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Simple Summary: HER-2-targeting drugs changed the paradigm of HER-2-positive breast cancer,
improving survival rates of an aggressive and lethal disease. Recently, a plethora of new drugs
have been approved in different settings, leading to a continuous change in the treatment algorithm
of HER-2-positive breast cancer. This current review aims to summarize all the new approved
therapeutic options and highlight the new therapeutic options under development.

Abstract: Human epidermal growth factor 2 (HER-2)-positive breast cancer represents 15–20% of
all breast cancer subtypes and has an aggressive biological behavior with worse prognosis. The
development of HER-2-targeted therapies has changed the disease’s course, having a direct impact
on survival rates and quality of life. Drug development of HER-2-targeting therapies is a prolific field,
with numerous new therapeutic strategies showing survival benefits and gaining regulatory approval
in recent years. Furthermore, the acknowledgement of the survival impact of HER-2-directed
therapies on HER-2-low breast cancer has contributed even more to advances in the field. The present
review aims to summarize the newly approved therapeutic strategies for HER-2-positive breast
cancer and review the new and exploratory HER-2-targeted therapies currently under development.

Keywords: breast cancer; HER-2; novel therapies

1. Introduction

Breast cancer is estimated to be the type of cancer with the highest incidence in
both sexes and the second most lethal all over the world in 2023, with an estimated
300,560 new cases and 43,700 deaths in the United States [1]. The human epidermal growth
factor 2 (HER-2) overexpressing subtype accounts for 15–20% of all breast cancer cases [2]
and, along with triple-negative, is historically associated with more aggressive behavior
and a worse overall prognosis [3,4]. This paradigm has been changing ever since HER-2-
targeted therapies were introduced in clinical practice, with excellent clinical responses and
increasing survival rates.

HER-2 is one of the four transmembrane tyrosine kinase receptors in the HER family.
Its activation leads to the activation of intracellular cell growth pathways, which results in
abnormal cell proliferation and apoptosis evasion. Its overexpression in a subset of breast
and ovary cancer patients was discovered in the late 1980s [5]. The search for an effective
targeted therapy was promptly initiated, leading to the development of trastuzumab in the
early 1990s and its later approval to treat HER-2-overexpressing metastatic breast cancer in
1998. Treatment with this targeted monoclonal antibody has been shown to almost double
response rates and time to progression in this subset of patients [6]. Hence, ever since
the approval of trastuzumab, the investigation of alternative HER-2 inhibitory agents has
proliferated, mainly because trastuzumab demonstrated limited efficacy and resistance
mechanisms started to come to light [7–9].

Regarding this, the search for better treatment options for HER-2-overexpressing breast
cancer continues to this day. Current treatment options under investigation include not only

Cancers 2024, 16, 87. https://doi.org/10.3390/cancers16010087 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers16010087
https://doi.org/10.3390/cancers16010087
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://doi.org/10.3390/cancers16010087
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers16010087?type=check_update&version=2


Cancers 2024, 16, 87 2 of 26

HER-2-targeted therapies [monoclonal antibodies, tyrosine kinase inhibitors (TKIs) and
antibody-drug conjugates (ADCs)], but also combination therapies with agents from other
classes, such as cycline-dependent kinase (CDK) inhibitors, immune-checkpoint inhibitors
(ICIs) and cell-therapies, among others. There are currently 662 ongoing interventional
studies registered in clinicaltrials.gov for HER-2-positive breast cancer [10], and the number
keeps growing.

The present review aims to summarize approved and in-development therapies for
HER-2-overexpressing breast cancer and provide a comprehensive perspective on future
directions in the treatment of this subset of patients.

2. HER-2 Biology and Cellular Mechanisms
2.1. HER-2 Receptor and Signaling Pathway

HER-2 belongs to the family of HER tyrosine kinase transmembrane receptors, which
includes HER-1/epidermal growth factor (EGFR), HER-2, HER-3 and HER-4. Whenever
activated by a ligand, these receptors stabilize in the cell membrane through homo- or het-
erodimerization, and hence activate intracellular signaling pathways—mitogen-activated
protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K), AKT and the mammalian
target of rapamycin-dependent [11]. These pathways lead to cell division and growth,
essential to cancer’s proliferation. The HER family of receptors was found to play an
important role in physiological breast tissue growth and differentiation. HER-2 is com-
posed of an extracellular ligand-binding domain (subdivided into four subdomains, I-IV),
a transmembrane domain and an intracellular tyrosine kinase domain. Subdomain IV is
the one closest to the cell membrane, making it essential to the stabilization of the receptor,
while subdomain II is the one structurally more exposed, thus playing an important role in
heterodimerization with other HER receptors [12]. HER-2 is the only HER family receptor
that does not have a physiological ligand, so it relies on heterodimerization with other HER
receptors, particularly HER-3, to activate downstream signaling pathways. The HER-2
receptor is encoded by the HER-2 (also known as neu or c-erbB-2) oncogene and was found
to be overexpressed in a large number of solid tumors, such as breast, lung, colorectal and
gastric cancers [13]. Its overexpression and abnormal ligand-independent activation in
cancer cells leads to uncontrolled cell proliferation, evasion of apoptosis and high metastatic
potential, thus fulfilling four of the fourteen described hallmarks of cancer [14].

2.2. HER-2 Pathological Classification

According to American Society of Clinical Oncology–College of American Pathol-
ogists (ASCO-CAP) guidelines, HER-2 positivity is defined as a 3+ score in immuno-
histochemistry (IHC) staining in ≥10% of tumor cells or a 2+ score with HER-2 gene
amplification through in situ hybridization (ISH) [15].

Recently, the concept of HER-2 low was established, regarding sensitivity to some
anti-HER-2 therapies. It is defined as a 2+ score in IHC staining with absence of HER-2
amplification by ISH or simply a 1+ score in IHC, the latter with no need to search for ISH
amplification [15].

3. Overview of Currently Approved HER-2-Targeted Therapies

Since the initial approval of trastuzumab in 1998, many other HER-2-targeted agents
have been developed and some of them have been incorporated into clinical practice,
integrating into an increasingly complex therapeutical algorithm.

3.1. Monoclonal Antibodies
3.1.1. Trastuzumab

Status: Approved worldwide for use in adjuvant, neoadjuvant and metastatic settings.
Trastuzumab was the first-ever HER-2-targeted monoclonal antibody (mAb) to be

developed. It consists of a humanized immunoglobulin (Ig) G1 mAb that inhibits HER-2
by binding to its extracellular subdomain IV. Besides HER-2 signaling pathway inhibition,
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leading to cell cycle arrest, trastuzumab also induces antibody-dependent cell-mediated
cytotoxicity (ADCC) [16,17] and antibody-dependent cell phagocytosis (ADCP) [18], both
mediated by trastuzumab Fc-portion’s interaction with Fcγ receptors in the membrane of
immune effector cells, such as natural killer (NK) cells and macrophages.

Early studies demonstrated a synergistic effect between trastuzumab and chemother-
apy [19], which led to the first clinical trials testing this combination, eventually resulting
in trastuzumab approval in combination with chemotherapy in HER-2-overexpressing
metastatic breast cancer [6] and later in early breast cancer [20] as well.

Trastuzumab is currently approved (see Table 1):

(a) In the metastatic setting, in the first line in combination with docetaxel for 6 cycles and
then maintenance with pertuzumab until disease progression, regarding its overall
survival benefit when compared with trastuzumab only with docetaxel (56.5 versus
40.8 months, hazard ratio (HR) 0.68) [21], or in monotherapy when the patient has
contraindication to taxanes and/or pertuzumab [16];

(b) In the neoadjuvant setting in combination with pertuzumab and taxane for locally
advanced, inflammatory or early high-risk tumors, regarding its advantage in 5-year
progression-free survival (86% versus 81%, HR 0.69) and in 5-year disease-free survival
(84% versus 81%), when compared with trastuzumab plus chemotherapy [22];

(c) In the adjuvant setting in combination with a taxane for 12 weeks and then as main-
tenance to complete 17 cycles, which demonstrated a 3-year invasive disease-free
survival of 98,7% [23] or in monotherapy for one year after neoadjuvant therapy in
patients achieving pathological complete response (pCR), which showed a 5-year
disease-free survival of 84% and a 5-year overall survival of 92% [20].

3.1.2. Pertuzumab

Status: Approved worldwide for use in neoadjuvant, adjuvant and metastatic settings.
Pertuzumab is also a humanized mAb but, unlike trastuzumab, it binds the HER-2

subdomain II, preventing HER-2 dimerization with other HER family receptors, specially
HER-3 [9]. This precludes HER-2 subsequent mitogenic signaling and thus cell growth and
tumor proliferation. Like trastuzumab, pertuzumab also induces ADCC and ADCP, which
intensifies its antitumoral activity.

Phase 2 studies showed a good safety profile but limited efficacy with pertuzumab in
monotherapy [24]. Pertuzumab and trastuzumab combination therapy was then tested,
revealing a favorable safety profile as well as major survival benefits [21].

Pertuzumab is currently approved (see Table 1):

(a) In the metastatic setting, in first line in combination with docetaxel for 6 cycles and
maintenance with trastuzumab until disease progression [21], as mentioned above;

(b) In the neoadjuvant setting, in combination with trastuzumab and docetaxel to treat
HER-2-positive early breast cancer with ≥2 cm [22];

(c) In the adjuvant setting, in combination with trastuzumab for 1 year after combina-
tion with taxane in node-positive or high-risk node-negative disease, in which it
demonstrated a 3-year invasive disease-free survival of 92% [25].

There is an ongoing phase 2 clinical trial testing the safety of omitting chemotherapy
associated with trastuzumab and pertuzumab in the neoadjuvant setting (NCT01817452).

3.1.3. Margetuximab

Status: Approved in the United States of America (USA) for use in the metastatic
setting.

Margetuximab, previously called MGHA22, is a mAb targeting subdomain IV of the
HER-2 receptor, the same as trastuzumab. It has similar receptor affinity, but it differs
in its engineered Fc-portion, which allows higher affinity to Fcγ receptor CD16A and
lower affinity to inhibitory Fcγ receptor CD32B, leading to increased CD16A-mediated
ADCC [26].
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When compared to trastuzumab, margetuximab revealed a similar toxicity profile and
progression-free survival (PFS) benefit, with no overall survival (OS) benefit in the third
line and beyond in a phase 3 study for HER-2-overexpressing metastatic breast cancer [27].

Margetuximab is currently approved (see Table 1):

(a) In the metastatic setting, in combination with chemotherapy in third line and beyond,
showing a 9-month benefit in progression-free survival, although no benefit in overall
survival when compared with trastuzumab [27].

An ongoing phase 2 study is testing the replacement of trastuzumab with mar-
getuximab in the neoadjuvant setting, in association with pertuzumab and paclitaxel
(NCT04425018).

Table 1. Summary of monoclonal antibodies (mAb) currently in use.

mAb Target Approved Use Reference

Trastuzumab HER-2 subdomain IV
Neoadjuvancy (+pertuzumab +ChT)
Adjuvancy (+ChT or monotherapy)

Palliative (±pertuzumab ±ChT)

[22]
[20,23]

[21]

Pertuzumab HER-2 subdomain II Neoadjuvancy/Adjuvancy (+trastuzumab ± ChT)
Palliative (+trastuzumab ± ChT) in 1L

[22,25]
[21]

Margetuximab HER-2 subdomain IV Palliative (+ChT) in ≥3L [27]

ChT: Chemotherapy; 1L: First line; 3L: Third line.

3.2. Tyrosine Kinase Inhibitors (TKIs)
3.2.1. Lapatinib

Status: Approved worldwide for use in the metastatic setting.
Lapatinib is a potent and reversible tyrosine kinase inhibitor (TKI) of HER-2 and

HER-1/EGFR. It competes with adenosine triphosphate (ATP) in its binding site to the two
kinases, due to their similar structure, thereby inhibiting downstream signaling and cell
proliferation [28]. Lapatinib also showed efficacy against truncated p95HER-2, which is
resistant to trastuzumab extracellular binding and blockade [29].

Lapatinib proved to be effective in the treatment of HER-2-overexpressing metastatic
breast cancer, in combination with capecitabine or trastuzumab, after progression with
first-line trastuzumab [30]. It also showed benefits in association with endocrine therapy
in hormonal receptors (HR)-positive and HER-2-positive breast cancer. Studies in the
adjuvant setting showed no significant benefit and increased toxicity when adding or
replacing trastuzumab with lapatinib [31,32]. In the neoadjuvant setting, lapatinib showed
no benefit in the rate of pathological complete response (pCR) when compared with
trastuzumab [33] but it showed a significant benefit when combined with trastuzumab and
chemotherapy [34,35]. However, it is not yet approved in this setting.

Besides being active against part of trastuzumab-resistant tumor cells, lapatinib crosses
the blood–brain barrier due to its small molecular size and has a significant intracranial
antitumoral effect [36].

Lapatinib is currently approved (see Table 2):

(a) In the metastastic setting, in combination with capecitabine, which proved a 4-month
benefit in time to progression (8.4 versus 4.4 months, HR 0.49) and/or trastuzumab [30].

3.2.2. Neratinib

Status: Approved in the USA and Europe in the adjuvant setting and in the USA in
the metastatic setting.

Neratinib, also called HKI-272, has an irreversible and pan-inhibitor effect on HER ki-
nases, acting by covalently binding to a cysteine residue in the ATP binding site, specifically,
residues Cys-773 in HER-2 and Cys-805 in HER-1 [37,38]. It also leads to the dissociation
and degradation of HSP90.
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Neratinib did not show any benefit in the metastatic setting in HER-2-overexpressing
breast cancer when compared to lapatinib and capecitabine [39,40], but it was revealed to
be effective when in combination with capecitabine [41], warranting its approval in the
metastatic setting beyond third line. In the early-disease setting, neratinib showed a benefit
in recurrence-free survival when used for one year in extended adjuvant therapy after
2-year neoadjuvant/adjuvant trastuzumab therapy, specifically in HR-positive patients [42].
In the neoadjuvant setting, neratinib showed benefits when compared to trastuzumab [43]
and when added to it [44].

Neratinib is currently approved (see Table 2):

(a) In the metastatic setting, in combination with capecitabine, in third line and beyond,
showing a 2.2-month benefit in progression free-survival (8.8 versus 6.6 months,
HR 0.76) [41].

(b) In the adjuvant setting, for 1 year, after completing 1 year of adjuvant trastuzumab,
regarding its 5-year invasive disease-free survival benefit of 2.5% (90.2% versus 87.7%,
HR 0.73) [42].

Three phase 2 trials are currently evaluating neratinib in the neoadjuvant setting
(NCT01042379; NCT04886531; NCT05919108) and one in the adjuvant setting in patients
without pCR after neoadjuvant treatment (NCT05388149).

3.2.3. Tucatinib

Status: Approved worldwide for use in the metastatic setting.
Tucatinib is a reversible HER-2-selective TKI, with very little EGFR inhibition, which

guarantees a more favorable tolerability profile than other TKIs [45]. Its exact mechanism
of action is not yet clarified, but a molecular study points to a strong and stable binding
to the ATP pocket in HER-2 tyrosine kinase [46]. Tucatinib demonstrated greater efficacy,
in combination with capecitabine and trastuzumab, in third-line treatment of HER-2-
overexpressing metastatic breast cancer with or without brain metastases [47].

Tucatinib is currently approved (see Table 2):

(a) In the metastatic setting, beyond third-line treatment, in combination with capecitabine
and trastuzumab. This combination proved to increase progression-free survival by
2.7 months (7.6 versus 4.9 months, HR 0.57) and overall survival by 5.5 months (24.7
versus 19.2 months, HR 0.73) when compared with trastuzumab plus capecitabine [47].

A phase 3 trial, HER2CLIMB-05, is currently evaluating the efficacy of tucatinib
associated with trastuzumab and pertuzumab in patients not previously treated with a TKI
(NCT05132582). There are four other phase 2 studies evaluating combinations of tucatinib,
trastuzumab and different chemotherapy agents in the palliative setting (NCT05748834;
NCT05458674; NCT05583110; NCT05955170). The previously mentioned phase 2 basket
trial in the neoadjuvant setting also has one arm evaluating the efficacy of neoadjuvant
tucatinib combined with trastuzumab and pertuzumab in HER-2-positive breast cancer
patients (NCT01042379).

3.2.4. Pyrotinib

Status: Approved in China for use in the metastatic setting.
Pyrotinib is the most recently developed and approved TKI for HER-2-overexpressing

metastatic breast cancer. It is an irreversible pan-HER TKI that covalently binds to the
catalytic region of the HER-2 kinase [48]. It has proved, so far, to be effective in the
metastatic setting in combination with capecitabine when compared to placebo or lapatinib
in Chinese patients [49,50]. Pyrotinib is not yet approved for marketing in the European
Union nor in the United States of America as a result of the lack of data on efficacy,
tolerability and cost-effectiveness in a broader population [51].

Pyrotinib is currently approved (see Table 2):

(a) In the metastatic setting in combination with capecitabine (only in China), showing a
significantly higher progression-free survival (18.1 versus 7.0 months, HR 0.36) and
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higher overall response rate (78.5% versus 57.1%) when compared with lapatinib and
capecitabine [49,50].

There are multiple ongoing clinical trials involving pyrotinib, mostly held in China.
There are five studies in the metastatic setting (NCT05346861, NCT05255523, NCT04605575,
NCT05429294, NCT04246502), with one phase 3 study and two studies in first-line treat-
ment. There are six ongoing studies in the adjuvant setting (NCT04254263, NCT05841381,
NCT05861271, NCT04659499, NCT05880927, NCT05834764), two of them phase 3, and
seven studies in the neoadjuvant setting (NCT04929548, NCT05659056, NCT06000917,
NCT04917900, NCT05430347, NCT04900311, NCT04290793).

Table 2. Summary of tyrosine kinase inhibitors approved in clinical practice.

TKI Target Effect Approved Use Reference

Lapatinib HER-1 and 2 reversible Palliative (+capecitabine and/or trastuzumab) [30]

Neratinib HER-1, 2 and 4 irreversible Adjuvant (after 1y trastuzumab ±pertuzumab)
Palliative (+capecitabine)

[42]
[41]

Tucatinib HER-2 irreversible Palliative (+capecitabine +trastuzumab) [47]

Pyrotinib HER-1, 2 and 4 irreversible Palliative (+capecitabine) [49,50]

3.3. Antibody-Drug Conjugates (ADCs)
3.3.1. Trastuzumab Emtansine

Status: Approved worldwide for use in the metastatic and adjuvant settings.
Trastuzumab emtansine (T-DM1) is the first-ever approved antibody–drug conjugate

for solid tumors, approved for use in HER-2-positive metastatic breast cancer since 2013 [52]
and in the adjuvant setting since 2019 [53]. It is composed of the IgG1 mAb trastuzumab
connected to emtansine, a cytotoxic agent that acts by microtubule inhibition, through a
non-cleavable linker [54].

Studies demonstrated T-DM1’s superiority in terms of rate of response, survival and
toxicity profile, when compared with the previous standard second-line treatment, lapatinib
and capecitabine, leading to its early approval in this setting [52]. Later studies also showed
its efficacy in the adjuvant setting [53].

T-DM1 is currently approved (see Table 3):

(a) In the metastatic setting, as second-line treatment for HER-2-overexpressing metastatic
breast cancer after trastuzumab therapy, as the EMILIA trial showed a 3.2-month
increase in progression-free survival (9.6 versus 6.4 months, HR 0.65) [52] and a
4-month increase in overall survival (29.9 versus 25.9 months, HR 0.75) [55] when
compared with lapatinib plus capecitabine;

(b) In the adjuvant setting, for residual disease after neoadjuvant chemotherapy combined
with trastuzumab and pertuzumab, showing an increase in invasive disease free sur-
vival (88.3% versus 77.0% at 3 years, HR 0.50) when compared with trastuzumab [53].

A recent and still unpublished phase 2 trial, ATEMPT, evaluated the efficacy of adju-
vant T-DM1 in stage I disease, compared with paclitaxel and trastuzumab (NCT01853748).

3.3.2. Trastuzumab Deruxtecan

Status: Approved in the USA and Europe for use in the metastatic setting.
Trastuzumab deruxtecan (T-DXd) is composed of the mAb trastuzumab connected

to deruxtecan, a topoisomerase I inhibitor that causes cell apoptosis and double-stranded
DNA breaks. These two compounds are connected by a linker that is cleaved by cathepsins,
leading to its selective cleavage inside tumor cells, where cathepsins are upregulated. The
cleavability of the ADC also allows a bystander killer effect, a mechanism that expands the
drug’s cytotoxic effect to surrounding tumor cells. It also differs from T-DM1 in its higher
antibody:drug ratio of 1:8 (T-DM1 has a 1:3.5) [56].
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T-DXd proved to be effective in monotherapy in the treatment of HER-2-overexpressing
refractory metastatic breast cancer [57,58], even when compared with T-DM1 [59]. More
recent studies demonstrated that T-DXd is also effective in the treatment of HER-2-low
metastatic breast cancer [60].

T-DXd is currently approved (see Table 3):

(a) In the metastatic setting in HER-2-positive breast cancer, in the second line or further,
regarding its benefit in delaying disease progression (75.8% of patients had no disease
progression at 12 months versus 34.1% with T-DM1, HR 0.28) and delaying death
(94.1% were alive at 12 months compared with 85.9%, HR 0.55) [59];

(b) In the metastatic setting in HER-2-low breast cancer, regarding its 4.7-month benefit
in progression-free survival when compared with physician’s choice chemotherapy
(HR 0.51) and its 6.4-month benefit in overall survival (HR 0.64) [60].

There are currently two ongoing trials (phase 2 and 3) evaluating T-DXd as a first-line
treatment in metastatic HER-2-positive breast cancer and one study evaluating it as a
first-line treatment in HER-2-low patients (see Table 4). A phase 3 study is testing T-DXd as
an adjuvant therapy after neoadjuvant treatment with residual disease. Three other studies,
one phase 3, are evaluating the role of T-DXd in the neoadjuvant setting (see Table 4).

Table 3. Summary of antibody–drug conjugates approved in clinical practice.

ADC Cytotoxic Linker Drug-to-Antibody Ratio Approved Use Reference

T-DM1 Emtansine (DM1) Non-cleavable 3.5:1 Adjuvant HER-2+ EBC
HER-2+ MBC ≥ 2L

[53]
[52]

T-DXd Deruxtecan (DXd) Cleavable 8:1 HER-2+ MBC ≥ 2L
HER-2-low MBC

[58,59]
[60]

EBC: Early breast cancer; MBC: Metastatic breast cancer; 2L: Second line; 3L: Third line.

Table 4. Summary of ongoing clinical trials involving HER-2-targeted agents already in use in clinical
practice.

Anti-HER-2 Agent Clinical Trials (Phase) Population Treatment in Study Status

Trastuzumab - - - -

Pertuzumab NCT01817452 (II) HER-2+ EBC Neoadjuvant P+T ±ChT Recruiting

Margetuximab NCT04262804 (II)
NCT04425018 (II)

HER-2+ MBC ≥ 3L
HER-2+ EBC

Margetuximab +ChT
Neoadj margetuximab +P +ChT

Completed; unpublished
Recruiting

Lapatinib - - - -

Neratinib

NCT01042379 (II)
NCT04886531 (II)
NCT05919108 (II)
NCT05388149 (II)

HER-2+ EBC
HER-2+ EBC
HER-2m EBC
HER-2+ EBC

Neoadj neratinib
Neoadj neratinib +T +ET

Neoadj neratinib
Adjuvant neratinib + T-DM1

Recruiting
Recruiting

Not yet recruiting
Recruiting

Tucatinib

NCT05132582 (III)
NCT05748834 (II)
NCT05458674 (II)
NCT05583110 (II)
NCT05955170 (II)
NCT01042379 (II)

HER-2+ MBC
HER-2+ MBC
HER-2+ MBC
HER-2+ MBC
HER-2+ MBC
HER-2+ EBC

Tucatinib +T+P
Tucatinib +ChT

Tucatinib +T + ChT
Tucatinib +T +ChT
Tucatinib +T +ChT

Neoadj tucatinib +T+P

Recruiting
Recruiting
Recruiting
Recruiting

Not yet recruiting
Recruiting

Pyrotinib

NCT05346861 (III)
NCT05255523 (II)
NCT04605575 (II)
NCT05429294 (II)
NCT04246502 (II)
NCT04254263 (III)
NCT05841381 (III)
NCT05861271 (II)
NCT04659499 (II)
NCT05880927 (II)
NCT05834764 (II)

HER-2+ MBC
HER-2+ MBC
HER-2+ MBC
HER-2+ MBC
HER-2+ MBC
HER-2+ EBC
HER-2+ EBC
HER-2+ EBC
HER-2+ EBC
HER-2+ EBC
HER-2+ EBC

Pyrotinib rechallenge
Pyrotinib +T in ≥2L

Pyrotinib +ChT
Pyrotinib +T +ChT in 1L

Pyrotinib +ChT in 1L
Adj pyrotinib +T

Adj pyrotinib +T +ChT
Adj pyrotinib +ChT
Adj pyrotinib +ChT

Adj pyrotinib
Adj pyrotinib

Recruiting
Not yet recruiting

Recruiting
Recruiting

Not yet recruiting
Recruiting

Not yet recruiting
Not yet recruiting
Not yet recruiting

Recruiting
Recruiting
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Table 4. Cont.

Anti-HER-2 Agent Clinical Trials (Phase) Population Treatment in Study Status

Pyrotinib

NCT04929548 (II)
NCT05659056 (II)
NCT06000917 (II)
NCT04917900 (II)
NCT05430347 (II)
NCT04900311 (II)

NCT04290793 (II/III)

HER-2+ EBC
HER-2+ EBC
HER-2+ EBC
HER-2+ EBC
HER-2+ EBC
HER-2+ EBC
HER-2+ EBC

Neoadj pyrotinib +T +P
Neoadj pyrotinib +T +ChT
Neoadj pyrotinib +T +ChT
Neoadj pyrotinib +T +ChT
Neoadj pyrotinib +T +ChT
Neoadj pyrotinib +T +ChT

Neoadj pyrotinib +ChT

Not yet recruiting
Recruiting
Recruiting
Recruiting

Not yet recruiting
Not yet recruiting
Not yet recruiting

T-DM1 NCT01853748 (II) HER-2+ EBC Adj T-DM1 Active, not recruiting

T-DXd

NCT04784715 (III)
NCT05744375 (II)
NCT04622319 (III)
NCT05113251 (III)
NCT05900206 (II)
NCT05704829 (II)
NCT05953168 (II)

HER-2+ MBC
HER-2+ MBC
HER-2+ EBC
HER-2+ EBC
HER-2+ EBC
HER-2+ EBC

HER-2-low MBC

T-DXd ±P in 1L
T-DXd in 1L
Adj T-DXd

Neoadj T-DXd ±T + P +ChT
Neoadj T-DXd
Neoadj T-DXd
T-DXd in 1L

Recruiting
Recruiting
Recruiting
Recruiting
Recruiting

Not yet recruiting
Not yet recruiting

Adj: Adjuvant; Neoadj: Neoadjuvant; ChT: Chemotherapy; EBC: Early breast cancer; ET: Endocrine therapy; MBC
Metastatic breast cancer; P: Pertuzumab; T: Trastuzumab; 1L: First line; 2L: Second line.

4. Novel HER-2-Targeted Therapies

Despite the great evolution in HER-2-targeted therapies and the outstanding improve-
ment in HER-2-overexpressing breast cancer prognosis, there is still a long way to go in
HER-2 breast cancer treatment. In the early setting, there is still a considerable number
of relapses, and, in the metastatic setting, most cases eventually progress under HER-2-
targeted therapy, due to either suboptimal tumor cell growth inhibition or mechanisms of
resistance. For these reasons, there is continuous research and new drug development in
this area, which is summarized below.

4.1. Novel Monoclonal Antibodies
4.1.1. MM-302

Status: Phase 1 clinical trials.
MM-302 is a liposome containing approximately 20.000 molecules of doxorubicin,

and it is coated by 45 surface anti-HER-2 antibodies [61]. Preclinical studies demonstrated
the efficacy of this drug in HER-2-overexpressing breast and gastric cancer and showed
synergy with trastuzumab. A phase 2 clinical trial testing MM-302 in combination with
trastuzumab in heavily pretreated patients showed, however, no clinical benefit, leading to
the study’s early termination [62].

4.1.2. Inetetamab

Status: Phase 2 clinical trials.
Inetetamab, also called cipterbin, is a novel anti-HER-2 mAb directed against subdo-

main IV of HER-2, with a slightly different aminoacid sequence in the Fc portion. Preclinical
studies demonstrated efficacy against HER-2-overexpressing tumors [63,64]. A recently
published retrospective study reported that inetetamab combined with vinorelbine and
pyrotinib was effective in heavily pretreated HER-2-positive breast cancer patients [65].

An ongoing phase 2 trial is evaluating the role of inetetamab in the neoadjuvant setting,
in combination with pertuzumab and chemotherapy. Five phase 2 studies are testing the
combination of inetetamab with pyrotinib and chemotherapy in the metastatic setting, in
first or subsequent lines (see Table 5).
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Table 5. Summary of ongoing or recent clinical trials involving monoclonal antibodies (mAb) and
bispecific antibodies (bsAb).

mAb/bsAb Ongoing Clinical Trials
(Phase) Population Treatment in Study Status

MM-302 None - - -

Inetetamab

NCT05749016 (II)
NCT05823623 (II)
NCT04681911 (II)
NCT05823623 (II)
NCT05621434 (II)
NCT04963595 (II)

HER-2+ EBC
HER-2+ MBC
HER-2+ MBC
HER-2+ MBC
HER-2+ MBC
HER-2+ MBC

Neoadj inetetamab +P +ChT
Inetetamab +pyrotinib +ChT
Inetetamab +pyrotinib +ChT
Inetetamab +pyrotinib +ChT

Inetetamab +pyrotinib +ChT in 1L
Inetetamab +pyrotinib +ChT in 1L

Recruiting
Recruiting
Recruiting
Recruiting
Recruiting

Not yet recruiting

Zanidatamab (ZW25)

NCT05027139 (I)
NCT04224272 (II)

NCT05027139 (Ib/II)
NCT05035836 (II)
NCT01042379 (II)

HER-2+ MBC
HER-2+/HR+ MBC

HER-2+ MBC
HER-2+ EBC
HER-2+ EBC

ZW25
ZW25 + palbociclib+fulvestrant

ZW25 +ALX148
Neoadj ZW25
Neoadj ZW25

Concluded; unpublished
Concluded; unpublished

Recruiting
Recruiting
Recruiting

MBS301 NCT03842085 (I) HER-2+ MBC MBS301 Recruiting

Anbenitamab (KN026)
NCT03847168 (I)
NCT04165993 (II)
NCT04881929 (II)

HER-2+ MBC
HER-2+/low MBC

HER-2+ EBC

KN026
KN026 ±ChT

Neoadj KN026 +ChT

Concluded; unpublished
Active, not recruiting

Recruiting

Zenocutuzumab
(MCLA-128)

NCT02912949 (I)
NCT03321981 (II)

HER-2+
HER-2+/HER-2-low/HR+ MBC

MCLA-128
MCLA-128 +T+ChT/+ET

Published
Active, not recruiting

HER(Per)-S-Fab None - - -

HER2-2XCD16 None - - -

Adj: Adjuvant; ChT: Chemotherapy; EBC: Early breast cancer; MBC: Metastatic breast cancer; Neoadj: Neoadju-
vant; P: Pertuzumab; T: Trastuzumab.

4.2. Bispecific HER-2-Targeted Antibodies

Bispecific antibodies were developed with the aim of targeting different epitopes
or domains in the HER-2 receptor, optimizing its blockade, or even targeting a different
receptor besides HER-2, such as HER-3. This receptor plays an essential role in HER-
2/HER-3 dimerization and downstream signaling of the PI3K pathway, one of the known
mechanisms of resistance to HER-2-targeted therapy.

4.2.1. Zanidatamab

Status: Phase 2 clinical trials.
Zanidatamab (ZW25) is a humanized IgG1 mAb that simultaneously targets sub-

domains II and IV of the HER-2 extracellular component. Each HER-2 receptor can
be targeted by two molecules of this drug, which enhances HER-2 internalization and
downregulation [66].

Zanidatamab has proven its efficacy in second-line treatment of HER-2-positive MBC
in two phase 1 studies, whether in monotherapy [67] or in combination with chemother-
apy [68]. There are currently ongoing clinical trials testing zanidatamab’s efficacy in
combination with ADCs (NCT05027139), with CDK4/6 inhibitors (NCT04224272) and in
monotherapy in the neoadjuvant setting (NCT05035836).

4.2.2. MBS301

Status: Phase 1 clinical trials.
MBS301 is a bispecific IgG1 antibody targeting extracellular subdomains II and IV. It

is glycol-engineered from trastuzumab and pertuzumab, consisting of one-half of each of
these mAbs. In preclinical studies, this drug showed greater efficacy when compared
to the trastuzumab and pertuzumab association, mostly due to an increased ADCC
stimulation [69].

A phase 1 clinical trial is still ongoing in China (NCT03842085) and no preliminary
data are yet available.

4.2.3. Anbenitamab

Status: Phase 2 clinical trials.
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Anbenitamab, also called KN026, is a bispecific antibody (bsAb) derived from
trastuzumab and pertuzumab which showed efficacy in tumor cells resistant to these
two drugs [70]. Phase 1 clinical trials showed a similar efficacy to the trastuzumab and
pertuzumab combination even in heavily pretreated patients [71].

Preliminary data from two recently concluded phase 1 studies in HER-2-overexpressing
breast and gastric cancer patients revealed promising antitumoral activity with good tolera-
bility [71,72]. Ongoing clinical trials are evaluating KN026’s efficacy in the neoadjuvant
treatment of breast cancer and in the metastatic setting in combination with chemotherapy
(see Table 5).

4.2.4. Zenocutuzumab

Status: Phase 1 clinical trials.
Zenocutuzumab (MCLA-128) is another IgG1 bsAb, but instead of targeting different

subdomains of HER-2, it targets subdomain I of HER-2 and the ligand-binding site of HER-3,
thereby impeding HER-2-HER-3 dimerization and downstream signaling. Besides blocking
the HER-2 signaling pathway, zenocutuzumab also strongly stimulates ADCC [73].

Zenocutuzumab demonstrated efficacy in combination with trastuzumab and vinorel-
bine in the third line and beyond in HER-2-positive MBC [74]. A recently published phase
1 study testing this drug’s efficacy in patients with NGR1 fusion demonstrated robust and
durable efficacy with a good tolerability profile [75].

There is currently one ongoing phase 2 trial testing a combination with chemotherapy,
trastuzumab or endocrine therapy in HER-2-positive or HER-2-low/hormonal receptor-
positive breast cancer patients (NCT03321981).

4.2.5. HER2(Per)-S-Fab

Status: Preclinical studies.
HER2(Per)-S-Fab is a bispecific antibody composed of pertuzumab antigen-binding

fraction (Fab), which binds the HER-2 subdomain II and an anti-CD16/FcγRIIIa anti-
body [76]. The anti-CD16/FcγRIIIa portion exerts an immune stimulatory effect, by recruit-
ing natural killer (NK) cells, which express CD16, to the tumoral microenvironment (TME)
and promoting its cytotoxic effects against target HER-2-positive cells [76]. There are no
ongoing clinical trials with this drug.

4.2.6. HER2-2XCD16

Status: Preclinical studies.
HER2-2XCD16 is a tribody which integrates an anti-HER-2 single chain fused with IFN-

γ, leading to IFN-dependent cell death, even in tumors resistant to HER-2-blockage [77].
Besides an antitumoral effect in HER-2-overexpressing breast cancer cells, this molecule
demonstrated an ability to interfere with the TME, switching it to an antitumoral environ-
ment [78].

4.2.7. Discontinued Bispecific Antibodies

There are three other bispecific antibodies that showed an antitumoral effect in HER-2-
positive breast cancer but were, meanwhile, discontinued, by decision of the sponsor.

MM-111 targets both the extracellular component of HER-2 and the heregulin-binding
site of HER-3, inhibiting both HER-2 and PI3K pathways [79]. Preclinical studies showed
efficacy against HER-2-overexpressing breast cancer cells, and when combined with
trastuzumab, it demonstrated more efficacy than trastuzumab with pertuzumab [79].

Ertumaxomab targets HER-2 and CD3 and has a trimodal action through the recogni-
tion of not only tumor cells, but also stromal cells and T-cells [80,81]. Preclinical studies
demonstrated a moderate antitumoral effect in both HER-2-overexpressing and HER-2-low
breast cancer, with inferior efficacy when compared with standard of care [81]. Phase 2
trials of ertumaxomab were early-terminated.
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ISB1302 or GBR1302 also targets CD3 in T-cells and directs them to HER-2-overexpressing
tumor cells, where they bind HER-2. Phase 1 studies confirmed activation of a T-cell-
mediated immune response [82], but no further studies were conducted.

4.3. Novel Tyrosine Kinase Inhibitors (TKIs)
4.3.1. Poziotinib

Status: Phase 2 clinical trials.
Poziotinib is an irreversible pan-HER TKI that inhibits EGFR, HER-2 and HER-4. Pre-

clinical studies revealed an antitumoral effect in HER-2-overexpressing or HER-2-mutant
breast, lung and gastric cancer lines [83], and demonstrated that poziotinib upregulates
HER-2 expression in the cell membrane and potentiates the antitumoral effect of other anti-
HER-2 therapies, such as T-DM1 [84]. Phase 1 studies confirmed the efficacy of poziotinib
in the treatment of HER-2-positive tumors [85]. A phase 2 trial tested poziotinib’s efficacy
in the treatment of HER-2-overexpressing metastatic breast cancer patients in the third line
and beyond, showing meaningful antitumoral efficacy with overall survival benefits and a
toxicity profile similar to other TKIs [86,87]. A phase 1b (NCT03429101) and other phase
2 studies were recently conducted in metastatic breast cancer patients, in monotherapy
or association with T-DM1, both in HER-2-positive (NCT02659514; NCT02418689) and
HER-2-mutant patients (NCT02544997), and preliminary data is still awaited (see Table 6).
There are no clinical trials currently ongoing.

Table 6. Summary of ongoing or recent clinical trials involving tyrosine kinase inhibitors (TKIs).

TKI Target Effect Clinical Trials (Phase) Population Status

Poziotinib Pan-HER
(HER-1,2,4) Irreversible

NCT02418689 (II)
NCT02659514 (II)
NCT03429101 (Ib)
NCT02544997 (II)

HER2+ MBC
HER+ MBC

HER2+ MBC
HER2m MBC

Published
Completed; unpublished
Completed; unpublished
Completed; unpublished

DZD1516 HER-2 Reversible NCT04509596 (I) HER2+ MBC Ongoing

MBC: Metastatic breast cancer; HER2m: HER-2-mutated; HER2+: HER-2 positive.

4.3.2. DZD1516

Status: Phase 1 clinical trials.
DZD1516 is a reversible HER-2-specific TKI with full blood–brain barrier penetra-

tion [88]. In preclinical studies, it revealed an antitumoral effect in HER-2-positive tu-
mors [88]. A phase 1 study from the same author revealed good disease control in heavily
pretreated HER-2-positive breast cancer patients with brain metastases [88]. Another
phase 1 study is currently ongoing (NCT04509596) and preliminary data confirms good
intracranial disease control with a favorable toxicity profile [89].

4.3.3. Discontinued TKIs

Epertinib, also called S-222611, is a reversible pan-HER TKI. In preclinical studies, it
revealed a superior antitumoral effect in HER-2-overexpressing tumors when compared
with lapatinib and a more favorable toxicity profile when compared with irreversible
TKIs [90]. Phase 1 clinical trials confirmed an antitumoral effect and good tolerability
in HER-2-overexpressing breast, upper digestive, head and neck and renal tumors in
monotherapy [91], and in combination with trastuzumab with or without capecitabine [92].
Despite these encouraging results, no further trials were performed.

BDTX-189 is an irreversible EGFR/HER-2 TKI. Preliminary data from a recently
concluded phase 1 trial, MasterKey-01, revealed an antitumoral effect in patients with
HER-2/HER-3-mutated and HER-2-amplified solid tumors [93]. Despite the promising
results, the drug’s sponsor decided to discontinue further research.
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4.4. Novel Antibody–Drug Conjugates (ADCs)

Despite the great efficacy of currently commercialized ADCs for HER-2-overexpressing
breast cancer, mechanisms of resistance to T-DM1 and T-DXd have already been identified,
and the development of further ADCs, with a greater therapeutic index and less toxicity, is
needed, justifying continued research in this area.

4.4.1. Trastuzumab Duocarmycin (SYD985)

Status: Phase 3 clinical trials.
Trastuzumab duocarmycin is an IgG1 ADC composed of trastuzumab seco-duocarmycin-

hydroxybenzamide-azaindole (seco-DUBA), a prodrug of DUBA, a DNA alkylator cytotoxic
drug, in a drug-to-antibody ratio of 2.8:1, lower than both T-DM1 and T-DXd. After binding
to HER-2 and being internalized, the cleavable linker binding both components of the
ADC is cleaved in the lysosome, and the active drug DUBA is released in the cytoplasm [94].
SYD985 has considerable bystander killing effect for two reasons—DUBA itself is membrane-
permeable after being released from the lysosome, and SYD985 cleaving proteases, like
cathepsin B, are usually produced by tumor cells, meaning they are present in the extracellular
milieu, thereby maximizing this ADC’s effect in surrounding tumor cells [94].

Preclinical studies demonstrated SYD985’s efficacy in HER-2-overexpressing breast
cancer cells, with similar HER-2 binding, HER2-mediated internalization and ADCC
stimulation when compared with T-DM1 [95]. Phase 1 studies confirmed efficacy not only
in HER-2-overexpressing but also in HER-2-low metastatic breast cancer, with a greater
efficacy in the HER-2-low subset of patients when compared with T-DM1, probably due
its potent bystander killing effect [94]. The results of the phase 3 clinical trial TULIP are
still to be published but preliminary data reveal a significant improvement in progression-
free survival with no significant increase in overall response rate or overall survival,
when compared with physician’s choice in third line and beyond HER-2-overexpressing
metastatic breast cancer [96].

SYD985 is currently being tested along with other targeted therapies in the neoadjuvant
setting (NCT01042379—see Table 7).

Table 7. Summary of antibody–drug conjugates (ADCs) and other antibody conjugates currently
in study.

ADC/Antibody
Conjugates Payload Antibody-to-

Drug Ratio Linker Clinical Trial
(Phase) Setting Status

Trastuzumab
duocarmycin

(SYD985)
Seco-DUBA 2.8:1 Cleavable NCT03262935 (III)

NCT01042379 (II)
HER-2+ MBC in ≥3L
HER-2+ EBC (neoadj)

Closed; unpublished
Recruiting

Trastuzumab
rezetecan

(SHR-A1811)
SHR9265 5.7:1 Cleavable

NCT06057610 (III)
NCT05814354 (III)

NCT05845138 (I/II)
NCT05792410 (Ib/II)

NCT05635487 (II)

HER-2+ MBC
HER-2-low MBC
HER-2-low MBC
HER-2-low MBC

HER-2+ EBC (neoadj)

Recruiting
Recruiting
Recruiting
Recruiting
Recruiting

ARX788 MMAF 1.9:1 Non-
cleavable

NCT04829604 (II)
NCT04983121 (II)

NCT05426486 (II/III)
NCT01042379 (II)

HER-2+ MBC
HER-2+ EBC (neoadj)
HER-2+ EBC (neoadj)
HER-2+ EBC (neoadj)

Recruiting
Recruiting
Recruiting
Recruiting

Disitamab
vedotin
(RC48)

MMAE 4:1 Cleavable

NCT03052634 (I/II)
NCT05331326 (II)

NCT03500380 (II/III)
NCT04400695 (III)
NCT05904964 (III)
NCT06105008 (II)
NCT05134519 (II)
NCT05726175 (II)

HER-2+/low MBC
HER-2+ MBC
HER-2+ MBC

HER-2-low MBC
HR+/HER-2-low MBC
HR+/HER-2-low MBC
HER-2+ EBC (neoadj)
HER-2+ EBC (neoadj)

Closed; unpublished
Recruiting
Recruiting
Recruiting
Recruiting

Not yet recruiting
Not yet recruiting
Not yet recruiting

Zanidatamab
zovodotin

(ZW49)
Zovodotin 2:1 Cleavable NCT03821233 (I) HER-2+ solid tumors Closed; unpublished
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Table 7. Cont.

ADC/Antibody
Conjugates Payload Antibody-to-

Drug Ratio Linker Clinical Trial
(Phase) Setting Status

MRG002 MMAE 3.8:1 Cleavable
NCT05263869 (II)

NCT04924699 (II/III)
NCT04742153 (II)

HER-2+ MBC
HER-2+ MBC

HER-2-low MBC

Recruiting
Recruiting
Recruiting

A166 Duostatin-5 2:1 Cleavable NCT03602079 (I/II)
NCT05311397 (I) HER-2+ solid tumors Published

Recruiting

ALT-P7 MMAE 2:1 Cleavable NCT03281824 (I) HER-2+ MBC Closed; unpublished

XMT-1522 AF-HPA 12:1 Cleavable NCT02952729 (I) HER-2+ MBC Closed; unpublished

BAY2701439 Thorium-
227 Unknown Unknown NCT04147819 (I) HER-2+ solid tumors Closed; unpublished

BDC-1001 TLR-7/8
agonist Unknown Non-

cleavable NCT04278144 (II) HER-2+ solid tumors
Metastatic HER-2+ BC

Recruiting
Recruiting

Adj: Adjuvant; EBC: Early breast cancer; MBC: Metastatic breast cancer; Neoadj: Neoadjuvant.

4.4.2. Trastuzumab Rezetecan

Status: Phase 2/3 clinical trials.
Trastuzumab rezetecan, also called SHR-A1811, is an ADC composed of trastuzumab

and SHR9265, a novel topoisomerase I inhibitor derived from exatecan with a better
liposolubility and cellular permeability. The two compounds are bonded by a stable and
cleavable linker, in a drug-to-antibody ratio of 5.7:1 [97]. In preclinical studies, SHR-
A1811 showed HER2-dependent antitumoral activity in breast and gastric cancer cell lines,
resulting in a dramatic and sustained tumoral cell growth inhibition. It was also shown to
have a significant bystander effect [97].

A recently published phase 1 study in HER2-expressing or -mutated solid tumors re-
vealed that SHR-A1811 had a favorable antitumor effect with a manageable toxicity profile [98].

There are currently several ongoing trials testing SHR-A1811 in monotherapy or in
combination with other agents—one phase 3 trial in HER-2-overexpressing metastatic
breast cancer (NCT06057610), three in HER-2-low metastatic breast cancer (NCT05814354;
NCT05845138; NCT05792410) and one in the neoadjuvant setting (NCT05635487).

4.4.3. ARX788

Status: Phase 2/3 clinical trials.
ARX788 is an ADC composed of an anti-HER-2 mAb conjugated with monomethyl au-

ristatin F (MMAF), a highly potent synthetic auristatin derivative that acts as a microtubule
inhibitor. These two components are connected by a non-cleavable linker, as in T-DM1,
with a unique site-specific conjugation technology, unlike other ADCs, in which cytotoxic
payloads are randomly assembled to antibodies. This ADC’s drug-to-antibody ratio is 1.9:1,
lower than existent ADCs [99].

Preclinical studies revealed efficacy in HER-2-overexpressing and HER-2-low breast
tumor cells and even in cells resistant to T-DM1. It also showed a stronger antitumoral
activity when compared with T-DM1 [99,100]. A phase 1 clinical trial confirmed its efficacy
in HER-2-overexpressing metastatic breast cancer patients who progressed on previous
HER-2-targeted therapies, with a manageable safety profile [101].

There are currently ongoing one phase 2 trial in the metastatic setting [(NCT04829604),
and three phase 2/3 studies in the neoadjuvant setting, two in combination with the
TKI pyrotinib (NCT04983121; NCT05426486) and one in monotherapy in a previously
mentioned multi-arm study (NCT01042379).

4.4.4. Disitamab Vedotin (RC48)

Status: Phase 2/3 clinical trials; approved in China, not approved by FDA or EMA.
Disitamab vedotin is an ADC that combines hertuzumab (a new anti-HER-2 mAb that

targets HER-2 subdomain IV in a different epitope than trastuzumab) with monomethy-
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lauristatin E (MMAE), also known as vedotin, an inhibitor of tubuline polymerization
during cell division [102,103]. This ADC integrates a cleavable linker and has an estimated
drug-to-antibody ratio of 4:1.

In preclinical studies, RC48 demonstrated greater efficacy than trastuzumab and lapa-
tinib against HER-2-overexpressing breast cancer cells and showed a greater antitumoral
effect than T-DM1 in trastuzumab- and lapatinib-resistant tumor cells [102]. Ongoing phase
1 studies are assessing RC48’s efficacy in both HER-2-overexpressing and HER-2-low breast
cancer (NCT02881138; NCT03052634).

There are several ongoing phase 2/3 trials in China, testing the effect of disitamab
vedotin in different subsets of breast cancer: two studies in HER-2-positive metastatic breast
cancer (NCT05331326; NCT03500380); three studies in HER-2-low metastatic breast cancer
(NCT04400695; NCT05904964; NCT06105008); and finally, two studies in the neoadjuvant
setting of HER-2-positive breast cancer (NCT05134519; NCT05726175) (see Table 7).

Disitamab vedotin received approval in China in June 2021 for treatment of HER-2-
positive locally advanced/metastatic breast cancer beyond the third line [104].

4.4.5. Zanidatamab Zovodotin (ZW49)

Status: Phase 1 clinical trials.
Zanidatamab zovodotin is an ADC that combines zanidatamab, a bsAb targeting

domains II and IV of the HER-2 extracellular component, and N-acyl sulfonamide auristatin,
also called zovodotin, an auristatin that inhibits microtubule polymerization during cell
division and that is associated with a more favorable toxicity profile than other auristatins
such as MMAE and MMAF. It is bonded by a cleavable linker and has a drug-to-antibody
ratio of 2:1 [105].

A preclinical study documented the antitumoral activity of ZW49 against HER-2-
overexpressing and HER-2-low breast cancer cells and registered an increased binding
and internalization of this ADC when compared with trastuzumab-based ADCs [105].
A phase 1 study testing ZW49 in HER-2-overexpressing solid tumors has been recently
completed (NCT03821233). Preliminary data confirmed its efficacy in monotherapy, with a
manageable toxicity profile in heavily pretreated HER-2-positive solid tumors [106].

4.4.6. MRG002

Status: Phase 2/3 clinical trials.
MRG002 is an ADC composed of a recombinant humanized anti-HER-2 mAb similar

to trastuzumab but with less ADCC stimulation, called MAB802, and MMAE, an auristatin
previously mentioned. These compounds are connected by a protease-cleavable linker and
the ADC’s estimated drug-to-antibody ratio is 3.8:1 [107].

Preclinical studies showed an antitumoral effect in HER-2-overexpressing breast
cancer cells and greater efficacy when compared with both trastuzumab and T-DM1, with
an antitumoral effect in T-DM1-resistant cancer cells [107].

There are currently three phase 2/3 clinical trials ongoing in China, in the metastatic set-
ting for HER-2-overexpressing (NCT05263869; NCT04924699) and HER-2-low (NCT04742153)
breast cancer (see Table 7).

4.4.7. A166

Status: Preclinical studies.
A166 is a trastuzumab-based ADC that carries a duostatin-5 payload, a cytotoxic that

acts by inhibiting microtubules. Duostatin-5 binds to trastuzumab by a protease-cleavable
linker through a site-specific conjugation technology, in a drug-to-antibody ratio of 2:1.

Phase 1 studies revealed promising the efficacy and tolerable toxicity of A166 in HER-
2-positive advanced solid tumors refractory to standard HER-2-targeted therapies [108].
There is another phase 1 trial currently ongoing in China in HER-2-overexpressing solid
tumors (NCT05311397), but there are still no studies specifically in a breast cancer setting.
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4.4.8. ALT-P7

Status: Phase 1 clinical trials.
ALT-P7 is another ADC composed by a trastuzumab biosimilar, HM2, and MMAE, a

microtubule inhibitor, both connected by a cleavable linker in a ratio of 2:1 [109]. A phase 1
trial including HER-2 positive breast cancer patients that progressed under trastuzumab-
based therapy was recently conducted (NCT03281824) and preliminary data reveals a
favorable tolerability profile and indicates that there will probably be a phase 2 study [110].

4.4.9. XMT-1522

Status: Phase 1 clinical trials.
XMT-1522 is an ADC composed of an anti-HER-2 mAb, HT-19, which binds subdo-

main IV of HER-2 in a different epitope from trastuzumab, combined with a microtubule-
inhibiting auristatin derivative, AF-HPA, in a proportion of 12:1. This ADC has this
abnormally high drug-to-antibody ratio due to a biodegradable polymer-based conjugation
platform that enables these high ratios without plasmatic aggregation or interference with
the drug pharmacokinetics [109,111].

Preclinical studies demonstrated XMT-1522 to be effective against HER-2-overexpressing
breast cancer cells, even in the presence of T-DM1 resistance, and with an approximately
100 times higher potency than T-DM1 [112]. It also showed a synergistic effect with
trastuzumab and pertuzumab [113] and revealed an antitumoral effect in HER-2-low
breast cancer cells [114]. A phase 1 clinical trial testing this ADC in the metastatic HER-2-
overexpressing breast cancer setting (NCT02952729) was recently concluded, and prelimi-
nary data showed a good tolerability and antitumor activity [115].

4.4.10. Discontinued ADCs

PF-06804103 is composed of a trastuzumab-derived antibody associated with Aur0101,
a potent microtubule polymerization inhibitor, with site-specific conjugation technology,
in a proportion of 4:1 [116]. Preclinical studies showed antitumor activity against both
HER-2-positive and HER-2-low breast cancer, showing greater response rates and more
durable complete responses when compared with T-DM1 [117]. A recently published phase
1 trial confirmed antitumor activity in HER-2-positive and HER-2-low breast and gastric
cancers but revealed significant toxicity in almost half of the patients [118], leading to the
drug’s discontinuation.

Alta-ADC is an ADC composed of pertuzumab and MMAE in a proportion of 2:1.
It has a particularly low affinity for HER-2 at low pH, allowing its dissociation in the
endosome, and subsequent pertuzumab release to bind a different HER-2 receptor in the
cell membrane. This particularity allows Alta-ADC to be effective in lower doses, which
warrants a more manageable toxicity profile [119]. Despite preclinical studies showing
superior efficacy when compared with T-DM1 and also efficacy in HER-2-low tumors, no
more studies were conducted.

MEDI4276 is an ADC that combines a HER-2-bispecific antibody, which binds HER-2
in two different epitopes from trastuzumab and pertuzumab, and a novel microtubule
inhibitor called AZ13599185, both connected by a cleavable linker, in a ratio of 4:1 [120,121].
Preclinical studies revealed a 10-fold more potent antitumoral effect than T-DM1 and also
efficacy in T-DM1-resistant and HER-2-low tumor cells [121]. A phase 1/2 study conducted
in 2016–2017, in heavily pretreated HER-2-overexpressing breast and gastric cancer patients,
showed unacceptable toxicity [122], leading to its discontinuation.

DHES0815A is composed of an anti-HER-2 mAb linked to the cytotoxic drug pyrrolo
[2,1-c][1,4] benzodiazepine monoamide (PBD-MA), which creates crosslinks in DNA minor
grooves, leading to DNA strand breaks [123]. A phase 1 study revealed a modest antitu-
moral effect with significant toxicity [124], which led to drug discontinuation in the setting
of breast cancer.
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4.5. Other Antibody Conjugates
4.5.1. Immune-Stimulating Antibody Conjugates (ISAC)

BDC-1001 is not an ADC, as it includes no cytotoxic molecule, but is an immune-
stimulating antibody conjugate, as it carries an immune-stimulating agent. It is composed
of a trastuzumab biosimilar and a TLR-7/8 agonist that stimulates antigen-presenting cells
to recognize and kill HER-2-overexpressing tumor cells, promoting a durable adaptive
immune response. The two components are bound by a non-cleavable linker.

In preclinical studies, BDC-1001 showed an antitumoral effect through a solid immune
response [125].

There are currently ongoing two phase 2 studies, one in HER-2-overexpressing
metastatic breast cancer in combination with pertuzumab (NCT05954143), and one in
HER-2-overexpressing solid tumors in combination with nivolumab (NCT04278144).

4.5.2. Radionuclide–Antibody Conjugates

Thorium-227 conjugates (TTCs) are a combination of monoclonal antibodies with
α-emitting radionuclides (thorium-227) that induce DNA double strand breaks, resulting
in cell death, and they also have the capacity to stimulate an immunogenic response [126].
BAY2701439 is a TTC composed of an anti-HER-2, trastuzumab-derived antibody, conju-
gated with thorium-227. Preclinical studies demonstrated an antitumoral effect in HER-
2-overexpressing tumor cells, including breast cancer cells, and in this set of patients,
BAY2701439 also revealed efficacy in HER-2-low and T-DM1-resistant tumors [127]. A
phase 1 clinical trial testing BAY2701439 in HER-2-overexpressing solid tumors was recently
concluded, and preliminary data is awaited (NCT04147819).

4.6. Combinations of HER-2-Targeted and Other Agents
4.6.1. Combination of HER-2-Targeted and Other Targeted Agents

HER-2-positive breast cancer is a heterogeneous disease, with tumors having different
levels of hormonal receptor expression and a wide range of genomic alterations. Therefore,
there is a growing interest in assessing the benefit of combining HER-2-targeted agents
with other targeted therapies. Table 8 lists the main ongoing trials testing the combination
of HER-2-targeted and other targeted agents.

Table 8. Summary of ongoing clinical trials testing combinations of HER-2-targeted agents with other
targeted agents.

Combination Agent Clinical Trials (Phase) Population Treatment in Study Status

CDK4/6 inhibitors

NCT05577442 (II)
NCT05969184 (II)

NCT03304080 (I/II)
NCT02448420 (II)
NCT03530696 (II)
NCT03054363 (II)
NCT05076695 (II)
NCT05076695 (II)
NCT04858516 (II)

NCT03913234 (Ib/II)
NCT05319873 (I/II)
NCT02657343 (I/II)

HR+/HER-2+ MBC
HR+/HER-2+ MBC
HR+/HER-2+ MBC
HR+/HER-2+ MBC
HR+/HER-2+ MBC
HR+/HER-2+ MBC
HR+/HER-2+ MBC
HR+/HER-2+ EBC
HR+/HER-2+ MBC
HR+/HER-2+ MBC
HR+/HER-2+ MBC
HR+/HER-2+ MBC

Dalpiciclib +pyrotinib +ET
Palbociclib + T +P +ET
Palbociclib +T +P +ET

Palbociclib +T +ET
Palbociclib +T-DM1

Palbociclib +tucatinib +ET
Palbociclib +pyrotinib +T +F

Neoadj palbociclib +pyrotinib +T +F
Neoadj palbociclib +pyrotinib +T +ET

Ribociclib +T +ET
Ribociclib +tucatinib +T

Ribociclib +T/T-DM1

Not yet recruiting
Recruiting

Active, not recruiting
Active, not recruiting

Completed; unpublished
Completed; unpublished

Recruiting
Recruiting

Not yet recruiting
Recruiting
Recruiting

Completed; unpublished

PARP inhibitors NCT03368729 (I/II) HER-2+ mBRCA MBC Niraparib +T Recruiting

PIK3CA inhibitors

NCT03765983 (II)
NCT04108858 (I/II)

NCT02705859 (I)
NCT05230810 (I/II)
NCT04208178 (III)
NCT05063786 (III)

HER-2+ mPIK3CA MBC
HER-2+ mPIK3CA MBC
HER-2+ mPIK3CA MBC
HER-2+ mPIK3CA MBC
HER-2+ mPIK3CA MBC
HER-2+ mPIK3CA MBC

GDC-0084 +T
Copanlisib +T +P

Copanlisib +T
Alpelisib +tucatinib

Alpelisib +P +T in 1L
Alpelisib +T ±F

Recruiting
Recruiting
Completed
Recruiting

Active, not recruiting
Recruiting

ATK inhibitors NCT04253561 (I) HER-2+ mAKT MBC Ipatasertib +T +P Recruiting

Adj: Adjuvant; Neoadj: Neoadjuvant; ChT: Chemotherapy; EBC: Early breast cancer; ET: Endocrine therapy;
F: fulvestrant; HR: Hormone receptors; MBC Metastatic breast cancer; mAKT: AKT mutated; mBRCA: BRCA
mutated; mPIK3CA: PIK3CA mutated; P: Pertuzumab; T: Trastuzumab.
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4.6.2. Combination of HER-2-Targeted Agents and Immunotherapy

Besides the direct inhibition of HER-2 signaling pathways through HER-2-targeted
therapies, leading to cell cycle arrest and cell growth inhibition, there is also an important
role for immune-mediated cell death in HER-2-overexpressing tumors. Ever since the
development of the first HER-2-targeted drug, trastuzumab, the immune system proved
to play an important role in tumor growth inhibition and apoptosis through ADCC and
ADCP [17,18]. This cytotoxic mechanism is so important that its blockade by HLA class I
(such as HLA-G)-mediated NK cells’ inhibition constitutes an important resistance mech-
anism to trastuzumab [128]. Besides ADCC and ADCP, trastuzumab was also shown to
stimulate the production of TGFβ and IFN-γ by tumor cells and NK cells, which leads to
the expression of PD-1 on NK cells [128].

These parallel mechanisms of action prove that immune stimulation may be of great
importance in HER-2-positive tumor cells’ death, and it may enhance HER-2 inhibition and
help overcome resistance mechanisms to HER-2-targeted agents. Immune stimulation in
this context has the additional advantage of triggering immune memory against HER-2
cancer cells and providing a more durable and sustained antitumoral response [129].

This premise has led to the conceptualization of novel immune-stimulating drugs and
to the evaluation of the benefit of several combinations of immune checkpoint inhibitors
(ICI) with HER-2-targeted agents. A phase 1 study published in 2019 confirmed that
pembrolizumab in association with trastuzumab had antitumor efficacy in previously
trastuzumab-resistant patients with both HER-2 and PD-L1 positivity [130]. A recently
published phase 3 trial showed, however, no benefit in adding an ICI, atezolizumab, to
neoadjuvant chemotherapy and double HER-2 blockade, regarding the rate of pCR [131].
Table 9 summarizes the main ongoing clinical trials testing combinations of ICI with
HER-2-targeted agents.

Table 9. Summary of ongoing clinical trials evaluating the combination of HER-2-targeted agents
with immune-checkpoint inhibitors (ICI).

Combination Agent Clinical Trials (Phase) Population Treatment in Study Status

Atezolizumab

NCT03199885 (III)
NCT03125928 (II)
NCT04759248 (II)
NCT04740918 (III)
NCT04873362 (III)
NCT03595592 (III)

HER-2+ MBC
HER-2+ MBC
HER-2+ MBC

HER-2+ PD-L1+ MBC
HER-2+ EBC
HER-2+ EBC

Atezolizumab +T +P +ChT
Atezolizumab +T +P +ChT

Atezolizumab +T +ChT
Atezolizumab +T-DM1

Adj atezolizumab +T-DM1
Neoadj atezolizumab +T +P

Active, not recruiting
Active, not recruiting

Recruiting
Recruiting
Recruiting

Active, not recruiting

Durvalumab
NCT03820141 (II)
NCT05795101 (II)
NCT02649686 (I)

HER-2+ MBC
HER-2+/low MBC

HER-2+ MBC

Durvalumab +T +P in 1L
Durvalumab +T-DXd

Durvalumab +T

Recruiting
Recruiting
Completed

Pembrolizumab

NCT04789096 (II)
NCT03032107 (Ib)
NCT03988036 (II)
NCT03747120 (II)

HER-2+ MBC
HER-2+ MBC
HER-2+ EBC
HER-2+ EBC

Pembrolizumab +tucatinib +T ±ChT
Pembrolizumab +T-DM1

Neoadj pembrolizumab +T +P
Neoadj pembrolizumab +T +P +ChT

Recruiting
Active, not recruiting

Completed
Recruiting

Adj: Adjuvant; Neoadj: Neoadjuvant; ChT: Chemotherapy; EBC: Early breast cancer; ET: Endocrine therapy; MBC
Metastatic breast cancer; P: Pertuzumab; T: Trastuzumab; 1L: First line.

5. Other exploratory Therapies in HER-2-Positive Breast Cancer
5.1. PROTACs

Proteolysis-targeting chimeras (PROTACs) are stimulators of the natural ubiquitin-
protease system. They are composed of two ligands connected by a linker—one ligand
that binds the target protein and another ligand that binds a ubiquitin ligase. The binding
of PROTACs to their targets induces ubiquitylation and degradation of the target protein
by the ubiquitin-proteasome system, after which the PROTAC regenerates to bind other
targets [132].

Ab-PROTAC 3 is a trastuzumab-PROTAC conjugate, connected by a cleavable linker,
that induces ubiquitin-proteasome-mediated degradation of bromodomain-containing
4 (BDR4), a protein that plays an essential role in DNA replication during cell division.
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Preclinical studies showed that this conjugate can selectively target BDR4 in HER-2-positive
tumor cells [133].

ORM-5029 is a pertuzumab–PROTAC conjugate that targets GSTP1, a protein impor-
tant in protein synthesis in the ribosome and thus cell survival. Preclinical studies revealed
a ten- to a thousand-fold greater potency than trastuzumab in suppressing HER-2-positive
cancer cells, and it also showed an effect in HER-2-low cancer. There is a phase 1 ongoing
trial testing ORM-5029 in HER-2-positive solid tumors (NCT05511844).

5.2. Cell Therapies

Cell-based immunotherapy is an innovative therapeutic modality, currently in use
only in hemato-oncology, that uses genetically engineered immune cells from the patient
to target and eliminate specific tags in tumor cells. After removing immune cells (T cells,
NK cells or macrophages) from the patient’s tumoral microenvironment to modify their
receptors accordingly, these cells are expanded ex vivo and reimplanted in the patient’s
circulation to boost the patient’s antitumoral immune response. Despite success in liquid
tumors, implementation of cell-based therapies in solid tumors has been full of obstacles,
regarding the increased difficulty of accessing immune cells in the tumor, the triggered
systemic inflammatory response syndrome (SIRS) and the side effects profile [134,135].

There are currently a few ongoing phase 1 clinical trials in HER-2-positive tumors,
including with CAR-T cells (NCT04511871), CAR-NK cells (NCT05385705) and with CAR-
macrophages (NCT04660929).

5.3. Cancer Vaccines

Another early and exploratory therapeutical modality is cancer vaccines. Cancer
vaccines grant the advantages of having a very mild and manageable toxicity profile
when compared with any other antitumoral treatment, even targeted HER-2 therapies, a
very favourable posology, with no need for frequent administrations, and of providing a
long-term and durable immune response specifically targeted against the tumor [136,137].
Cancer vaccines can be peptide-based, protein-based, cell-based, made of dendritic cells,
virus-based or made of recombinant DNA.

The first vaccine to show benefits in cancer was SipuleucelT, which proved to be
effective in prostate cancer [138]. Nelipepimut-S is a vaccine that combines E75, a peptide
that mimics the extracellular domain of the HER-2 receptor, and granulocyte-macrophage
colony-stimulating factor. Preclinical studies demonstrated E75 recognition by CD8+
lymphocytes and subsequent HER-2-positive cells death [139]. Phase 1 and 2 studies
confirmed its safety and efficacy in triggering an immune response [140–142]. A phase 3
study failed, however, to show a disease-free survival benefit in HER-2-positive early breast
cancer patients, leading to the study’s early termination [143]. A vaccine integrating a
different peptide, GLSI-100, revealed an effective immune response in a phase 2b trial [144]
and is currently being evaluated in a phase 3 trial (NCT05232916).

There are several other molecules undergoing evaluation in ongoing phase 1 and 2 tri-
als (for example, NCT04418219; NCT03384914; NCT03387553; NCT05378464; NCT05325632).

6. Conclusions and Future Directions

Ever since the discovery and description of HER-2, the landscape of HER-2-overexpressing
breast cancer has been constantly evolving. Trastuzumab was the first-ever targeted drug
developed, more than a quarter of a century ago, bringing a shift of paradigm in the prog-
nosis of this subset of patients, so much that it is still part of the standard of care. Since then,
several other effective targeted agents have been developed and successfully integrated
into clinical practice, contributing to a continuous improvement in the treatment of this
subset of patients. Despite this constant improvement, drug resistance still occurs, and the
disease still progresses under HER-2-targeted therapy, mostly due to suboptimal HER-2
inhibition or to mechanisms of resistance. It makes it essential to keep investing in the
development of new drugs and better therapeutical options.
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Thanks to a joint effort of basic scientists, clinical investigators and the pharmaceutical
industry, continued research in this area has been bringing to light multiple and promising
novel HER-2-targeted drugs, which optimize HER-2 blockage and overcome some of the
resistance mechanisms identified so far. There is a special focus on the recently discovered
class of antibody–drug conjugates, which allow scientists to combine HER-2 targeting with
a tailor-delivered cytotoxic molecule with limited toxicity, and progress in this area keeps
growing. The focus has not only been on HER-2-targeted drugs; other classes of drugs have
also shown a benefit and synergistic effect with anti-HER-2 therapies, thereby improving
treatment efficacy and diversifying future therapeutical weapons. Even immunotherapy
and other forms of immune stimulation have been showing a significant benefit in this
disease previously considered “cold” and non-immune-sensitive.

Despite many encouraging discoveries in the last few years, there is still a long
way to go towards improving HER-2-positive breast cancer patients’ lives. There are
currently 662 ongoing clinical trials, and many more promising to come up soon. Other
flourishing therapeutical possibilities, still very exploratory, include single-cell sequencing,
transcriptomics, proteomics, theragnostics and even modulating the microbiome. Ad-
vances in molecular diagnosis could help identify tumor-specific resistance mechanisms
and surrogate biomarkers, allowing for early resistance detection and the tailoring of
therapeutical options.
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