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The tumor microenvironment (TME) is a critical determinant of tumor progression,
metastasis, and therapeutic outcomes. It consists of an extracellular matrix (ECM) and a
variety of stromal cells, which remain in constant crosstalk with each other and the tumor
cells present. Within this complex ecosystem, cancer-associated fibroblasts (CAFs) play a
pivotal role, orchestrating the TME through intricate interactions with other cells, leading
to the remodeling of the extracellular matrix (ECM) [1,2]. A recently published review
article in the journal Cancers by Joshi et al. [2] marvelously captured the information related
to the origin of CAFs and their multi-faceted roles in tumor development, metastasis,
angiogenesis, the immune microenvironment, and therapeutic resistance. The authors also
discuss the potential utility of CAFs as prognostic markers and therapeutic targets in types
of different cancer.

The origin of CAFs is often resident quiescent fibroblasts; however, research also
suggests that they can originate through the trans-differentiation of epithelial cells, en-
dothelial cells, pericytes, smooth muscle cells, bone-marrow-derived mesenchymal cells,
and adipocytes [3–9]. The proportion of CAFs derived from sources other than resident
fibroblasts varies among different tumor types. For instance, in breast cancer, adipocytes
contribute to CAFs, while in squamous cell carcinoma and pancreatic adenocarcinoma,
pericytes and stellate cells, respectively, are the major contributors [6,8,9]. Interestingly,
some reports also mention that CAFs can originate from cancer stem cells (CSCs) that gain
myofibroblast-like features [10–12].

Characterizing CAFs has been challenging due to their considerable heterogeneity
within tumors and across various cancer types [2,13]. Common markers used for CAF
identification include alpha-smooth muscle actin (α-SMA), vimentin, fibroblast activation
protein (FAP), fibroblast-specific protein 1 (FSP1), and platelet-derived growth factor re-
ceptor α/β (PDGFR-α/β) [2]. The diversity in these CAF markers often results from their
trans-differentiation, influenced by growth factors, miRNAs, and exosomes secreted by
cancer cells [9]. For example, factors such as CXCL12, Wnt7a, miR-9, and miR-125b from
cancer cells, can prompt resident fibroblasts to transform into α-SMA-expressing CAFs [14].
Moreover, TGF-β and PDGF can induce resident fibroblasts to express FSP, while miR-
370-3p can stimulate fibroblasts to secrete interleukin (IL)-1β, IL-6, and IL-8, contributing
to their transition into CAFs. These secreted factors commonly activate pathways such
as CXCR4/CXCL12, TGFβR/Smads, Wnt/β-catenin, and AKT/ERK during the transac-
tivation process of CAFs. Elevated FAP and PDGFR-α/β levels in CAFs correlate with
decreased survival rates, while heightened α-SMA expression is associated with intensified
tumor growth and metastasis across multiple tumor types [15]. The diversity in CAF
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markers offers opportunities to utilize specific biomarkers and CAF density for predicting
the nature of the disease and making prognostic assessments [16].

Once CAFs are established in the TME, they promote tumor growth through the
secretion of growth factors, cytokines, and chemokines, as well as through the shedding
of extracellular vesicles (EVs). CAF-secreted factors encompass IL6/8, IL1β, hepatocyte
growth factor (HGF), TGF-β, stromal-derived factor-1 (SDF-1/CXCL12), and PDGF [2].
These factors activate distinct pathways to facilitate tumor growth across various tumor
types. For instance, SDF-1/CXCL12 secreted by CAFs in pancreatic cancer promotes
chemoresistance, making CXCR4 signaling an attractive target for therapeutic develop-
ment [17,18]. CXCL12/CXCR4 signaling has also been shown to counteract docetaxel
therapy in prostate cancer [19]. Similarly, osteopontin (OPN) and vascular cell adhesion
molecule-1 (VCAM-1) secreted by CAFs in lung cancer activate AKT and MAPK signaling
to promote tumor cell invasion and metastasis [20,21]. In breast cancer, α-SMA-positive
CAFs induce EMT in tumor cells by secreting TGF-β and CXCL12 to activate their down-
stream signaling [22,23]. Similarly, CAFs from colorectal and ovarian cancers are shown to
secrete FGF-1, which stimulates MAPK/ERK signaling and promotes aggressive tumor
phenotypes [24,25].

CAFs’ role in tumor invasion and metastasis involves orchestrating ECM remodeling
and triggering EMT and actin-rich invadosome formation in tumor cells. In addition,
through dysregulation of enzymes like lysyl oxidases (LOXs), matrix metalloproteases
(MMPs), and transglutaminases, CAFs disrupt ECM stability, fostering invasion and dis-
semination of cancer cells [13,26]. Activation of TWIST, ZEB, SNAIL/SLUG transcription
factors by CAFs induces EMT, leading to heightened mesenchymal markers (vimentin,
fibronectin, N-cadherin) and suppression of epithelial junction proteins (E-cadherin, oc-
cludins, claudins) [27,28]. CAF-secreted TGF-β crucially promotes EMT, enhancing markers
such as vimentin, SNAIL, and ZEB2 [29,30]. Moreover, CAFs contribute to EMT through
the non-canonical Wnt pathway, often interacting with STAT-3 and survivin [31]. Other
factors such as IL-6, IL-8, OPN, HGF, and CXCL12 also influence EMT through diverse
pathways. For example, OPN affects the TWIST pathway, CXCL-12 triggers Wnt/β-catenin,
HGF facilitates collagen degradation, and IL-6 activates the STAT3 and MEK/ERK path-
ways [32–34]. The variations in cytokine secretion among CAFs in different tumors add
complexity to understanding their specific EMT-promoting mechanisms.

Emerging evidence suggests that CAFs frequently utilize exosomes to communicate
with tumor cells. Additionally, these exosomes carry various microRNAs (miRNAs),
facilitating migration, invasion, metastasis, and therapeutic resistance. Among the most
prevalent miRNAs found in CAF exosomes across different tumors are miR-21, miR378-
e, miR-148, and miR-92a-3p, known to be involved in EMT and therapeutic resistance
mechanisms [35].

It is suggested that cancer cells rely predominantly on glycolysis and not on mitochon-
drial oxidative phosphorylation (OXPHOS) for their energy needs even in the presence
of oxygen, a process known as aerobic glycolysis or the “Warburg effect”. However, in
some cancer cells, a “Reverse Warburg effect” is noted which results from the metabolic
coupling between cancer and stromal cells. Neoplastic cells trigger oxidative stress in
nearby fibroblasts by releasing reactive oxygen species (ROS), prompting glycolysis and
lactate production through NF-κB signaling. This reprograms CAFs, lowering caveolin
1 (CAV1) and increasing monocarboxylate transporter 4 (MCT4), leading to lactate re-
lease. Nearby cancer cells respond with heightened MCT1, enabling lactate uptake and
T53-induced glycolysis and apoptosis regulator (TIGAR) which suppresses glycolysis and
increases OXPHOS [36,37]. Similar observations have also been made between hypoxic and
non-hypoxic cancer cells [38]. In other instances, CAFs are shown to reuse cancer-derived
lactate to maintain fibrotic conditions and induce immunosuppression [39]. Thus, the
metabolic partnership between cancer cells and CAFs enables the efficient use of available
nutrient resources and oxygen to favor uninhabited tumor growth and metastasis.



Cancers 2024, 16, 211 3 of 5

The intricate involvement of CAFs in tumor growth, invasion, and metastasis po-
sitions them as potential therapeutic targets. Various markers expressed in CAFs and
pathways crucial to tumor growth and metastasis have been the focus of targeted therapies
in both pre-clinical and clinical trials. For instance, targeting the TGF-β pathway in hepatic,
ovarian, pancreatic, and breast cancers has shown efficacy in preventing CAF activation
and inhibiting metastasis [40–43]. However, clinical trials aimed at inhibiting MMPs did
not yield the desired outcomes, although monoclonal antibody targeting demonstrated a
reduction in tumor growth and metastasis [44]. Similarly, targeting FAP with antibodies in
lung cancer has shown promise, but its non-specific expression in CAFs is associated with
potential side effects [16,45]. Furthermore, targeting SDF-1, TGF-β, and IL-6 in CAFs has
displayed the potential to reverse tumor immunosuppression in clinical trials [46]. In pan-
creatic and breast cancers, targeting the hedgehog pathway exhibited potential by reducing
fibroblast accumulation [47] but was met with failure in a later clinical trial [48]. Similarly,
in another study, the depletion of CAFs induced immunosuppression and promoted tumor
aggressiveness [49]. Thus, CAFs’ involvement in cancer progression is more complex than
thought and may vary along the course of cancer evolution. The complexity arising from
diverse CAF subpopulations may underlie such contrasting observations and must be
studied in detail in order to develop a clinically useful intervention approach. Thus, our
comprehension of CAF markers, subpopulations, and signaling is still incomplete and
requires extensive investigations to reap clinical benefits for cancer patients from their
therapeutic targeting.
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