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Simple Summary: This study introduces a CT-based 3D reconstruction algorithm for measuring
resection margins post sublobar resection in lung cancer patients. It aims to enhance accuracy
and reproducibility, addressing the limitations of gross margin measurement. The findings show
feasibility with a target registration error of <2.5 mm. This approach could revolutionize lung cancer
treatment, facilitating prompt identification of patients with inadequate resection margins for timely
post-operative adjuvant therapies.

Abstract: Sublobar resection has emerged as a standard treatment option for early-stage peripheral
non-small cell lung cancer. Achieving an adequate resection margin is crucial to prevent local tumor
recurrence. However, gross measurement of the resection margin may lack accuracy due to the
elasticity of lung tissue and interobserver variability. Therefore, this study aimed to develop an
objective measurement method, the CT-based 3D reconstruction algorithm, to quantify the resection
margin following sublobar resection in lung cancer patients through pre- and post-operative CT
image comparison. An automated subvascular matching technique was first developed to ensure
accuracy and reproducibility in the matching process. Following the extraction of matched feature
points, another key technique involves calculating the displacement field within the image. This is
particularly important for mapping discontinuous deformation fields around the surgical resection
area. A transformation based on thin-plate spline is used for medical image registration. Upon
completing the final step of image registration, the distance at the resection margin was measured.
After developing the CT-based 3D reconstruction algorithm, we included 12 cases for resection
margin distance measurement, comprising 4 right middle lobectomies, 6 segmentectomies, and
2 wedge resections. The outcomes obtained with our method revealed that the target registration
error for all cases was less than 2.5 mm. Our method demonstrated the feasibility of measuring the
resection margin following sublobar resection in lung cancer patients through pre- and post-operative
CT image comparison. Further validation with a multicenter, large cohort, and analysis of clinical
outcome correlation is necessary in future studies.

Cancers 2024, 16, 2181. https://doi.org/10.3390/cancers16122181 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers16122181
https://doi.org/10.3390/cancers16122181
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0002-3618-0256
https://orcid.org/0000-0001-5977-3874
https://orcid.org/0000-0002-5906-707X
https://orcid.org/0000-0002-0023-5817
https://orcid.org/0000-0003-1268-3729
https://doi.org/10.3390/cancers16122181
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers16122181?type=check_update&version=1


Cancers 2024, 16, 2181 2 of 19

Keywords: computed tomography; lung cancer surgery; resection margin; sublobar resection; image
registration; 3D reconstruction; subvascular tree matching; discontinuous deformation field

1. Introduction

Lung cancer is one of the leading causes of cancer deaths worldwide. For stage I lung
cancer, surgical resection is the treatment of choice. For stage II-IIIA lung cancer, surgical
resection is often combined with perioperative medical treatment. For small peripheral
lung cancers less than 2 cm, sublobar resection offers considerable advantages, particularly
for patients with compromised cardiopulmonary function, making it a more suitable
option [1–4]. However, compared to lobectomy, sublobar resection may be associated
with higher rates of tumor recurrence in centrally located lung cancer, with inadequate
resection margin distance being a major contributing factor [5–7]. According to the National
Comprehensive Cancer Network guidelines for non-small cell lung cancer, a resection
margin distance of greater than or equal to 2 cm or tumor size is recommended for sublobar
resection [8]. Ensuring an adequate resection margin distance may significantly reduce local
recurrence rates [5–7]. However, conflicting opinions exist regarding the impact of resection
margin distance on local recurrence rates [9–11]. The lack of consensus may be attributed
to the reliance on subjective measurements by surgeons or pathologists, using direct visual
observation of surgical specimens. Such measurement methods may be unreliable and
prone to errors, including inconsistent lung collapse, unclear tumor margins, variations in
the angle of incision, and measurement of distances that are not the closest from the tumor
margin to the resection margin.

Therefore, this study aims to revisit this issue using medical imaging analysis methods
and to develop relevant processes and techniques to provide a new measurement approach
for greater accuracy and stability. The object of this study is to develop an objective
measurement method, the CT-based 3D reconstruction algorithm, to quantify the resection
margin following sublobar resection in lung cancer patients through pre- and post-operative
CT image comparison.

2. Materials and Methods
2.1. Data Information

The data utilized in this study were collected from National Taiwan University Hospi-
tal between January 2017 and December 2019. The dataset consisted of 12 cases involving
patients clinically diagnosed with lung cancer who underwent either lobectomy or sublo-
bar resection, encompassing 4 right middle lobectomies, 6 segmentectomies, and 2 wedge
resections. Right middle lobectomy was specifically chosen due to its minimal deformation
post-resection, serving as mutual verification between the expected surgical resection range
and algorithm reconstruction results. The imaging modality selected for the study was
thoracic computed tomography (CT) scans. For lung cancer patients, a set of images for
lung cancer screening are taken pre-operatively, and another set of post-operative CT
scans are performed within three to six months after surgery for follow-up. Thus, each
lung cancer patient has two sets of thoracic CT scan images, one pre-operative and one
post-operative. This study aims to reconstruct the surgical resection area, requiring high
image resolution. Therefore, we chose thin-slice images with slice thickness ranging from
0.62 to 1.25 mm. This retrospective study was approved by the research ethics committee
of NTUH (project approval number: 201712087RIND, approval date: 23 January 2018), and
the requirement for informed patient consent was waived. The overall flowchart of this
study is illustrated in Figure 1.
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Figure 1. Framework of this study. CPD, coherent point drift; CT, computed tomography; RML, right
middle lobe.

2.2. Surgical Protocol for Sublobar Resection

At our institute, a lobectomy was considered if the tumor diameter was more than
2 cm or if the tumor was centrally located. Sublobar resection was considered for patients
who were older, had compromised lung function, or were at high surgical risk. We measure
the resection margin based on gross measurement during the surgery.

Before segmentectomies, surgical planning with pre-operative three-dimensional
reconstruction using Synapse 3D (Fujifilm Techno Products Co., Ltd., Tohoku Factory
Hanamaki Site, Tokyo, Japan) was carried out to guide the division of the bronchus and
vessel to ensure complete tumor resection with adequate margins. For intersegmental plane
definition, we use the inflation–deflation method or near-infrared fluorescence imaging
with intravenous indocyanine green after division of the target bronchus or pulmonary
artery. Lymph node dissection, including N1 and N2 nodes, was performed during and
after the anatomical resection.

2.3. CT Image Acquisition and Pre-Processing

In this study, chest CT scans were obtained using multi-detector CT scanners (16-, 32-,
or 64-detector row) from various manufacturers including Philips (iCT 256 and Ingenuity
CT, Amsterdam, The Netherlands), Canon Medical Systems (Aquilion ONE, Otawara,
Tochigi, Japan), GE Medical Systems (Revolution CT, Waukesha, Wisconsin, USA), and
SIEMENS (Sensation 64 and SOMATOM Definition AS+, Erlangen, Germany). The imag-
ing parameters included a range of detector collimations (0.62–1.25 mm), fields of view
(30.4–40.9 cm), beam pitches (0.813–1.200), and beam widths (10–40 mm), with gantry
speeds of 0.5 or 0.8 s per rotation. The scans were performed at 120 kVp and 60–649 mA,
with reconstruction intervals of 0.39–6 mm and a matrix size of 512 × 512 m.

Both pre- and post-operative thoracic CT scans were included for each case in this
research. Given the variation in scan parameters, a resampling method using linear inter-
polation was implemented. This was crucial to standardize the image sizes to a consistent
spatial resolution of 1:1:1 mm, ensuring uniform voxel-to-tissue volume mapping.

2.4. Image Segmentation and Localization

Following the pre-processing of pre-operative and post-operative images, segmen-
tation of lungs and tumors was conducted on both pre- and post-operative CT images.
Subsequently, the segmented lungs were utilized for initial image registration, aimed at
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achieving image localization. This part of the workflow is depicted in the left half of
Figure 1. Upon obtaining the post-operative images localized based on the pre-operative
images, segmentation of the pulmonary vascular and subvascular trees was then performed
individually on both pre-operative and localized post-operative images. This part of the
process is illustrated in the middle section of Figure 1.

2.4.1. Lung and Lung Tumor Segmentation

To focus on the anatomical structures within the lung regions and assist in preliminary
localization, lung masks were initially extracted. This extraction process [12] utilized a 3D
Gaussian filter to reduce noise, followed by thresholding at −775 Hounsfield Units and the
identification of 3D connected components to delineate the lung tissue.

Delineation of tumor margins was crucial for measuring the resection margin distance.
A semi-automatic method [13] was employed. This approach, integrating threshold-based
lung wall segmentation [14] with a hybrid level-set method [15], initiated the process. The
segmentation was further refined using morphological operations [16] and a Frangi-based
approach [17], which were instrumental in removing both small and large vessels, thereby
enhancing segmentation accuracy.

2.4.2. Image Localization

During thoracic CT scanning, variations in pre- and post-operative lung image po-
sitioning can occur due to differences in scanning equipment and settings. To aid sub-
vascular tree segmentation and matching while standardizing procedures, initial lung
mask registration was conducted for localization of lung regions before and after surgery.
The ‘imregister’ function in the Image Processing Toolbox of MATLAB version 2020a
(MathWorks, Natick, MA, USA) was utilized. Pre-operative lung masks served as fixed
images, while post-operative scans were set as moving targets, with affine transformations
applied for registration. This method, adhering to default monomodal parameters, cor-
rected scan positioning and respiratory phase discrepancies, ensuring accurate and stable
subsequent analysis.

2.4.3. Pulmonary Vascular Tree and Subvascular Tree Segmentation

The proposed method leverages pulmonary vascular tree information as key fea-
tures for image registration, introducing and defining subvascular trees as sub-units of
the vascular tree for matching purposes to obtain distinctive registration features. This
approach begins with the segmentation of the vascular tree. The algorithm for pulmonary
vessel segmentation in this study utilizes a vessel-enhancing filter based on the Hessian
matrix [17] specifically to enhance lung tubular structures. Segmentation is achieved using
a threshold at the 95th percentile. To control vessel caliber, images are preprocessed with a
Gaussian kernel (σ). Typically, σ is set to 1, 2, 3 mm for detailed vasculature, but inspired by
Cazoulat et al. [18], σ was set to 3 mm to capture more representative vascular structures,
thus aiding in matching stability.

Pulmonary vascular trees were extracted from pre- and post-operative images and
masked using the lung regions eroded by 4 mm, excluding main pulmonary arteries and
veins. Subvascular trees were then identified using the 26 connected-component technique,
with targets over 250 voxels considered individual subvascular trees. The segmentation
and definition of these subvascular trees aim to ensure the stability of subsequent matching
by utilizing sub-units and regional concepts. The process of subvascular tree segmentation
is shown in Figure 2.
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Figure 2. Process of subvascular tree segmentation: The (left) image displays the segmented pul-
monary vascular tree; the (right) image shows the further segmented subvascular tree, with each
subvascular tree represented by different colors.

2.5. Matched Feature Point Extraction

Upon obtaining the segmentation results of subvascular trees before and after surgery,
the goal is to match identical subvascular trees and consider points on their centerlines as
feature points. Consequently, pairs of corresponding feature points are identified within
pre-operative and post-operative images for facilitation in image registration interpolation.
This part of the process is illustrated in the middle section of Figure 1.

2.5.1. Subvascular Tree Matching

Subvascular tree matching, a fully automated method in this study, is designed for
the matching of subvascular tree structures in post-operative lung imaging. The technique
involves adjusting to the changes in the number of subvascular trees due to surgery. Fur-
thermore, the concept of subvascular trees is crucial in addressing the matching challenges
posed by complex deformations, making them more manageable.

The matching process is strategically organized into two consecutive phases, with
Phase I dedicated to establishing high-similarity matches first. This structured approach
leverages the information gathered from Phase I to address the remaining matches in Phase
II, ensuring an accurate, automated, and replicable subvascular tree matching process. The
detailed steps of Phase I and II are as follows:

• Phase I: Establishing high-similarity matches

1. This phase begins with the input of two sets of subvascular trees, categorized as
pre-operative and post-operative, along with their respective overall
vascular trees.

2. The process involves skeletonizing these trees to define their structures for
precise localization.

3. Using rigid coherent point drift (CPD) [19], the structures (centerline points) are
aligned, resulting in a transformation matrix. The primary goal here is to position
the pair of subvascular trees. This matrix is then applied to the post-operative
trees for alignment with the pre-operative ones.

4. Surrounding areas (60 × 60 × 60) from both pre- and post-operative trees are
cropped to create volumes of interest, which are crucial for the subsequent analysis.

5. The similarity between the transformed post-operative subvascular trees and
their pre-operative counterparts, as well as between the respective surrounding
areas, is calculated using the Dice similarity coefficient (Formula (1)). Decision
making is based on set threshold values for these similarity coefficients, typically
‘≥0.5’ for target similarity and ‘≥0.2’ for surrounding area similarity.
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6. Based on these thresholds, a decision is made to either confirm the matching of
the pre-operative trees or to output a null result in cases of mismatch.

• Phase II: Appending relative positioning for remaining matches

1. The input for this phase includes an unmatched post-operative subvascular tree,
a pre-operative vascular tree, and several matched subvascular tree pairs.

2. The centroids of these matched pairs are determined to provide reference points
for locating potential matches.

3. The searching center is established by selecting three points closest to the un-
matched post-operative tree from the matched post-operative centroids and
identifying their corresponding points in the pre-operative set.

4. A 3 mm morphological dilation is performed on the unmatched post-operative
subvascular tree to create a mask for searching potential matches in the pre-
operative tree.

5. The mask is used for image localization around the searching center to identify
potential targets in the pre-operative tree.

6. The similarity between the post-operative tree and these potential pre-operative
targets is calculated, incorporating a penalty term (Formula (2)) to avoid incorrect
matching, particularly in smaller trees. The target with the highest similarity is
selected for matching.

7. A decision is made based on the similarity measure; if the similarity exceeds a
threshold (≥0.3), the corresponding pre-operative target is confirmed as a match.
Otherwise, a null result is produced.

The Dice similarity coefficient (DSC) is given by the formula:

DSC =

∣∣Vpre ∩ Vpost
∣∣∣∣Vpre

∣∣+ ∣∣Vpost
∣∣ (1)

The penalization term r2 is incorporated into the basic Dice coefficient to design the
following similarity coefficient:

DSCP =
DSC

r2 , r =
V1

V2
(V1 ≥ V2) (2)

Here, the matching objects are labeled V1 and V2 based on their volumes, ensuring
r2 ≥ 1. This approach allows for the adjustment of the Dice coefficient to impose a penalty.

2.5.2. Feature Point Matching

Following the subvascular tree matching, skeletonization is performed to extract cen-
terlines as feature points, employing boundary expansion and iterative voxel examination
to preserve topological integrity [20]. The process ends when no boundary changes occur,
concluding with the removal of padding zeros for the skeletonized output.

For aligning feature points of subvascular trees before and after surgery, the non-rigid
coherent point drift (CPD) [19] algorithm is employed, chosen for its robustness and its
specific ability to handle the anatomical changes and respiratory phase differences that
affect vascular structures. Given that subvascular trees can vary considerably, leading
to point cloud outliers, CPD proves effective in managing these outliers, ensuring that
the alignment results remain consistent and less affected by variations. This method is
particularly effective in achieving a set-to-set point correspondence between each paired
subvascular trees, mapping each post-operative point back to its pre-operative counterpart.
As such, the post-operative feature points and their mapped counterparts can serve as
reference point pairs for subsequent image registration. The process of feature point
matching is shown in Figure 3.



Cancers 2024, 16, 2181 7 of 19
Cancers 2024, 16, x FOR PEER REVIEW 7 of 20 
 

 

 
Figure 3. Process of feature point matching: Pre-operative feature points are represented in green, 
while post-operative feature points are shown in blue. The middle illustration displays the state of 
feature points before matching, and the right-side image demonstrates the situation after feature 
point matching has been completed. 

2.6. Image Registration 
After the extraction of the matched feature points, the focus shifts to calculating the 

displacement field within the image via thin-plate spline transformation [21]. Traditional 
methods use all available control points to ensure a continuous deformation field, but this 
can be limiting near surgical sites due to discontinuities from suturing or lung collapse. 
Inspired by the inverse distance weighting (IDW) interpolation method [22] used in geo-
spatial analysis, our innovative approach selectively uses only a subset of control points. 
This allows us to intentionally introduce discontinuities around areas such as surgical ex-
cisions, mimicking natural irregularities that occur post-operatively. 

Control point selection is tailored to address voxels near tumors, anticipating discon-
tinuous deformation. A calculated candidate radius (Formula (3)) identifies potential con-
trol points, which are then refined through clustering using the DBSCAN algorithm [23]. 
This method enables automatic grouping based on displacement trends without pre-set-
ting cluster numbers, focusing on local versus global deformation traits by selecting the 
most relevant control points. The process incorporates a specific algorithm for control 
point selection, detailed as follows: 
1. The process begins by inputting a voxel point, the tumor’s location, a predefined 

maximum distance, and a pair of matched feature points. 
2. The displacement between each pair of post-operative feature points is determined. 
3. A radius for the sphere of interest is calculated, and control points within this radius 

are selected. 
4. The DBSCAN algorithm is applied to these selected control points based on their 

displacement, resulting in several clusters. 
5. The cluster closest to the original voxel point is chosen, effectively balancing local 

and global deformation characteristics. 
6. This selection outputs a pair of control points, marking the end of the control point 

selection process. 

Figure 3. Process of feature point matching: Pre-operative feature points are represented in green,
while post-operative feature points are shown in blue. The middle illustration displays the state of
feature points before matching, and the right-side image demonstrates the situation after feature
point matching has been completed.

2.6. Image Registration

After the extraction of the matched feature points, the focus shifts to calculating the
displacement field within the image via thin-plate spline transformation [21]. Traditional
methods use all available control points to ensure a continuous deformation field, but this
can be limiting near surgical sites due to discontinuities from suturing or lung collapse.
Inspired by the inverse distance weighting (IDW) interpolation method [22] used in geospa-
tial analysis, our innovative approach selectively uses only a subset of control points. This
allows us to intentionally introduce discontinuities around areas such as surgical excisions,
mimicking natural irregularities that occur post-operatively.

Control point selection is tailored to address voxels near tumors, anticipating dis-
continuous deformation. A calculated candidate radius (Formula (3)) identifies potential
control points, which are then refined through clustering using the DBSCAN algorithm [23].
This method enables automatic grouping based on displacement trends without pre-setting
cluster numbers, focusing on local versus global deformation traits by selecting the most
relevant control points. The process incorporates a specific algorithm for control point
selection, detailed as follows:

1. The process begins by inputting a voxel point, the tumor’s location, a predefined
maximum distance, and a pair of matched feature points.

2. The displacement between each pair of post-operative feature points is determined.
3. A radius for the sphere of interest is calculated, and control points within this radius

are selected.
4. The DBSCAN algorithm is applied to these selected control points based on their

displacement, resulting in several clusters.
5. The cluster closest to the original voxel point is chosen, effectively balancing local and

global deformation characteristics.
6. This selection outputs a pair of control points, marking the end of the control point

selection process.
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R = 2 × dmax × exp
(

a ×
(

d
dmax

− 1
))

(3)

In the formula, R denotes the candidate radius, d is the distance between a voxel point
and the tumor (centroid representative), and dmax is the furthest distance from the tumor to
the lung’s edge. The adjustable parameter a is set to 3, leading to an exponential growth
pattern in the formula y = exp(a(x − 1)), keeping y within [0, 1]. This setup aims to reflect
that voxel points closer to the tumor will show more localized deformation characteristics,
whereas points further away will exhibit global deformation traits.

2.7. Resection Margin Distance Measurement

Upon completing the final step of image registration, the core objective of the study
is addressed: measuring the distance at the resection margin. This involves overlapping
the deformed post-operative lung mask, which represents the state potentially resected
during surgery, with the pre-operative tumor mask within the same coordinate system.
The aim is to reconstruct and predict the surgical resection boundaries. The Euclidean
distance between the closest points on the resection and tumor edges is then measured,
providing a quantified result for the resection margin distance. This distance is determined
by identifying the two closest points between the deformed post-operative lung mask and
the pre-operative tumor mask.

2.8. Error Assessment and Statistical Analysis

To ensure the accuracy of image registration outcomes, this study employs target
registration error (TRE) as the primary evaluation tool. TRE is used to assess the devia-
tion between specific target points’ actual anatomical locations and their corresponding
positions on the registered images, typically measured through Euclidean distance. This
involves comparing the spatial distance difference between an anatomical point marked on
pre-operative images and its deformed position on post-operative images.

For selecting target point pairs, manual marking on pre- and post-operative original
images was performed by experienced physicians, focusing particularly on easily identifi-
able pulmonary vessels or bronchial branch points. This approach ensures that the marked
points are clinically relevant and accurately represent the anatomical regions of interest.
Considering the potential significant changes in lung structure before and after surgery, the
original images were processed with maximum intensity projection (MIP) across five slice
levels to more accurately locate and match corresponding target points before and after
surgery. Additionally, in selecting target point pairs for TRE, points were chosen distributed
throughout the entire lung area, which more comprehensively reflects the accuracy of the
image registration across the entire range of the lung regions.

Moreover, the study plans to compare this method with the multi-channel lung reg-
istration method based on image features recently proposed by Stavropoulou et al. [24],
analyzing both methods through a paired sample t-test. Twenty sets of target points were
selected for analysis in both the left and right lungs, including twenty pairs each from
non-lesioned lung areas and surgical lung areas.

3. Results
3.1. Subvascular Tree Matching
3.1.1. Experiment on Lung Regions without Lesions

The study involves utilizing CT images of lung regions without lesions to test the
subvascular tree matching algorithm. To mitigate variations in image quality caused by
different imaging equipment or scanning parameters, a set of 12 images from the same
surgical cases is chosen, focusing specifically on the lung side not affected by surgery
(for example, experiments will be conducted on the unaffected left lung when surgery is
performed on the right lung).
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As shown in Table 1, the average matching completion rate for all 12 cases in the first
phase was 67%. Typically, the vascular tree structures of lungs without lesions at two differ-
ent time points should not vary significantly. However, differences in the respiratory phase
of patients during CT scans at different times, the use of different scanners, or variations
in scanning parameters must be considered. Even when lung vascular segmentation is
performed with the same parameters, the segmentation results can differ, explaining the
variance in matching rates between cases. For the first phase, as long as a certain number
of matches are achieved, it will not affect the progression of the second phase. The aim of
the first phase is to match subvascular tree pairs with higher similarity, providing more
information for the second phase to complete the matching of the remaining unmatched
subvascular trees.

Table 1. Subvascular tree matching results in lung regions without lesions.

Case No. Experiment Side Total No. Matched Unmatched

#1 Left lung I 25 21 4
II 25 25 0

#2 Left lung I 16 10 6
II 16 16 0

#3 Left lung I 13 10 3
II 13 13 0

#4 Left lung I 17 6 11
II 17 15 2

#5 Left lung I 21 16 5
II 21 21 0

#6 Left lung I 21 12 9
II 21 19 2

#7 Left lung I 23 17 6
II 23 23 0

#8 Left lung I 21 12 9
II 21 20 1

#9 Right lung I 27 20 7
II 27 27 0

#10 Left lung I 17 9 8
II 17 16 1

#11 Right lung I 20 17 3
II 20 20 0

#12 Left lung I 19 14 5
II 19 18 1

After completing the first phase, the study moves into the second phase, focusing on
matching the remaining subvascular trees. In these 12 cases, except for cases 4, 6, 8, 10, and
12, the rest successfully matched all subvascular trees. However, in cases 4, 6, 8, 10, and 12,
one to two sets of subvascular trees remained unmatched. Taking case 4 as an example, as
shown in Figure 4, the two unmatched subvascular tree structures were relatively simple.
Upon comparing the vascular tree structures before and after surgery, it was noted that
similar structures were not present in the pre-operative images, possibly due to differences
in image quality affecting the vascular tree structure during segmentation, meaning it
did not appear in the pre-operative vascular segmentation and could not be matched.
Even though these subvascular trees could not be matched, other successfully matched
subvascular trees in the vicinity, with at least 1000 pairs of feature points evenly distributed
throughout lesion-free lung regions, provided sufficient corresponding information to
complete the final image registration.
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Figure 4. Display of unmatched subvascular trees in case 4: In the image on the (left), the pre-
operative vascular tree structure is represented in green, while the image on the (right) shows the
post-operative vascular tree structure in blue. The unmatched subvascular trees are marked in red in
the right-hand image.

3.1.2. Experiment on Surgical Lung Regions

Following the successful experiments in lung regions without lesions, the focus shifts
to the core part of our study: the matching experiments of pre- and post-operative sub-
vascular trees in the lungs. Subsequently, subvascular tree matching is conducted on all
12 cases, which include patients who have undergone lobectomy, segmentectomy, and
wedge resection, involving various resected lung regions.

As shown in Table 2, the average success rate of subvascular tree matching in the
first phase of the 12 cases was 48%, showing a significant gap compared to the 67% in
experiments with lung regions without lesions. This result is within expectations, as surgery
involves the resection of parts of the lung, leading to greater differences between pre- and
post-operative images. Specifically, some vascular tree structures present before surgery
were removed and thus not present in post-operative images. This led to the exclusion of
subvascular tree pairs that could not be confidently matched in the first phase.

Table 2. Subvascular tree matching results in surgical lung regions.

Case No. Operative Location Total No. Matched Unmatched

#1 RML 1 I 18 13 5
II 18 18 0

#2 RML 1 I 17 12 5
II 17 15 2

#3 RML 1 I 17 10 7
II 17 16 1

#4 RML 1 I 15 10 5
II 15 15 0

#5 R (S6) 2 I 16 7 9
II 16 14 2

#6 R (S6) 2 I 19 7 12
II 19 16 3

#7 R (S7, 8, 9, 10) 2 I 13 5 8
II 13 11 2
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Table 2. Cont.

Case No. Operative Location Total No. Matched Unmatched

#8 L (S6) 2 I 17 6 11
II 17 15 2

#9 L (S9, 10) 2 I 20 8 12
II 20 20 0

#10 R (S8) 2 I 15 5 10
II 15 13 2

#11 LUL 3 I 26 13 13
II 26 24 2

#12 RUL 3 I 24 8 16
II 24 23 1

1 Cases undergoing lobectomy. 2 Cases undergoing segmentectomy. 3 Cases undergoing wedge resection.

In the subsequent content, focus will be on the matching results of the second phase.
Compared to experiments with lung regions without lesions, it was observed that in
12 cases, 9 exhibited incomplete matching. Notably, in case 6, the most unmatched sets
of subvascular trees, totaling three, were identified. Through this case, reasons for unsuc-
cessful matching are explored. As shown in two unmatched subvascular trees in Figure 5,
significant bending can be seen, possibly due to surgical suturing or lung collapse. Our
matching algorithm, based on similarity, uses morphological dilation to overcome slight
bending. However, severe bending still poses challenges in determining their correspon-
dence. The other set of unmatched subvascular trees represents a shorter segment. The
reason for not matching, similar to the discussion in Section 3.1.1. about the second phase
of experiments in lung regions without lesions, is that this structure did not appear in
the pre-operative vascular segmentation and thus could not be matched. Although these
three sets of subvascular trees were not successfully matched, potentially affecting the
image registration results, other successfully matched subvascular trees, generating at least
1000 pairs of control points evenly distributed throughout the surgical lung region and
covering the areas near the surgical site, provide sufficient control points for the final image
registration to still be achievable for this set of images.

Cancers 2024, 16, x FOR PEER REVIEW 11 of 20 
 

 

#7 R (S7, 8, 9, 10) 2 
I 13 5 8 
II 13 11 2 

#8 L (S6) 2 
I 17 6 11 
II 17 15 2 

#9 L (S9, 10) 2 
I 20 8 12 
II 20 20 0 

#10 R (S8) 2 I 15 5 10 
II 15 13 2 

#11 LUL 3 I 26 13 13 
II 26 24 2 

#12 RUL 3 I 24 8 16 
II 24 23 1 

1 Cases undergoing lobectomy. 2 Cases undergoing segmentectomy. 3 Cases undergoing wedge re-
section. 

In the subsequent content, focus will be on the matching results of the second phase. 
Compared to experiments with lung regions without lesions, it was observed that in 12 
cases, 9 exhibited incomplete matching. Notably, in case 6, the most unmatched sets of 
subvascular trees, totaling three, were identified. Through this case, reasons for unsuc-
cessful matching are explored. As shown in two unmatched subvascular trees in Figure 5, 
significant bending can be seen, possibly due to surgical suturing or lung collapse. Our 
matching algorithm, based on similarity, uses morphological dilation to overcome slight 
bending. However, severe bending still poses challenges in determining their correspond-
ence. The other set of unmatched subvascular trees represents a shorter segment. The rea-
son for not matching, similar to the discussion in Section 3.1.1. about the second phase of 
experiments in lung regions without lesions, is that this structure did not appear in the 
pre-operative vascular segmentation and thus could not be matched. Although these three 
sets of subvascular trees were not successfully matched, potentially affecting the image 
registration results, other successfully matched subvascular trees, generating at least 1000 
pairs of control points evenly distributed throughout the surgical lung region and cover-
ing the areas near the surgical site, provide sufficient control points for the final image 
registration to still be achievable for this set of images. 

 
Figure 5. Display of two unmatched subvascular trees in case 6. 

3.2. Target Registration Errors 
Target registration error is employed as an evaluation metric to compare the out-

comes of completed localization, the method proposed by Stavropoulou et al. [24] (re-
ferred to hereafter as the comparative continuous method), and our proposed approach. 
To further compare these methods, a paired sample t-test was conducted on the latter two 
approaches. Additionally, 20 sets of target points were selected for analysis in both the left 
and right lungs, including 20 pairs of points each from lung regions without lesions and 
surgical lung regions. 

Figure 5. Display of two unmatched subvascular trees in case 6.

3.2. Target Registration Errors

Target registration error is employed as an evaluation metric to compare the outcomes
of completed localization, the method proposed by Stavropoulou et al. [24] (referred to
hereafter as the comparative continuous method), and our proposed approach. To further
compare these methods, a paired sample t-test was conducted on the latter two approaches.
Additionally, 20 sets of target points were selected for analysis in both the left and right
lungs, including 20 pairs of points each from lung regions without lesions and surgical
lung regions.
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3.2.1. Experiment on Lung Regions without Lesions

Table 3 displays the experimental results for lung regions without lesions. It was
found that after localization, about half of the cases achieved better alignment results
(TRE ≤ 2.50). This suggests that the main image differences in lung regions without lesions
before and after surgery may stem from variations in patient positioning and respiratory
phases in the images. Therefore, preliminary localization had already achieved better image
registration results for some cases.

Table 3. Target registration error results in lung regions without lesions.

Target Registration Error (mm)

Case No. Method M ± SD (S) Max Min

#1
After localization 1.54 ± 0.73 3.33 0.38
Comparative continuous method 1.06 ± 0.50 2.02 0.13
Proposed method 1.09 ± 0.43 (ns) 2.16 0.13

#2
After localization 2.09 ± 1.01 4.53 0.57
Comparative continuous method 1.05 ± 0.43 2.18 0.33
Proposed method 0.99 ± 0.46 (ns) 2.14 0.21

#3
After localization 2.05 ± 1.30 4.66 0.27
Comparative continuous method 1.08 ± 0.51 2.44 0.25
Proposed method 1.08 ± 0.44 (ns) 2.01 0.44

#4
After localization 1.94 ± 0.77 3.31 0.36
Comparative continuous method 1.43 ± 0.72 3.05 0.41
Proposed method 1.11 ± 0.61 * 2.66 0.38

#5
After localization 22.99 ± 3.17 36.96 24.53
Comparative continuous method 1.31 ± 0.58 2.92 0.36
Proposed Method 1.19 ± 0.42 (ns) 2.07 0.50

#6
After localization 6.62 ± 2.69 10.28 1.60
Comparative continuous method 10.78 ± 11.10 28.42 0.67
Proposed method 1.48 ± 0.61 *** 2.82 0.67

#7
After localization 4.95 ± 2.21 10.10 1.52
Comparative continuous method 2.80 ± 4.60 16.66 0.41
Proposed method 1.34 ± 0.61 (ns) 2.33 0.17

#8
After localization 6.91 ± 1.66 9.58 3.36
Comparative continuous method 1.14 ± 0.53 2.60 0.35
Proposed method 0.90 ± 0.47 ** 2.89 0.39

#9
After localization 2.33 ± 1.67 7.84 0.55
Comparative continuous method 1.30 ± 0.58 2.36 0.22
Proposed method 0.96 ± 0.61 ** 2.90 0.15

#10
After localization 5.76 ± 1.31 8.67 4.22
Comparative continuous method 1.33 ± 0.47 2.05 0.30
Proposed method 1.50 ± 0.76 (ns) 3.03 0.60

#11
After localization 17.42 ± 2.71 21.69 10.81
Comparative continuous method 2.19 ± 1.11 5.59 0.75
Proposed method 1.62 ± 0.82 *** 3.22 0.33

#12
After localization 4.86 ± 2.18 9.09 1.60
Comparative continuous method 2.21 ± 0.98 5.46 0.79
Proposed method 1.53 ± 0.56 *** 2.77 0.35

* p < 0.05. ** p < 0.01. *** p < 0.001. ns: not significant (p > 0.05).

Further analysis compared the continuous method with our method regarding their
effectiveness. Except for cases 4, 6, 8, and 9, there were no significant differences in the
results of the two methods (p ≥ 0.05). Particularly, case 6 was focused on because, in
this instance, the comparison method (TRE = 10.78 ± 11.10) showed a relatively larger
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difference compared to the proposed method (TRE = 1.48 ± 0.61). It was observed that
there were significant differences in the respiratory phase of this image pair, leading to
poorer registration results in the lower lung region with the comparison method. After
eliminating the impact of differences in the respiratory phase, both the comparison method
and the proposed method achieved ideal registration results (TRE ≤ 1.50) for most cases.
This indicates that our proposed method also performs well in lung regions without lesions
and can effectively overcome differences in respiratory phases.

3.2.2. Experiment on Surgical Lung Regions

Table 4 presents the comparison results of the proposed method with the comparative
continuous method in the surgical lung regions. Upon analyzing the outcomes of the two
approaches, it was found that significant differences exist between them in all 12 cases
(p < 0.05), with some cases showing highly significant differences (p < 0.01 or p < 0.001).
The comparative method generally underperformed in most cases, with some results being
inferior even to completed localization alone. This suggests that the method may not be
suitable for post-operative lung image registration and could sometimes cause unnatural
expansion in certain image regions, leading to worse registration outcomes.

Table 4. Target registration error results in surgical lung regions.

Target Registration Error (mm)

Case No. Method M ± SD (S) Max Min

#1
After localization 7.54 ± 6.29 28.39 0.67
Comparative continuous method 6.11 ± 10.87 41.21 0.36
Proposed method 1.68 ± 1.36 * 5.85 0.20

#2
After localization 8.04 ± 5.81 23.20 1.31
Comparative continuous method 7.35 ± 13.57 52.28 0.19
Proposed method 1.51 ± 0.83 * 3.18 0.42

#3
After localization 6.82 ± 5.39 16.38 0.78
Comparative continuous method 5.23 ± 7.61 22.47 0.42
Proposed method 1.11 ± 0.42 * 2.29 0.48

#4
After localization 10.20 ± 3.92 19.12 3.60
Comparative continuous method 5.04 ± 6.72 19.54 0.43
Proposed method 1.44 ± 1.09 ** 4.40 0.29

#5
After localization 23.26 ± 8.02 36.28 7.23
Comparative continuous method 16.25 ± 11.40 37.38 0.39
Proposed Method 2.16 ± 1.48 *** 5.83 0.24

#6
After localization 15.80 ± 5.00 28.34 4.07
Comparative continuous method 33.19 ± 14.09 66.69 3.56
Proposed method 1.72 ± 1.05 *** 4.25 0.24

#7
After localization 12.73 ± 2.92 17.95 8.10
Comparative continuous method 8.65 ± 11.47 39.42 0.44
Proposed method 2.35 ± 1.65 * 6.20 0.22

#8
After localization 11.62 ± 03.41 17.52 5.60
Comparative continuous method 16.72 ± 8.61 26.69 0.51
Proposed method 1.53 ± 1.35 ** 6.45 0.25

#9
After localization 11.40 ± 5.05 26.31 6.10
Comparative continuous method 2.34 ± 3.15 11.83 0.30
Proposed method 1.05 ± 0.90 * 3.15 0.31

#10
After localization 12.17 ± 3.68 18.80 5.89
Comparative continuous method 4.73 ± 5.46 14.99 0.72
Proposed method 1.40 ± 0.90 * 3.35 0.20

#11
After localization 18.18 ± 4.18 28.98 8.62
Comparative continuous method 3.13 ± 4.67 22.80 0.75
Proposed method 1.27 ± 0.52 *** 2.92 0.63

#12
After localization 22.94 ± 7.71 40.33 11.98
Comparative continuous method 33.98 ± 15.22 66.25 2.15
Proposed method 1.98 ± 1.32 *** 4.84 0.37

* p < 0.05. **: p < 0.01. *** p < 0.001.
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Turning to the outcomes obtained with our method, the target registration error
for all cases was less than 2.50 mm. Although there is a slight difference compared to
the results in lung regions without lesions, this still demonstrates that our method can
effectively complete image registration before and after lung resection surgery, also showing
good alignment performance. However, the consequences of variations in TRE between
surgical and lesion-free lung regions reveal that, while registration performance is generally
consistent, complex surgical deformations cause significant variations, increasing TRE in
specific regions. This indicates that surgical deformations create localized discrepancies,
affecting registration precision.

3.3. Comparison of Image Registration Methods

A method was developed using thin-plate spline functions, allowing for continuous
deformation across most image areas while enabling discontinuous deformation in specific
regions, such as near surgical resection areas. The key lies in the flexible selection of control
points, rather than rigidly using all control points, thus breaking the continuity assumption
where necessary.

In the following Figure 6, pre-operative images will be shown and analyzed against
both the proposed method and the approach proposed by the aforementioned researchers.
For ease of observation, five image layers were superimposed and subjected to maximum
intensity projection. Initially, from the results in the top first row, it is observed that the
comparative method, based on the continuity assumption, failed to effectively reconstruct
the surgically resected area, unnaturally enlarging surrounding areas to fill gaps. This
led to image distortion and deformation, causing the vascular tree structure to not align
with the pre-operative original image. In contrast, the method allowing for a degree of
discontinuous deformation could more accurately reconstruct the surgically resected part,
closely resembling the original image in vascular tree structure. Observing the results in the
middle second row, similarities are found in the upper half of the image between the two
methods, with primary differences in the lower half, especially in the lung lobe affected
by surgery. Here, the comparative method showed some distortion and deformation,
leading to incomplete correspondence in vascular tree structure. Lastly, in the bottom
third row comparison, the overall results of the two methods do not significantly differ,
but the proposed method is closer to the original image in terms of vascular tree details.
However, some limitations exist, particularly in presenting lung contours, where slight
discontinuities may occur. This is mainly due to the algorithm’s design allowing for
the handling of discontinuous deformation, potentially leading to discontinuities at lung
fissures. Nonetheless, as lung contours are not the primary observation area of the study,
this issue has a relatively minor impact on the overall research.

3.4. Resection Margin Distance Measurement

Table 5 demonstrates the measurement results for the resection margin distance,
specifically the Euclidean distance between the closest points of the resection edge and the
tumor edge, as shown in Figure 7. Notably, the measured distances for cases 1 and 3 are
less than the resolution of a single voxel (1 × 1 × 1 mm), hence these distances are marked
as <1.00 mm.

Table 5. Resection margin distance measurement results.

Case No. Surgical Procedure/Location Margin Distance (mm)

#1 Lobectomy/RML <1.00
#2 Lobectomy/RML 4.69
#3 Lobectomy/RML <1.00
#4 Lobectomy/RML 11.87
#5 Segmentectomy/R (S6) 4.12
#6 Segmentectomy/R (S6) 6.16
#7 Segmentectomy/R (S7, 8, 9, 10) 5.39
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Table 5. Cont.

Case No. Surgical Procedure/Location Margin Distance (mm)

#8 Segmentectomy/L (S6) 5.74
#9 Segmentectomy/L (S9, 10) 16.09

#10 Segmentectomy/R (S8) 1.73
#11 Wedge resection/LUL 6.16
#12 Wedge resection/RUL 13.08
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4. Discussion 

Figure 7. Demonstration of resection margin distance measurement: The yellow part represents the
deformed post-operative lung mask, the blue part depicts the simplified presentation of the deformed
post-operative vascular tree, and the red part shows the pre-operative tumor mask. The light blue
indicates the reconstructed surgical resection. This case demonstrates the reconstruction result of left
S9 and S10 segmentectomy. The arrow in the figure points to the resection margin distance, which is
measured to be 16.09 mm.

4. Discussion

Low-dose CT is currently the only recommended lung cancer screening method
and is commonly used for post-operative follow-up, allowing patients to have pre- and
post-operative imaging for evaluating the extent of resection and reconstructing possible
resection margin distances [25]. This study focuses on lung image registration, particularly
considering the high deformability of lung tissue. While existing lung image registration
algorithms have been applied in radiotherapy and other clinical scenarios [26–32], there
have been no studies or applications specifically for aligning pre- and post-operative
lung images. The challenge of this study lies in the various changes that may occur
in the lung after surgery, such as lung collapse, local deformations caused by surgical
incisions, and changes in overall lung volume. Therefore, this study will develop innovative
methods to reconstruct the surgical resection area, investigate the effects of surgery on lung
morphology, and use these results to accurately measure the resection margin distance. We
first performed image pre-processing to standardize spatial resolution, followed by lung
and tumor segmentation, addressing positional and respiratory differences between pre-
and post-operative images. Our key strategy centered on segmenting lung vessels and
accurately matching subvascular trees, which is essential for addressing post-operative lung
deformation. We then implemented image registration using transformations based on thin-
plate spline. This method is crucial for creating non-continuous deformation fields around
the surgical resection area, allowing for accurate measurement of the resection margin
distance and thorough assessment of the surgical range. This approach underscores the
significance of defining and matching subvascular trees and utilizing TPS-based solutions
to address complex deformation.

The results indicate that experiments were conducted on matching subvascular trees
in lung regions without lesions and in surgical lungs. The first-stage matching experiment
revealed an average completion rate of 65% for lung regions without lesions, while the
rate decreased to 50% for surgical lung regions. This decline reflects the significant impact
of surgical deformations on the matching results. However, the design of the two-stage
subvascular tree matching algorithm still facilitates task completion. Moreover, the in-
terpolation method based on thin-plate spline functions more accurately reconstructs the
surgical resection area, bringing the vascular tree structure closer to its original state before
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surgery. Evaluation of the target registration error showed excellent registration results for
both lesion-free and surgical lung regions, with an average registration error of less than
2.5 mm across all cases. The largest standard deviation was observed in case #7 for the
surgical lung regions, at 1.65 mm, which is acceptable in our application. Particularly in
the surgical lung regions, the technique demonstrated significant improvements compared
to the state-of-the-art continuous method [24], which focuses on issues that are slightly
similar. Compared to current continuous methods, the proposed approach addresses
non-continuous deformation fields near surgical areas by generating uniformly distributed
control point pairs using subvascular tree definition and matching, as well as centerline
point-set registration. A subset of these pairs is strategically selected to overcome the conti-
nuity assumption in deformation fields. Ultimately, the measurement and visualization of
the resection margin distance were successfully achieved.

In the application of registration technology, although our method is effective, there
are some limitations. In particular, we observed possible minor discontinuities in the
lung contours and fissures. For the lung contours, boundary conditions can be applied
to constrain deformation, although the design of these boundary conditions still requires
further discussion. Regarding the fissures, we have found that each lung lobe may have its
own deformation trends and mechanical models, suggesting that the deformations between
lung lobes should be considered separately in the calculations. In addition, we currently
rely mainly on larger diameter lung vascular structures as references for registration. While
this is effective to some extent, it overlooks finer vascular structures and image intensity
information. In future work, integrating these finer vascular structures and image intensity
information could be beneficial. The currently extracted subvascular tree feature points
could serve as preliminary information. Designing convolutional networks to extract more
matching information might help overcome the limitations of traditional algorithms.

A major and critical challenge in this research area is the absence of direct ground
truth to validate surgical reconstruction outcomes and resection margin distances, relying
primarily on indirect evaluation methods. Collaborating with clinical experts to directly
measure resection margin distances on surgical specimens using standardized methods
would provide a stronger reference base for the findings. Additionally, longitudinal studies
examining the correlation between post-operative recurrence rates, survival rates, and
measured resection margin distances would contribute to affirming the clinical relevance
of the methodology. The proposed method only provides an anatomic evaluation by
reconstructing the resected volume and cannot be used to functionally estimate the post-
operative pulmonary function loss directly

5. Conclusions

Our method has demonstrated the capability to assess the resection margin post-
sublobar resection in lung cancer patients through the comparison of 3D pre-operative and
reconstructed post-operative CT images. Future research should incorporate further valida-
tion using a multicenter, large cohort and analyze its correlation with clinical outcomes.
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