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Simple Summary: This research revolutionizes dermatological diagnostics by integrating artificial
intelligence (AI) and hyperspectral imaging (HSI) to identify skin cancer lesions, particularly My-
cosis fungoides (MF). It differentiates MF from conditions such as psoriasis and atopic dermatitis
using a dataset of 1659 skin images. This study employs a novel AI algorithm alongside advanced
techniques for precise lesion segmentation and classification, moving diagnosis from color to spectral
analysis. This non-invasive and efficient method marks a significant advancement in the early and
accurate detection of skin malignancies. The model’s high performance is validated by its sensitivity,
specificity, and accuracy, making it a vital tool in dermatology for identifying skin cancers and
inflammatory conditions.

Abstract: This study pioneers the application of artificial intelligence (AI) and hyperspectral imaging
(HSI) in the diagnosis of skin cancer lesions, particularly focusing on Mycosis fungoides (MF) and
its differentiation from psoriasis (PsO) and atopic dermatitis (AD). By utilizing a comprehensive
dataset of 1659 skin images, including cases of MF, PsO, AD, and normal skin, a novel multi-frame AI
algorithm was used for computer-aided diagnosis. The automatic segmentation and classification of
skin lesions were further explored using advanced techniques, such as U-Net Attention models and
XGBoost algorithms, transforming images from the color space to the spectral domain. The potential
of AI and HSI in dermatological diagnostics was underscored, offering a noninvasive, efficient, and
accurate alternative to traditional methods. The findings are particularly crucial for early-stage
invasive lesion detection in MF, showcasing the model’s robust performance in segmenting and
classifying lesions and its superior predictive accuracy validated through k-fold cross-validation.
The model attained its optimal performance with a k-fold cross-validation value of 7, achieving a
sensitivity of 90.72%, a specificity of 96.76%, an F1-score of 90.08%, and an ROC-AUC of 0.9351.
This study marks a substantial advancement in dermatological diagnostics, thereby contributing
significantly to the early and precise identification of skin malignancies and inflammatory conditions.
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1. Introduction

Cutaneous T-cell lymphomas (CTCLs) are a group of rare dermatological malignancies
of idiopathic origin, characterized by the neoplastic proliferation of T lymphocytes that
play a vital role in the immune defense against pathogenic microorganisms. In CTCLs,
aberrant T-cell growth predisposes the skin’s stratified epithelium to bacterial infiltration.
The incipient phase of the disease is known as Mycosis fungoides (MF), which typically
manifests as erythematous and scaling plaques, predominantly in sun-protected areas, or
as waxing and waning nodules; these lesions disseminate systemically as a result of the
migration of malignant T cells, including Sézary cells [1–4]. Early intervention is paramount
to mitigate the symptomatology of the disease and decelerate its evolution. However, the
premycotic presentation of MF often mimics the clinical features of psoriasis (PsO) and
atopic dermatitis (AD), thereby complicating the differential diagnosis [5–7]. Contemporary
diagnostic modalities for MF encompass the histopathological examination of cutaneous
biopsies [8–11], peripheral blood analyses [12–15], and flow cytometric evaluation of
T-cell clonality [13,16–18], complemented by lymph node biopsies and cross-sectional
imaging such as computed tomography (CT) of the thoracoabdominal cavity [19,20] or
fluorodeoxyglucose positron emission tomography (FDG-PET) [21–24]. In current clinical
practice, the evaluation of MF predominantly relies on the histopathological analysis of
tissue biopsies, lymphatic imaging modalities, hematological assessments, and various
other invasive diagnostic techniques. This multifaceted approach to diagnosis, while thor-
ough, is inherently complex and protracted, thereby imposing a considerable psychological
burden on the patient.

In contemporary research, the image interpretation capabilities of artificial intelli-
gence (AI) models have been demonstrated to attain a level of diagnostic accuracy that
is comparable to that of traditional, invasive testing methodologies, thus, indicating their
potential utility as adjunct diagnostic tools. This study explored the utilization of AI
for computer-aided diagnosis, employing a singular multi-frame algorithm to discern
three distinct dermatological disorders—MF, PsO, and AD—by analyzing cutaneous le-
sion imagery [25]. Validation against histopathological specimens and optical coherence
tomography (OCT) corroborated the AI algorithm’s proficiency, showing a 93% accuracy in
the detection of these conditions. The model’s diagnostic sensitivity notably varied across
diseases, exhibiting superior performance for MF due to the typically larger lesion size.
Meanwhile, the identification of AD was comparatively less precise due to the diminutive
and less conspicuous nature of the lesions. The implementation of deep learning and object
detection algorithms in dermatological diagnosis has garnered considerable interest within
the scientific community. A notable enhancement has been reported in the Single Shot
MultiBox Detector (SSD) algorithm by Wang et al. [26], published in 2023. This study intro-
duced the SSD-KD, an innovative technique for classifying skin diseases via knowledge
distillation, which capitalizes on intra-instance relational features and self-supervised dual
relational knowledge distillation to augment the efficiency of lightweight models operating
within computational constraints. Empirical evaluations on the extensive ISIC 2019 skin
disease dermoscopic image dataset revealed that the SSD-KD achieved a commendable
85% accuracy in categorizing eight varied skin conditions while optimizing the model’s
parameter efficiency and computational demands.

The academic research community has shown a growing interest in the development of
methodologies for locating skin lesions and segmenting affected areas, a task of paramount
importance in dermatological diagnostics. Sumithra et al. [27] introduced a novel approach
for the automatic segmentation and classification of skin lesions. Their method incorporates
filtering to eliminate extraneous elements, region-based segmentation, and feature extrac-
tion for classification. The technique demonstrated promising results, achieving F-measures
of 46.71% using a Support Vector Machine (SVM), 34% with k-Nearest Neighbors (k-NN),
and 61% for a fusion of the two, tested on a dataset comprising 726 samples from 141 images
across five different disease categories. Pandiyan et al. [28] addressed the crucial challenge
of classifying skin conditions, a task with significant health implications if not promptly



Cancers 2024, 16, 217 3 of 19

and accurately addressed. Their methodology employed a dynamic graph cut algorithm
for skin lesion segmentation, paired with a Naïve Bayes classifier for disease classification.
The proposed approach outperformed existing state-of-the-art methods, achieving accuracy
rates of 94.3% for benign cases, 91.2% for melanoma, and 92.9% for keratosis, as evaluated
on the ISIC 2017 dataset. This advancement holds considerable potential for aiding medical
professionals in the early diagnosis and treatment of various skin conditions, thereby en-
hancing patient care outcomes. Wen et al. [29] proposed the challenging task of skin lesion
segmentation in dermoscopic images, a critical step in the precise analysis of melanoma.
This network demonstrated its superiority over existing methods across multiple skin
lesion segmentation datasets, marking a substantial advancement in the field. However,
traditional convolutional neural networks (CNNs) have shown limitations in capturing
global context information, often resulting in suboptimal segmentation outcomes.

However, the reliance on spatial information in image processing methodologies
presents several limitations, particularly in the context of dermatological imaging. The
diversity in photographic data, stemming from varying angles of capture and the multifari-
ous presentation of skin lesions, poses a significant challenge. As illustrated in Figure 1,
lesions associated with MF, PsO, and AD exhibit considerable variability in their anatomical
distribution. They can manifest in areas ranging from the upper body with small lesion
sizes (approximately 5 cm2) to extensive involvement of the back, chest, flanks, or lower
body. Moreover, these lesions present a wide array of morphologies, from superficial ery-
thematous streaks to deeper epidermal disruptions, some of which may be complicated by
infection and bleeding. Given these factors, the automatic localization of lesions by using
spatial information alone is not deemed essential. The static nature of the photographic
data further diminishes the necessity for employing object-detection algorithms such as
YOLOv5 or CNN-based approaches. Clinicians are typically able to identify the location of
lesions with relative ease on the basis of surface examination. Most deep-learning CNN
algorithms leverage spatial information for feature recognition. However, this approach
may not yield definitive results due to the diverse anatomical distribution and morpholog-
ical heterogeneity of the lesions. Despite these challenges, distinguishing between these
three disease types based solely on skin color during clinical examination can be arduous.
Consequently, a spectral discriminant method that capitalizes on color space conversion
techniques and utilizes the spectral domain is urgently needed. Color space conversion
involves translating a color’s representation from one basis to another to ensure that an
image, when converted from one color space to another, retains its original appearance
as closely as possible. Such an approach could differentiate the extent of invasive lesions
on the basis of skin color variations, thus offering a more discernible advantage. The
adoption of advanced methods, such as converting from the color space to the spectral
domain, represents a noninvasive diagnostic solution that has the potential to achieve high
classification accuracy.

In this study, a transformation algorithm from color space to the spectral domain
was employed by utilizing hyperspectral imaging (HSI) algorithms to address the chal-
lenging task of detecting early-stage invasive lesions in T-cell skin cancer, namely MF, as
opposed to milder skin conditions such as AD and PsO. As depicted in Figure 2, input
images were initially subjected to coarse segmentation via a Unet-Attention mechanism.
Precise accuracy in segmentation is not paramount; the primary objective is to delineate
the affected skin from the healthy skin for subsequent analysis within the HSI model. This
approach conserves model capacity and enhances accuracy by eliminating the noise caused
by moles and other skin pigments. The output from the HSI model underwent dimensional
reduction, and it was then classified using the XGBoost algorithm. This framework offers a
sophisticated method for distinguishing three commonly confused skin lesions by convert-
ing images to the spectral domain within a compact model while maintaining a high level
of classification accuracy.
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Figure 1. The distribution of skin lesions in MF, PsO, and AD is remarkably varied. These lesions 
can manifest on the upper body with small areas starting from 5 cm2, extending to larger lesions 
that spread over extensive regions of the (a) chest, (b) back, (c) arms, flanks, or lower body. The 
morphological presentation of these lesions ranges from superficial red streaks on the skin to deeper 
lesions in the epidermal layers, which may be associated with infection and bleeding. These lesions, 
which appear as red clusters, are relatively challenging to distinguish with the naked eye. As de-
picted in the figure, the lesions are identified as [(a–c)] MF, [(d,e)] PsO, and (f) AD. 
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Figure 1. The distribution of skin lesions in MF, PsO, and AD is remarkably varied. These lesions
can manifest on the upper body with small areas starting from 5 cm2, extending to larger lesions
that spread over extensive regions of the (a) chest, (b) back, (c) arms, flanks, or lower body. The
morphological presentation of these lesions ranges from superficial red streaks on the skin to deeper
lesions in the epidermal layers, which may be associated with infection and bleeding. These lesions,
which appear as red clusters, are relatively challenging to distinguish with the naked eye. As depicted
in the figure, the lesions are identified as [(a–c)] MF, [(d,e)] PsO, and (f) AD.
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Figure 2. The experimental workflow is as follows: Input images were initially segmented in a coarse
manner by using Unet-Attention. The exact precision in this segmentation phase is not critical. The
primary aim is to segregate the affected skin from the normal skin for processing in the hyperspectral
imaging (HSI) model. This step aids in conserving model capacity and enhances accuracy by filtering
out noise, such as that from moles and other skin pigments, which are removed during this stage.
Subsequently, the output from the HSI model underwent dimensional reduction, and it was classified
using the XGBoost algorithm.
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2. Materials and Methods
2.1. Sample Preparation

A total of 1659 skin images were collected for training purposes. This dataset included
333 images of MF, 421 images of PsO, 351 images of AD, and 554 images of normal skin.
These images were categorized into four distinct groups on the basis of the dermatologists’
tissue analyses, forming separate sets for training. Expert data annotation was carried
out in accordance with the evaluations of pathology slices and OCT images. A digital
camera (E-M10 Mark III by Olympus) was employed for capturing the skin photographs.
The imaging process was directly conducted by a physician, focusing on the patient’s
lesion sites. Disease classification was based on the observations by the dermatologists
who reviewed the pathological tissue sections and confirmed the presence of symptomatic
manifestations in the patients.

To ensure the uniform stability of illumination, it is imperative that the patient’s
position, camera, and arrangement of light sources remain constant. This measure helps
prevent aberration and chromatic aberration. The specific scanning position was clinically
determined, based on the patient’s reports of their condition and the treating physician’s
direct visual observation. Once the clinical lesions were located, multispectral analysis
was conducted at these sites. Patients were instructed to alter their position for imaging,
allowing a comprehensive coverage of the upper body from both front and back, akin
to bilateral positions. For smaller affected areas, such as private areas, armpits, or arms,
patients were asked to position themselves for close-up imaging. The data distribution is
depicted in Figure 3, which illustrates the variety in the distribution of skin lesions and
highlights the most frequent locations of these lesions on the body. A commonality among
the three disease types was the prevalence of lesions on larger skin areas, such as the chest
and back. Following these were lesions commonly found on the lateral aspects of the chest,
shoulders, and arms. Some close-up shots were included to enhance the color accuracy of
the lesions.
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angles, encompassing back-view shots, side-view shots, and close-up shots.

2.2. Segmentation Task

U-Nets are a widely utilized model for image segmentation. They are noted for their
effectiveness across various medical imaging applications and their efficiency upon deploy-
ment. The structure of a U-Net enables high segmentation accuracy even with a limited
number of training samples, thus distinguishing it from other models. Its architecture
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is founded on multi-stage cascaded convolutional neural networks, and these layers are
tasked with extracting regions of interest and providing dense predictions. This makes a
U-Net particularly adept at delivering superior performance in medical image segmen-
tation. The attention mechanism, commonly employed in natural language processing,
utilizes class-specific pooling to enhance the accuracy and speed of classification tasks.
These attention maps emphasize pertinent regions, thus making them more significant for
specific health-related datasets and improving the model’s applicability and performance
in medical contexts.

The U-Net segmentation model was developed using PyTorch and trained using
Binary Cross-Entropy (BCE) Loss with Logits. The model underwent training for 200 epochs
by utilizing the Adam optimizer. The training parameters included a learning rate of 0.001,
a weight decay of 0.0005, and a batch size of 32.

2.3. Model HSI-Feature Extraction Task

In this study, HSI was employed using a digital camera (E-M10 Mark III/Olympus) for
skin photography and a spectrometer (Ocean Optics, QE65000) to establish the correlation
between these two devices by capturing a shared target. The standard 24-color card (X-Rite
Classic, 24 Color Checkers) served as the common target. This card encompasses a range of
natural colors, representative of various natural objects such as human skin, leaves, and
the blue sky. The digital camera captures these color blocks and translates them into digital
images, while the spectrometer concurrently measures light from the 24 color blocks to
delineate spectral information. The resultant images were then converted into a set of
sRGB channel values. A transformation matrix was derived from these datasets. The entire
modeling process is depicted in Figure 4.

Cancers 2024, 16, x FOR PEER REVIEW 7 of 21 
 

 

 
Figure 4. A schematic of the proposed method is displayed. Hyperspectral imaging facilitates the 
conversion between the camera and the spectrometer, employing standard 24-color blocks (X-Rite 
Classic, 24 Color Checkers) as calibration references. The digital camera captures these color blocks, 
translating the information into digital images. Concurrently, the spectrometer delineates spectral 
information by measuring the light from the 24 color blocks. Subsequently, the camera’s images are 
algorithmically transformed into a spectrum equivalent to that derived from the spectrometer, uti-
lizing hyperspectral imaging techniques. 

2.3.1. Spectrometer to XYZ Color Space Conversion 
In spectrometry, the transformation of spectral data R(λ), ranging from 380 nm to 780 

nm, into the XYZ color space involves the light source spectrum S(λ) used in the camera 
and the XYZ color matching functions �̅� 𝜆 , 𝑦 𝜆 , and 𝑧̅ 𝜆  (Figure S1). The Y compo-
nent of the XYZ space significantly correlates with brightness. The maximum Y value from 
the light source spectrum is scaled to 100 to calibrate for luminance, setting a brightness 
ratio k as detailed in Equation (4). This scaling ensures consistent luminance representa-
tion within a standard range. The spectral data are converted into the XYZ value (XYZspec-

trometer) and regulated in the XYZ color gamut space by using Equations (1)–(3) as follows: 𝑋 = 𝑘 𝑆 𝜆 𝑅 𝜆 𝑥̅ 𝜆  𝑑𝜆, (1) 

𝑌 = 𝑘 𝑆 𝜆 𝑅 𝜆 𝑦 𝜆  𝑑𝜆, (2) 

𝑍 = 𝑘 𝑆 𝜆 𝑅 𝜆 𝑧̅ 𝜆  𝑑𝜆 , (3) 

where S(λ) is the spectral density of the sample; R(λ) is the spectral density of the standard 
illuminant; and �̅� 𝜆  , 𝑦 𝜆  , and 𝑧̅ 𝜆   are the components of color matching functions. 
The value k, which is the brightness ratio, is given by 

𝑘 = 100/ 𝑆 𝜆 𝑦 𝜆   𝑑𝜆 (4) 

  

Figure 4. A schematic of the proposed method is displayed. Hyperspectral imaging facilitates the
conversion between the camera and the spectrometer, employing standard 24-color blocks (X-Rite
Classic, 24 Color Checkers) as calibration references. The digital camera captures these color blocks,
translating the information into digital images. Concurrently, the spectrometer delineates spectral
information by measuring the light from the 24 color blocks. Subsequently, the camera’s images
are algorithmically transformed into a spectrum equivalent to that derived from the spectrometer,
utilizing hyperspectral imaging techniques.
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2.3.1. Spectrometer to XYZ Color Space Conversion

In spectrometry, the transformation of spectral data R(λ), ranging from 380 nm to
780 nm, into the XYZ color space involves the light source spectrum S(λ) used in the camera
and the XYZ color matching functions x(λ), y(λ), and z(λ) (Figure S1). The Y component
of the XYZ space significantly correlates with brightness. The maximum Y value from the
light source spectrum is scaled to 100 to calibrate for luminance, setting a brightness ratio k
as detailed in Equation (4). This scaling ensures consistent luminance representation within
a standard range. The spectral data are converted into the XYZ value (XYZspectrometer) and
regulated in the XYZ color gamut space by using Equations (1)–(3) as follows:

X = k
∫ 780 nm

380 nm
S(λ)R(λ)x(λ) dλ, (1)

Y = k
∫ 780 nm

380 nm
S(λ)R(λ)y(λ) dλ, (2)

Z = k
∫ 780 nm

380 nm
S(λ)R(λ)z(λ) dλ, (3)

where S(λ) is the spectral density of the sample; R(λ) is the spectral density of the standard
illuminant; and x(λ), y(λ), and z(λ) are the components of color matching functions. The
value k, which is the brightness ratio, is given by

k = 100/
∫ 780 nm

380 nm
S(λ)y(λ) dλ (4)

2.3.2. Non-Linear XYZ Correction

The analysis of the camera’s nonlinear response showed that the spectrum analyzer
exhibited a linear response. This investigation focused on the brightness values (denoted
as Y values) for the 19th–24th color patches on a 24-color checker chart representing the
gradient of grayscale changes. A linear regression analysis of the Y values corresponding to
the XYZ color space of these patches revealed the camera’s nonlinearity. Figure 5 illustrates
that a third-order polynomial best describes the camera’s nonlinear response, as evidenced
by the coefficient of determination (R2) value. The R2 value for the third-order polynomial
regression was 0.99997, which was higher than that of linear and quadratic polynomial
regressions. Consequently, the camera’s nonlinear response can be effectively corrected
through a third-order polynomial model. The correction factor for the nonlinear response
is denoted as Vnon-linear, as shown in Equation (5).

Vnon−linear =
[

X3 Y3 Z3 X2 Y2 Z2 X Y Z 1
]T

(5)

Noise in a camera image refers to the combined spatial and temporal fluctuations in
the recorded signal, under the assumption of consistent, even lighting. Dark current, which
is influenced by both time and temperature, can lead to the accumulation of noise on the
camera sensor. Consequently, it was treated as a constant in the analytical model. This
constant is denoted as Vdark, as defined in Equation (6) as follows:

Vdark = [α] (6)

Color noise, also known as chrominance noise, represents a random deviation in
color relative to the image’s original colors. In contrast to luminance noise, color noise
is typically linked to sensor warming or heating. In the analysis of color noise, an issue
arises with respect to color matching. Given that the camera image was transformed
into the XYZ color space, accounting for the interdependencies among the X, Y, and
Z values became imperative. These relationships were encapsulated within the XYZ
color-matching functions, which are graphically represented in Figure S1. The functions
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x, y, and z were integrally linked to the spectral power distribution. Consequently, a
comprehensive enumeration of the potential interactions among X, Y, and Z was conducted,
and the collective outcomes were encapsulated within the variable Vcolor, as delineated in
Equation (7).

Vcolor = [XYZ XY YZ XZ X Y Z]T (7)

After a thorough assessment of all identified error sources was conducted, the variable
Vcolor served as the foundational element for the application of non-linear response correc-
tion, through multiplication with Vnon-linear. The resultant product was then normalized to
the third order to preclude the possibility of over-correction. Subsequently, the constant
Vdark was incorporated, leading to the formation of the variable matrix V. This process is
systematically delineated in Equation (8). The variable matrix V was then reintroduced
to derive the correction matrix C, which constituted the final corrective framework for
the system.

V =

[
X3 Y3 Z3 X2Y X2Z Y2Z XY2 XZ2 YZ2 XYZ X2 Y2 Z2 XY XZ YZ X Y Z α

]T
(8)Cancers 2024, 16, x FOR PEER REVIEW 9 of 21 
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Figure 5. Polynomial regression analysis of the brightness values of these color checker blocks was
conducted to represent the gradient of grayscale changes. This analysis comprises (a) first-order (linear)
regression, (b) second-order (quadratic) regression, and (c) third-order (cubic) polynomial regression.

2.3.3. Correction Matrix C and the Calibration Camera and Spectrometer

Error factors, such as nonlinear response, dark current, and color noise, may occur
when the camera is shooting. Therefore, the correction matrix C, which can be used to
correct the camera, was finally obtained, as shown in Equation (9):

[C] =
[
XYZspectrometer

]
× pinv([V]), (9)

where V is defined as Equation (8) with X, Y, and Z components derived from XYZcamera, and
[XYZspectrometer] is the matrix created by X, Y, and Z components obtained from the spectrometer.

Equation (8) was employed to extend the XYZcamera matrix to the V matrix, resulting
in the corrected values of X, Y, and Z (denoted as XYZcorrection), as delineated in Equation
(10). Given that the wavelength band utilized in this study falls within the visible light
spectrum (380–780 nm), the outcome of this correction can be characterized in terms of
chromatic aberration.

[XYZcorrection] = [C]× [V], (10)
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where V is defined as Equation (8) with X, Y, and Z components derived from XYZcamera,
and [C] is the correction matrix obtained from Equation (9).

2.3.4. Principal Component Analysis of Reflectance Spectrum

In the process of converting the XYZ values (denoted as XYZcorrection), which are
acquired subsequent to camera calibration, into spectral data, principal component analysis
(PCA) was employed on the reflectance spectrum data (Rspectrometer) of the standard 24-color
chart. This analysis yielded the principal components and their associated scores (including
eigenvalues) of the reflectance spectrum for the 24-color checker chart.

The results of PCA on the reflectance spectrum (Rspectrometer) demonstrated that the
initial 12 principal components (EVs) accounted for 99.99% of the total variance within
the data (Figure 6) and their density details in the spectrum dataset (Figure S2). The
cumulative explained variance plot displays the total variance captured by successive
principal components. When the plot reaches its 12th point at 99.99%, it signifies that the
first 12 components collectively explain 99.99% of the dataset’s variance. Dimensionality
reduction was achieved by leveraging these 12 principal components, thereby extracting the
principal component scores. The subsequent multivariate regression analysis utilized these
scores, with Vcolor serving as a predictor variable. Vcolor was chosen due to its comprehensive
delineation of the correlations among X, Y, and Z values. This analytical approach facilitated
the derivation of the transformation matrix M, which bridges the measurement gap between
the camera and the spectrometer, as explicated in Equation (11).

[M] = [score]× pinv([Vcolor]) (11)

where Vcolor is defined as Equation (7) with X, Y, and Z components derived from XYZspectrometer;
[score] is the principal component scores obtained from 12 sets of principal components for
dimensionality reduction of Rspectrometer; and Rspectrometer is the spectral signal obtained from
the spectrometer of 24-color patches ranging from 380 nm to 780 nm with a 1 nm resolution.
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2.3.5. The Hyperspectrum

The hyperspectrum is denoted by Sspectrum, as indicated in Equation (12):[
Sspectrum

]
= [EV][M][Vcolor] (12)
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where Vcolor is defined as Equation (7) with X, Y, and Z components derived from XYZcorrection;
[EV] is the 12 principal components obtained from the dimensionality reduction of Rspectrometer;
Rspectrometer is the spectral signal obtained from the spectrometer of 24-color patches ranging from
380 nm to 780 nm with a resolution of 1 nm; and [M] is the transformation matrix obtained from
Equation (11).

2.4. Classification Task

By utilizing dimensionality reduction based on the t-Distributed Stochastic Neighbor
Embedding (t-SNE) model [30], the feature extraction capabilities of the HSI model were
assessed, and an appropriate classification method was determined. As depicted in Figure 7,
the t-SNE analysis was conducted using 5000 data point samples from three distinct
diseased skin groups. The model exhibited a distinct clustering of features specific to
the PsO skin group in comparison to the other groups. However, minimal overlap was
observed between the feature clusters of the AD and MF groups. Overall, the t-SNE
model demonstrated relatively clear segregation among the three skin disease groups.
These results showed that the HSI model possesses the capacity for effective high-level
representation classification among various skin disease groups. The visualization outputs
of the t-SNE model informed the selection of the XGBoost method as a feature extraction
and classification technique.

Cancers 2024, 16, x FOR PEER REVIEW 11 of 21 
 

 

representation classification among various skin disease groups. The visualization out-
puts of the t-SNE model informed the selection of the XGBoost method as a feature ex-
traction and classification technique. 

 
Figure 7. The t-SNE analysis utilized 5000 data points, sampled from three different skin disease 
groups. This analysis revealed a clear clustering of features unique to the PsO skin group, setting it 
apart from the other groups. 

Extreme Gradient Boosting (XGBoost) is known for its high accuracy in supervised 
learning problems, often comparable to that of other deep learning models. One of the key 
strengths of XGBoost lies in its rapid training capabilities, enabled by parallel computa-
tion. This efficiency is particularly advantageous when utilizing GPU resources, making 
the algorithm well-suited for handling high-dimensional data such as hyperspectral data. 
At its core, XGBoost is built upon the decision tree ensembles algorithm, allowing it to 
process training data without the need for normalization. This approach is rooted in a 
strategic focus. Instead of uniformly training on all samples, XGBoost prioritizes subsets 
that demonstrate poor performance. This selection process is skewed towards choosing 
samples that were misclassified in previous iterations rather than randomly selecting at 
an equal probability. While XGBoost is primarily tailored for discrete data types, such as 
tabular data, and may not be the optimal choice for unstructured data, its speed of training 
is a notable advantage over Artificial Neural Networks (ANNs). Moreover, ANNs often 
rely on a large volume of training samples and benefit significantly from transfer learning, 
which is a strategy that is less feasible with specialized data, such as that pertaining to 
skin diseases. This limitation makes XGBoost a more practical choice in scenarios where 
data specificity and training efficiency are paramount. 

Figure 7. The t-SNE analysis utilized 5000 data points, sampled from three different skin disease
groups. This analysis revealed a clear clustering of features unique to the PsO skin group, setting it
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Extreme Gradient Boosting (XGBoost) is known for its high accuracy in supervised
learning problems, often comparable to that of other deep learning models. One of the key
strengths of XGBoost lies in its rapid training capabilities, enabled by parallel computation.
This efficiency is particularly advantageous when utilizing GPU resources, making the
algorithm well-suited for handling high-dimensional data such as hyperspectral data.
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At its core, XGBoost is built upon the decision tree ensembles algorithm, allowing it to
process training data without the need for normalization. This approach is rooted in a
strategic focus. Instead of uniformly training on all samples, XGBoost prioritizes subsets
that demonstrate poor performance. This selection process is skewed towards choosing
samples that were misclassified in previous iterations rather than randomly selecting at
an equal probability. While XGBoost is primarily tailored for discrete data types, such as
tabular data, and may not be the optimal choice for unstructured data, its speed of training
is a notable advantage over Artificial Neural Networks (ANNs). Moreover, ANNs often
rely on a large volume of training samples and benefit significantly from transfer learning,
which is a strategy that is less feasible with specialized data, such as that pertaining to skin
diseases. This limitation makes XGBoost a more practical choice in scenarios where data
specificity and training efficiency are paramount.

2.5. Training Strategy and Performance Evaluation

Given that the study involved only 34 patients, employing a fixed division of training,
validation, and testing in the proportions of 70%, 20%, and 10% proved to be unsuitable
for out-of-sample testing. This finding was particularly evident when considering that
only three patients were involved in the testing phase, each representing a distinct disease
group. Thus, k-fold cross-validation was utilized to address this challenge and prevent
data leakage. In k-fold cross-validation, the original dataset is evenly divided into k subsets.
Within these subsets, one is designated as the test set, and the remaining k−1 subsets
are used as the training set. This process is repeated for each fold, allowing the model’s
performance to be evaluated across all folds. Three different values of k were tested to
assess the effect of the k-fold division on the training model: 3, 5, and 7. K-fold cross-
validation is particularly beneficial for comprehensive and accurate model evaluation,
especially when dealing with limited datasets. The training data are randomly divided
into k parts (where k is an integer, typically 5 or 10). The model is then trained k times,
with each iteration using one part as validation data and the remaining parts as training
data. The final evaluation of the model is the average of the results from these k training
iterations. This methodology offers a more objective and accurate evaluation, which is
crucial for determining the model’s suitability for the current data and the specific problem
at hand.

The commonly used metrics for performance evaluation are accuracy, sensitivity,
specificity, F1-score, and area under the receiver operator curve (ROC-AUC). The metrics
are shown in Section S2 of the Supplementary Materials.

3. Results and Discussions
3.1. Evaluate the Performance of the HSI Model

The simulated spectrum was juxtaposed with the reflection spectrum (denoted as
Rspectrometer) of the 24-color card. The root-mean-square error (RMSE) was computed to
quantify the discrepancy between the two spectra. The calculated average RMSE was 0.0525
(Table S1). Color blocks 13–18 exemplify the variance between the simulated spectrum
and the measured spectrum of the 24-color card, as illustrated in Figure 8. These six color
blocks were selected for investigation due to their representation of six filters commonly
used in chromatic correction. The comparison between the six typical colors demonstrates
the correlation between the measured and simulated spectra, indicating that the spectral
reproduction algorithm has successfully produced simulation results approximating the
measured spectra. Consequently, it can be inferred that the accuracy of the hyperspectral
model in converting from real data is notably effective. The simulated spectrum was
transformed into the L*a*b* color space for a comparative analysis using the CIEDE 2000
color difference metric (Section S1.5 in Supplementary Materials). This comparison yielded
an average color difference of 0.28, as depicted in Table 1. The color difference of the 24-color
blocks was illustrated on the CIE 1931 chromaticity diagram for a 2◦ standard observer,
as shown in Figure 9. In this diagram, a black line connects two central points, with
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“red” indicating simulated colors and “green” representing measured colors. The minimal
discrepancy between the simulated and actual colors demonstrated the effectiveness of the
HSI algorithm in calibrating the correlation between the camera and the spectrometer.
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Figure 8. The correlation between the measured spectrum and the spectrum simulated by the
algorithm, representing six basic color filters commonly used in chromatic correction, was assessed.
This comparison revealed that the algorithm’s simulated reproduction closely matched the measured
spectrum. The largest deviation occurred at longer wavelengths, specifically those exceeding 600 nm.

Table 1. Chromatic difference diagram of measured and simulated spectra of 24-color blocks.

Color No. Measured Simulated L*
(Measured)

a*
(Measured)

b*
(Measured)

L*
(Simulated)

a*
(Simulated)

b*
(Simulated) CIEDE 2000

1 38.94 24.35 36.89 38.81 24.92 38.23 0.52
2 67.93 32.09 49.08 67.95 32.03 48.94 0.05
3 49.45 0.07 9.87 49.34 −0.66 9.68 1.01
4 42.33 −4.05 39.45 42.59 −3.97 38.03 0.57
5 55.89 16.17 11.32 55.88 16.12 11.33 0.04
6 69.10 −19.39 31.48 69.10 −19.46 31.45 0.05
7 65.32 46.33 82.11 65.37 46.43 81.81 0.14
8 39.09 8.89 −10.49 39.23 9.36 −10.40 0.49
9 55.11 58.96 46.87 55.06 59.03 47.19 0.14

10 31.22 24.81 6.34 31.78 25.36 6.05 0.57
11 71.87 −5.83 76.56 71.87 −5.85 76.51 0.02
12 74.87 34.26 90.13 74.84 34.16 90.25 0.08
13 27.87 11.77 −23.10 27.60 11.34 −23.26 0.46
14 53.97 −27.31 50.50 53.95 −27.22 50.74 0.11
15 45.76 66.20 51.52 45.76 65.96 51.01 0.17
16 83.76 23.22 100.15 83.76 23.26 100.18 0.02
17 54.10 58.28 24.01 54.11 58.30 24.01 0.01
18 48.03 −23.70 −0.08 48.08 −23.35 −0.02 0.19
19 95.47 15.52 46.28 95.48 15.52 46.28 0.00
20 80.98 13.58 40.13 80.95 13.62 40.11 0.04
21 66.39 11.35 34.00 66.52 11.47 34.18 0.14
22 52.19 9.40 28.14 51.90 9.29 28.26 0.31
23 36.45 6.84 21.33 36.46 6.79 21.44 0.09
24 21.36 4.87 14.76 21.05 3.68 15.29 1.55

average 0.28
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Figure 9. The color difference of 24-color blocks is shown on the CIE 1931 chromaticity diagram
2◦ standard observer. The black line connecting the center of the two points is “red” to indicate
simulated colors and “green” to indicate measured colors.

3.2. Segmentation Model Results

Figure 10 presents the performance of the U-Net Attention models by using example
images from various sites affected by the three skin disease groups. The model effectively
distinguished between damaged and normal skin in the segmented areas, which is crucial
because the objective of segmentation tasks is to isolate damaged skin from other elements
such as normal skin, melanin spots, and areas affected by different injuries (such as bleeding
or scratches). Given the limited number of samples, which influences the training efficiency
of a deep learning model, excessive focus on model regularization through hyperparameter
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tuning was not a primary concern. However, metrics, such as the cross-entropy, dice
coefficient, and intersection over union (IoU), were utilized to ensure the efficacy of the
segmentation model. The training outcomes, as indicated by a cross-entropy of 0.3220, a
dice coefficient of 0.8447, and an IoU of 0.8521, demonstrated the robust performance of the
model. The metric-based evaluations and visual assessments of the test images confirmed
the high effectiveness of the U-Net Attention model in this context.
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Figure 10. Visualization of the segmentation by the U-Net Attention model illustrates that most lesion
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3.3. Classification Task Results

In this study, the performance of the model was rigorously evaluated using k-fold
cross-validation with distinct k values of 3, 5, and 7. As shown in Table 2, for k = 3, the
model achieved a sensitivity of 85.61%, a specificity of 95.25%, an F1-score of 86.26%, and
an ROC-AUC of 0.9051. When the k value was increased to 5, a notable improvement was
found in all metrics, that is, the sensitivity, specificity, F-1 score, and ROC-AUC increased
to 89.20%, 96.35%, 89.19%, and 0.9270, respectively. Further enhancement was observed
with k = 7, where the model reached its peak performance, exhibiting a sensitivity of
90.72%, a specificity of 96.76%, an F1-score of 90.08%, and an ROC-AUC of 0.9351. This
progressive improvement in the model performance with increasing k values underscored
the effectiveness of k-fold cross-validation in refining the model’s predictive accuracy.

Table 2. Model training performance was evaluated across different k-fold values (3, 5, and 7) with
respect to four performance metrics.

k-Fold Sensitivity Specificity F1-Score ROC-AUC

k3 85.61% 95.25% 86.26% 0.9051
k5 89.20% 96.35% 89.19% 0.9270
k7 90.72% 96.76% 90.08% 0.9351

Figure 11 presents the confusion matrices for the k-fold cross-validation at k = 3, 5,
and 7, providing insights into the model’s classification accuracy across four categories:
MF, PsO, AD, and normal skin. For k = 3, the confusion matrix illustrated a balanced
performance across all categories, with notable precision in classifying PsO (37 out of 43)
and normal (49 out of 54) cases. However, a few instances of MF and AD were misclassified
as other categories. When k = 5, the confusion matrix displayed improved accuracy,
especially in correctly identifying all PsO cases (35 out of 39), and a significant reduction
in misclassification of normal cases. Finally, at k = 7, the confusion matrix further refined
the model’s performance, particularly in the precise identification of AD cases (33 out of
33); though, a slight increase in misclassified cases was observed in the normal category.
These matrices collectively demonstrated a gradual enhancement of the model’s ability to
distinguish between these dermatological conditions, thus reflecting the efficacy of higher
k-fold values in achieving more accurate and reliable classification results.
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Figure 12 illustrates the ROC curves for the three datasets, (a) k = 3, (b) k = 5, and
(c) k = 7, across four classes (0, normal; 1, MF; 2, PsO; and 3, AD). For k = 3, the AUC
values for the classes were impressively high, ranging from 0.94 to 0.97, with the highest
for class 2 (PsO) at 0.97, indicating a robust classification capability. In the k = 5 dataset,
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a noticeable uptick in the AUC values was observed, affirming the model’s consistency
and enhanced accuracy, particularly for class 2 (PsO) and class 3 (AD), with AUCs of 0.97
and 0.95, respectively. When k = 7, the model maintained a similar level of performance,
with AUC values for class 0 (normal) and class 1 (MF) remaining steady at 0.96, whereas
class 2 (PsO) reached a peak AUC of 0.98. The slight decrease in class 3’s AUC to 0.94 in
k = 7 indicated a nuanced differentiation in the model’s predictive ability across different
folds. Overall, these results highlighted the efficacy of the applied model in distinguishing
among the four classes, with subtle variations observed across different k-fold settings.
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3.4. Comparison with Other Existing Studies

In this section, we critically examine the performance of existing models relative to our
proposed ensemble model, which integrates three distinct components: U-Net Attention for
segmentation, a Hyperspectral model for feature extraction, and XGBoost for classification.
The evaluation of the ensemble model was carried out according to the following criteria:
segmentation efficacy, as measured by the IoU index; and classification efficiency, gauged
by the ROC-AUC index in comparison to existing models with segmentation capabilities.
Additionally, given that our model is designed for rapid inference, the impact on prediction
speed was also a crucial factor under consideration.

To assess deployment efficiency, we measured the prediction time for each image and
computed the average. Table 3 presents the model’s performance evaluation based on
model size, IoU segmentation accuracy, AUC-ROC classification accuracy, and average
prediction time per image, aiming to compare the practical deployment efficiency against
existing models. The model’s prediction speed, denoted by the number of images processed
per second, is a critical efficiency metric. Table 3 indicates that the count of non-trainable
parameters is largely dictated by the architectural structure of the segmentation module,
specifically the U-Net Attention model. The inclusion of the hyperspectral imaging module
has resulted in a slight increase in the model size. Our ensemble model’s segmentation
efficiency primarily hinges on the U-Net Attention module. While segmentation is crucial,
the priority is not heavily placed on the localization of damaged skin areas but rather on
differentiating them accurately from other skin lesions. Consequently, our model excelled
in classification efficacy, evidenced by a classification accuracy of 0.9351, achieved using a
7-fold training approach.

In terms of prediction speed, our model demonstrated competent performance at an
acceptable rate. It is noted that a trade-off exists between accuracy and inference time; a
higher accuracy might lead to an increased inference time. These results highlight that our
hybrid models, despite longer deployment times, prioritize diagnostic accuracy, a critical
aspect in medical systems.
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Table 3. Comparison of model parameters and performances.

Model Number of
Params

Size
(MB) IoU AUC-ROC Time Prediction per Image

(second)

U-Net 31M 124 0.8003 0.8490 0.0741
U-Net++ 55M 220 0.8977 0.9334 0.1182
U-Net Attention 35M 140 0.8521 0.9097 0.0792
DeepLabv3 41M 164 0.8730 0.9597 0.0836
Ours (3-folds) 35M 148 0.8521 0.9051 0.0810
Ours (5-folds) 35M 148 0.8521 0.9270 0.0810
Ours (7-folds) 35M 148 0.8521 0.9351 0.0810

4. Conclusions

In this study, a novel approach leveraging HSI algorithms for the early detection
of invasive lesions in T-cell skin cancer, particularly MF, was introduced. This method
distinctively contrasts with traditional diagnostic processes for milder skin conditions
such as AD and PsO. By utilizing a transformation algorithm from the color space to
the spectral domain, coarse segmentation was applied via a Unet-Attention mechanism
to the input images. This initial segmentation, while not necessitating high precision,
effectively distinguished between affected and healthy skin, thereby optimizing the HSI
model’s capacity and accuracy by filtering out irrelevant noise such as moles and other skin
pigments. Subsequently, the HSI model’s output was subjected to dimensional reduction
and classified using the XGBoost algorithm. This framework presents an advanced and
compact solution for accurately differentiating among three frequently misdiagnosed skin
lesions by transforming images into the spectral domain.

As described in the Introduction, this study was confined to the identification of
early-stage skin cancer, specifically MF, which is frequently misdiagnosed as either of
two inflammatory diseases, PsO or AD. Consequently, the primary limitation is that the
study’s focus is narrow and susceptible to interference from noise when other skin diseases
are present which manifest with characteristics dissimilar to the aforementioned three or
presenting with lesions and discolorations on the skin that appear nearly identical to those
of the three diseases. Furthermore, another significant constraint is the generalizability of
the clinical examination applications due to the limited participant pool of 34 individuals,
rendering the sample size insufficiently varied to supplant direct physician diagnosis. The
diagnostic system developed herein serves only to augment physician diagnosis, offering
a reference to aid in formulating subsequent treatment plans. In addition, limited skin
phototypes also impact research outcomes. This study predominantly involved Taiwanese
patients with skin phototypes ranging from III (light brown) to IV (moderate brown),
according to Fitzpatrick’s classification [31]. Consequently, observations on skin areas
with phototypes exceeding IV (dark brown), such as tanned skin, may result in chromatic
aberration. Therefore, it is anticipated that future studies will incorporate a more diverse
array of skin phototypes to broaden the research dataset. Skin phototype variations are
a noted limitation in hyperspectral imaging, a spectral domain signal processing technol-
ogy where uneven lighting significantly impacts spectral results. To mitigate aberrations,
patient positioning, camera setup, and lighting must be consistent, with scanning posi-
tions clinically determined and adjusted for comprehensive coverage. White balance and
chromatic adaptation algorithms, including the Gray World and Bradford methods, are
employed to ensure color uniformity across different skin phototypes, effectively handling
chromatic aberration and diverse skin conditions.

In an age where advancements in medical technology are paramount, this study
echoes the necessity of continual innovation in the realm of medical diagnostics. Similar
to the evolving approach to managing diseases such as dementia and retinal disorders,
the application of HSI in dermatology indicates a transformative step in medical imaging.
By combining the precision of spectral analysis with the prowess of AI algorithms, this
research paves the way for more accurate and early detection of skin cancers, thus setting
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a new standard in dermatological diagnostics and patient care. The success of this study
not only reinforces the potential of hyperspectral conversion technology in skin lesion
analysis but also inspires further exploration into its applicability across various medical
imaging domains.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers16010217/s1, Figure S1: XYZ color matching function;
Figure S2: 12 principal components of Rspectrometer; Table S1: Root Mean Square Error of Sspectrum
and Rspectrometer.
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