity and to avoid select-
ing for multidrug resistance [15]. Future mouse experiments should test lower doses of
capecitabine to reduce toxicity and also pair it with a drug with a very different mode of
action. Furthermore, we should test ping-pong protocols alternating every cycle (used here)
and ping-pong on progression [15], in which a single drug is used at a time and its dose
reduced as long as the tumor is shrinking, with a switch to the other drug only conducted
when the tumor starts to grow. Using dose modulation but waiting for progression before
switching drugs may help clones shrink that are resistant to the drug not currently being
used so that the tumor is more sensitive when we switch drugs. Our simulations suggest
that this is a particularly effective two-drug adaptive therapy protocol [15].

In general, successful translation of adaptive therapy to the clinic will require drugs
for which their dose can be easily modulated and have little to no cumulative toxicity. We
will also need biomarkers that help distinguish between potentially curable cancers from
those that already harbor resistant clones for which we should shift to the goal of control
rather than cure. Even in cases where we do not know all the mechanisms of therapeutic
resistance for a drug, measurements of intratumor heterogeneity may serve to identify
cancers with high levels of clonal heterogeneity that likely harbor resistant clones.

For both adaptive therapy and other cancer therapy protocols, there is a critical clinical
need for relatively inexpensive and noninvasive methods to measure tumor burden, which
can be used frequently throughout treatment to monitor tumor response. It is difficult
to manage and effectively respond to a dynamic, evolving disease if we only measure its
response to therapy sometime after we have completed a fixed protocol. We predict that
treatment protocols that are conditional on how the tumor is responding, such as adaptive
therapy, will be more effective than fixed protocols, which are insensitive to how the tumor
is responding. There is considerable variation in how different tumors respond to a given
therapy, and protocols like adaptive therapy are able to individualize treatment based on
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those differences. Such individualized treatment will likely be a central component of
future precision medicine.

5. Conclusions

Adaptive therapies show promise in this ER+ endocrine-resistant model of breast
cancer. We found that mice under adaptive therapy treatments not only had better sur-
vival but their tumors also evolved a lower proliferation index and higher cell death rate
compared to MTD protocols. In fact, across all the variations of protocols we tested, we
found that the more drugs that were used, the shorter the survival time and the greater the
resistance that evolved in the tumors. This implies that in the setting of late-stage cancers
and second-line therapy or any other setting where cancers are not being treated with intent
to cure, we may be able to extend time to progression by reducing the dose of anticancer
drugs and perhaps even use evolutionary approaches to prevent the evolution of acquired
therapeutic resistance. In the setting of endocrine-resistant breast cancer, our results also
support clinicians’ preference of capecitabine over gemcitabine. The success of adaptive
therapy here could provide justification for a future clinical trial using dose modulation
adaptive therapy with capecitabine in ER+ metastatic, endocrine-resistant but chemo-naive
breast cancer. If a second drug were added to capecitabine, we would recommend using
them in a dose modulation, ping-pong on progression protocol in which the standard
de-escalation of doses is used as long as the tumor is shrinking on a single drug but instead
of raising the dose if the tumor grows, a switch is made to the other drug and de-escalation
resumed until progression [15]. By changing the way we use current drugs so as to prevent
the expansion of resistant clones, we have the opportunity to transform cancer from an
acute, lethal disease into one that is chronic and manageable.
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