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Simple Summary: Device-assisted enteroscopy is the only diagnostic and therapeutic exam capable
of exploring the entire gastrointestinal tract. However, the diagnostic yield of this procedure is
not sufficient enough to assure a cost-effective panendoscopy, and there is significant interobserver
variability during the exam. Artificial intelligence tools have been proved to be beneficial in several
areas of medicine, namely in Gastroenterology, with a strong image component. However, the
development of deep learning models for application in device-assisted enteroscopy is still in an
embryonic phase. The authors herein aimed to develop a multidevice convolutional neural network
based on 338 exams performed in two renowned centers. The present model was able to accurately
identify multiple clinically relevant lesions across the entire gastrointestinal tract, with an image
processing time that favors its clinical applicability. The first worldwide panendoscopic model
showed the potential of artificial intelligence in augmenting the accuracy and cost-effectiveness of
device-assisted enteroscopy.

Abstract: Device-assisted enteroscopy (DAE) is capable of evaluating the entire gastrointestinal tract,
identifying multiple lesions. Nevertheless, DAE’s diagnostic yield is suboptimal. Convolutional
neural networks (CNN) are multi-layer architecture artificial intelligence models suitable for image
analysis, but there is a lack of studies about their application in DAE. Our group aimed to develop
a multidevice CNN for panendoscopic detection of clinically relevant lesions during DAE. In total,
338 exams performed in two specialized centers were retrospectively evaluated, with 152 single-
balloon enteroscopies (Fujifilm®, Porto, Portugal), 172 double-balloon enteroscopies (Olympus®,
Porto, Portugal) and 14 motorized spiral enteroscopies (Olympus®, Porto, Portugal); then, 40,655 im-
ages were divided in a training dataset (90% of the images, n = 36,599) and testing dataset (10% of
the images, n = 4066) used to evaluate the model. The CNN’s output was compared to an expert
consensus classification. The model was evaluated by its sensitivity, specificity, positive (PPV) and
negative predictive values (NPV), accuracy and area under the precision recall curve (AUC-PR).
The CNN had an 88.9% sensitivity, 98.9% specificity, 95.8% PPV, 97.1% NPV, 96.8% accuracy and
an AUC-PR of 0.97. Our group developed the first multidevice CNN for panendoscopic detection
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of clinically relevant lesions during DAE. The development of accurate deep learning models is of
utmost importance for increasing the diagnostic yield of DAE-based panendoscopy.

Keywords: artificial intelligence; deep learning; panendoscopy; device-assisted enteroscopy

1. Introduction

Device-assisted enteroscopy (DAE) is an exam that combines diagnostic properties
with tissue sampling and therapeutic endoscopy. Initially conceived for the investigation
of small bowels [1], DAE’s properties make it suitable for evaluation of the entire GI tract.
Typically, DAE is performed with a single- or double-balloon enteroscope, but recently, the
motorized spiral enteroscope has been an alternative [2].

DAE is commonly performed in various clinical settings, more commonly after capsule
endoscopy (CE) findings [3]. Ulcers and erosions are the most common pathological
findings in the small bowel, with diverse etiologies (namely Crohn’s disease, refractory
celiac disease, infections and neoplasms) [4]. DAE is capable of exploring a greater length
of ileal mucosa than conventional ileocolonoscopy, augmenting the diagnostic accuracy for
small-bowel Crohn’s disease. Additionally, in the presence of stricturing Crohn’s disease,
DAE allows balloon dilation of small-bowel strictures, reducing the need for surgery.

Additionally, the identification of small-bowel tumors in CE is a common indication
for DAE, with the possibility of tissue sampling being crucial to disease management [5,6].
Moreover, DAE is a useful exam in the management of polyposis syndromes, namely Peutz–
Jeghers syndrome, with endoscopic polypectomy as an alternative to small-bowel resection
in the course of multiple lesions found during the disease’s course [7]. Finally, DAE allows
marking of the area by a small-bowel neoplasia, enhancing minimally invasive surgery.

Additionally, DAE is commonly performed in the setting of obscure gastrointestinal
bleeding, particularly after a positive CE exam [8]. Angioectasias are the most common
finding in the setting of small-bowel bleeding, with the possibility of argon plasma coagu-
lation during the exam after lesion detection. However, the diagnostic yield in the presence
of OGIB is modest (56%, increasing to 75% if with a positive CE exam) [8].

Additionally, there has been an increased focus on double-balloon-assisted colonoscopy.
In fact, the use of a double-balloon enteroscope is useful in technically difficult colono-
scopies, achieving higher cecal intubation cases and less patient discomfort in patients with
difficult or previous incomplete colonoscopies [9]. However, this alternative use of the
enteroscope should be accompanied by a high diagnostic accuracy. Finally, DAE is also
performed in settings of altered anatomy. One of the main examples is the performance
of DAE in order to access an excluded stomach in patients with Roux-en-Y gastric bypass
in the setting of gastrointestinal bleeding or malignancy suspicion [10]. These alternative
uses of the enteroscope guide the need to enhance the diagnostic accuracy of DAE, not
only in the small bowel evaluation but also in a panendoscopic setting. Thus, despite
the potential capabilities of DAE, there is a need to increase its diagnostic yield in several
clinical settings.

In recent years, the application of artificial intelligence (AI) technologies in the medical
field has observed exponential growth. Convolutional neural networks (CNNs) are a
human cortex-inspired multi-layer architecture, with high proficiency for image pattern
detection [11]. As a matter of fact, CNN models have been developed in several medical
areas [12–14]. CE has been a focus of study in the development and application of deep
learning technologies, increasing its diagnostic yield with a significant reading time reduc-
tion [15–17]. In fact, the development of deep learning methods has been theorized as a
potential revolutionary tool to increase the diagnostic accuracy and cost-effectiveness of
DAE [10]. Nevertheless, the implementation of AI models for DAE is still in the early stages.
In fact, AI application in DAE has been studied for the identification of vascular lesions,
protuberant lesions, ulcers and erosions [18–20]. Nevertheless, the clinical application of
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such technology is dependent on the ability to identify different types of lesions throughout
a complete exam, while functioning in different devices. In this study, our group aimed to
develop the first worldwide multibrand CNN for panendoscopic automatic classification of
clinically relevant lesions in DAE, namely, vascular lesions, hematic residues, protuberant
lesions, ulcers and erosions.

2. Materials and Methods
2.1. Study Design

A bicentric study was performed for construction of the CNN. A total of 338 exams
consecutively performed at two Portuguese specialized centers (Centro Hospitalar Uni-
versitário São João and ManopH) between January 2020 and May 2023 were used for the
development of the CNN. During that period, DAE was performed by three experienced
gastroenterologists using three different devices: the double-balloon enteroscopy system
Fujifilm EN-580T (n = 226), the single-balloon enteroscopy system Olympus EVIS EXERA
II SIF-Q180 (n = 98) and the Olympus PowerSpiral Motorized Enteroscope PSF-1 (n = 14).
Our study respected the Declaration of Helsinki and was developed in a non-interventional
fashion. The study was approved by the ethics committee of São João University Hos-
pital/Faculty of Medicine of the University of Porto (No. CE 407/2020). Omission of
potentially identifying information of the subjects was ensured and each patient received
a random number assignment to obtain effective data anonymization for researchers in-
volved in the CNN. A legal team with Data Protection Officer (DPO) certification was
responsible for the non-traceability of the data in conformity with general data protection
regulation (GDPR).

2.2. Lesion Classification

The CNN comprised enteroscopy images from esophagic, gastric, enteric and colonic
segments. Each segment was reviewed in order to identify several categories of lesions.
The lesions selected for the model’s training and evaluation comprised a group of clinically
relevant alterations in the gastrointestinal mucosa, in which the CNN could have a role with
diagnostic and therapeutic implications. Vascular lesions included red spots, angioectasia
and varices. Red spots were considered as punctuate flat lesions with a diameter under
1 mm, without vessel appearance. Angioectasia were defined as a reddish lesion of tortuous
dilated clustered capillaries. Otherwise, varices were defined as venous dilations with a
serpiginous appearance. The protruding lesions were defined as tissue elevations above
the gastrointestinal epithelium, including polyps, flat lesions, subepithelial lesions and
nodules. Otherwise, ulcers were considered whitish base areas of loss of epithelial covering,
with surrounding swollen mucosa and a diameter of at least 5 mm. Mucosal erosions
consisted of areas of minimal loss of epithelial covering and normal surrounding mucosa.
The extracted images were classified by gastroenterologists with expertise in DAE (MMS,
HC, PA). Non-agreeable images were discussed between DAE experts and discarded in the
absence of a consensus.

2.3. CNN Development

The study design is represented through a flowchart in Figure 1. A total of
40,665 images were used for developing the model. The full dataset was divided into
a training dataset (comprising around 90% of the images, n = 36,599) and a testing dataset
(comprising around 10% of the images, n = 4066). The testing dataset was used for evaluat-
ing the model. In the training dataset, a 5-fold cross validation was performed, dividing
the training dataset into 5 similar sized subsets. The results of each subset were used to
identify the best parameters of the model that were used in the testing dataset.
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Figure 1. Study flow chart for the training and testing phases. DAE—Device-assisted enteroscopy. 
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Figure 1. Study flow chart for the training and testing phases. DAE—Device-assisted enteroscopy.
The term lesion refers to the presence of clinically relevant lesions.
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The CNN was created with the Xception model pre-trained on ImageNet. The convo-
lutional layers of the model were kept, assuring the transference of the learning to our data,
while the last fully connected layers were removed. The attachment of fully connected
layers was based on the number of the classes for classification of DAE images.

The model had 2 blocks with fully connected layers followed by a Dropout layer of
0.25 drop rate. A Dense layer with a size based on the number of categories to classify was
added. A learning rate of 0.0001, batch size of 64 and number of epochs of 20 was set by
trial and error. Our group used Keras libraries and Tensor-flow 2.3 to prepare the data and
run the model. The analysis was dependent on a computer with an Intel® Xeon® Gold
6130 processor (Intel, Santa Clara, CA, USA) and a NVIDIA Quadro® RTXTM 4000 graphic
processing unit (NVIDIA Corporate, Santa Clara, CA, USA).

2.4. Performance Measures and Statistical Analysis

The binary CNN calculated the probability of normal mucosa versus clinically rel-
evant lesions for each given image (Figure 2), with higher probabilities demonstrating
greater CNN prediction confidence. Heatmaps were generated based on localized fea-
tures responsible for the prediction of the model (Figure 3), attempting to achieve a better
comprehension of the model and guide clinical decision either during tissue sampling or
therapeutic procedures. The CNN’s classification was compared to three DAE experts’,
which remains the gold standard for evaluation of DAE images. Table 1 translates the
confusion matrix between experts and CNN classification.
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Figure 2. Output obtained from the convolutional neural network. The bars are a representation of
the estimated probability by the CNN. The model output was given by the finding with the highest
probability. The blue bars represent a correct prediction, whereas incorrect predictions are represented
by grey bars.
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Figure 3. Heatmaps generated by the convolutional neural network selecting the image location
responsible for the identification of clinically relevant panendoscopic lesions. The given probability
represents the level of certainty in lesion prediction.
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Table 1. Confusion matrix of automatic detection versus the expert’s classification in the testing
dataset of the CNN model. Number of cases (relative frequency).

Experts Classification

Normal Mucosa Clinically Relevant
Lesions

CNN Classification

Normal mucosa 3168 (0.97) 96 (0.03)

Clinically relevant
lesions 34 (0.04) 769 (0.96)

The model was evaluated through its sensitivity, specificity, positive predictive value
(PPV), negative predictive value (NPV) and accuracy (Table 2). These performance mea-
sures were represented with their means and 95% confidence intervals (CI). The model’s
global performance was evaluated with the precision recall (PR) curve and area under the
precision recall curve (AUC-PR). Sci-kit learn version 0.22.2 was used for the statistical
analysis [21].

Table 2. Performance measures of the 5-fold cross validation of the training dataset and testing dataset
for panendoscopic detection of clinically relevant lesions. N—number of patients. Sn—sensitivity.
Sp—specificity. PPV—positive predictive value. NPV—negative predictive value. Acc—accuracy.
()—95% confidence interval values.

Sn Sp PPV NPV Acc

Fold 1 0.87 0.95 0.81 0.96 0.93

Fold 2 0.87 0.97 0.90 0.96 0.95

Fold 3 0.89 0.99 0.97 0.97 0.97

Fold 4 0.91 0.99 0.97 0.98 0.97

Fold 5 0.90 0.99 0.98 0.97 0.97

Training
dataset mean

N = 38,599

0.887
(0.880–0.895)

0.980
(0.978–0.981)

0.926
(0.920–0.931)

0.970
(0.968–0.972)

0.960
(0.958–0.962)

Testing
dataset

N = 4068

0.889
(0.866–0.909)

0.989
(0.985–0.993)

0.958
(0.942–0.969)

0.971
(0.965–0.976)

0.968
(0.962–0.973)

3. Results
3.1. Construction of the Network

A CNN model was constructed with 40,655 images from 338 DAE exams. The training
dataset, with 90% of the total images, was split into five similar-sized independent subsets.
The remaining 10% of the total images were used for the validation dataset.

The CNN evaluated each individual image, predicting a classification with a level of
certainty, later compared with the expert’s classification. The inputs of the different subsets
of the training dataset allowed the trimming of the individual parameters of the CNN,
which were evaluated in the validation dataset.

3.2. Global Performance of the Network

The training dataset was developed with a five-fold cross validation. Table 2 demon-
strates the performance results of the folds of the training model. Thus, the training dataset
had 88.7% mean sensitivity, 98.0% specificity, 92.6% PPV and 97.0% NPV, with a mean
accuracy of 96.0%.

The validation dataset, with the remaining 10% of the total images, was used for
evaluation of the CNN’s performance. Table 1 shows the confusion matrix between the
CNN’s prediction and the experts’ classification. The deep learning model had a sensitivity
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of 88.9%, a specificity of 98.9%, a PPV of 95.8% and an NPV of 97.1%. The model revealed
an overall accuracy of 96.8% and an AUC-PR of 0.97.

3.3. Convolutional Neural Network Computational Performance

The CNN completed the evaluation of the testing dataset within 33 s, resulting in an
image processing time of 124 images per second.

4. Discussion

In this multicentric study, our group developed a CNN capable of automatic identi-
fication of clinically relevant lesions in a panendoscopic setting during DAE. Our model
revealed excellent performances in all the evaluated parameters, with an overall accuracy of
96.8%. These results were accompanied by an image processing time that favors the clinical
applicability of the technology. Additionally, the CNN was developed in a multidevice
setting, namely, single-balloon enteroscope, double-balloon enteroscope and motorized
spiral enteroscope devices, including all the types of devices used during DAE. This is, to
our knowledge, the first worldwide multidevice CNN capable of detecting several types of
lesions in esophagic, gastric, enteric and colonic segments during DAE.

Furthermore, it is important to discuss some methodologic points of our study. The
CNN was trained with a five-fold cross validation strategy. This design assures a balanced
distribution of different classes between folds, which is important in cases where class
imbalance is common [22]. The choice of a five-fold cross validation strategy significantly
reduced the random fluctuation typical of a single training–testing split. This methodologi-
cal point aids in creating a model capable of better generalization of unseen data—which
is of utmost importance in medical technology development and application [23]. Ad-
ditionally, our group opted for the use of PR curves instead of the commoner receiver
operating characteristic (ROC) curves to evaluate the discriminating ability of the model.
The current literature regards the excessive optimism of ROC curves in evaluating a model
performance in cases of data imbalance [24,25]. In cases of data imbalance, PR curves are
more informative and preferred [26]. Thus, in this CNN, normal images corresponded to
around 80% of the total images, favoring the use of PR curves, taking into consideration
the objective of identifying all the lesions images, instead of the commoner normal images
(which are part of the ROC concept).

On the other hand, beyond the increased complexity in terms of model characteristics,
a CNN should be capable of being trustworthy and comprehensible. Thus, in the last few
years, the concept of explainable AI has been a matter of intense discussion [27,28]. Our
group tried to address this need with the development of heatmaps for each classified
image, identifying the area responsible for the classification of the image (normal mucosa
vs. lesion). Therefore, our group recognizes that the development of heatmaps and other
explainable AI methods is of great interest to address the performance of procedures during
DAE (like tissue sample or argon plasma coagulation of angioectasias), but also to ensure
trustworthiness of the model and confidence among clinicians, who are responsible for its
use and implementation. Thus, addressing this question is of utmost importance not only
for the model’s developers but also for regulatory entities, ensuring accountability during
the AI development and implementation process.

In addition to explainability, data responsibility and the ethical or legal consequences
of the use of AI models are a matter of great interest [29]. Firstly, there is a need to discuss
the legal responsibility in the face of an adverse outcome or incorrect diagnosis. There is still
difficulty in establishing the autonomy and responsibility of an artificial intelligence model.
In fact, in case of an adverse event, it is important to determine if any of the parts failed and
determine responsibilities. Nevertheless, it is possible to have a misdiagnosis in the absence
of a clearly determined error from any part. On the other hand, a clinician that assumes a
decision based uniquely on a model’s output may be less trustworthy by the patient [30].
Therefore, it is important to have deep learning models’ outputs critically analyzed by
experts in the field. Additionally, the development and implementation of deep learning
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models is commonly slowed by clinicians’ fear to be replaced by AI tools. Contrarily,
AI models should be interpreted as a tool to increase clinicians’ diagnostic accuracy and
provide more time for patient care. Nevertheless, perfect synergy is highly dependent on
two factors: avoidance of the loss of skill by the clinician and a clear definition of decision
protocol in cases of machine–human disagreement [31]. The authors have addressed these
questions in the rewritten Discussion section of the paper.

The implementation of AI-based technologies in medicine is highly dependent on its
generalization for use in multiple devices [32]. The FAIR data principles were published
in 2016 as guiding tools for research data stewardship [33]. In order to fulfill the FAIR
principles, data should be findable, accessible, interoperable and reusable. In the present
study, the data are findable as they are assigned with unique and confidential classifiers
and saved in our records. Moreover, they also respect the principle of accessibility as they
can be accessed by the study investigators respecting the patient confidentiality issues and
ethical principles described in the methods section. Additionally, our data are reusable,
conceived to allow the continuous development of the convolutional neural network and
application in another models. Taking into account the need to fulfill these four principles,
our group regards the proof of methodological development in the fulfillment of system
interoperability, which is not always addressed by the majority of deep learning models
published in Gastroenterology. Thus, the interoperability challenge is a discussion topic in
multiple science fields [34–36]. Our group has addressed that concern, developing a CNN
that works in three different enteroscopes, comprising single-balloon, double-balloon and
motorized spiral enteroscopy devices, solving a fundamental interoperability challenge
for applying the technology. This is, to our knowledge, the first worldwide CNN for
panendoscopic detection of clinically relevant lesions in a multidevice setting, achieved
through a large image dataset.

The development of artificial intelligence models encompasses several methodological
steps, translated by the technological readiness level (TRL) scale [37]. In fact, the TRL is
very different between Gastroenterology fields. For instance, capsule endoscopy is one of
the main areas for the development of deep learning models in Gastroenterology [38,39].
However, the majority of studies are still in an early development phase and not validated
in the clinical practice. On the other hand, in colonoscopy, a computer-aided diagnostic
software is already disposable in clinical practice (GI Genius, Medtronic®), being proficient
in detecting colorectal polyps and predicting their histology [40]. Additionally, the software
is capable of working with different endoscopy devices, achieving a solution for the
interoperability challenge. However, the technology is dedicated to the evaluation of colonic
mucosa, unsuitable for a panendoscopic evaluation of the gastrointestinal tract, and is
centered in the detection of protuberant lesions. Our model, although being developed in a
less-performed exam like device-assisted enteroscopy, focuses not only on the achievement
of system interoperability but also the panendoscopic detection of multiple clinically
relevant lesions. However, it is still at a low TRL and needs larger prospective real-time
studies to implement the model into clinical practice.

DAE is a safe procedure, albeit with non-neglectable risks for adverse events, which
are mostly minor and self-limiting. The advent of spiral motorized enteroscopy was
accompanied by an increase in these minor adverse events. In fact, a work by Singh et al.
revealed a minor adverse events rate of 48%, including superficial mucosal tears with
middle ooze and mucosal tears [41]. Additionally, the distinction between these minor
iatrogenic lesions and true lesions is a challenge in DAE. Differentiating angioectasias from
iatrogenic lesions or red spots is challenging. Additionally, protuberant lesions like those
verified in Peutz–Jeghers syndrome can be mistaken with irrelevant xanthelasmas. The
impossibility to distinguish between these entities can prompt to unnecessary treatment,
with non-neglectable risks of complications or an increase in procedure time. Deep learning
models have been proposed to have a role in these clinical settings, with the possibility
of not only increasing the diagnostic accuracy of an exam but also reducing the rate
of unnecessary procedures. Thus, our model addressed this question, revealing 98.0%
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specificity with great accuracy for distinguishing between vascular lesions, ulcers, erosions
and minor iatrogenic lesions developed during the exam, especially when performing
spiral enteroscopy. This technical specificity is of great interest in reducing the performance
of unnecessary argon plasma coagulation procedures, which are not only iatrogenic but also
require higher exam completion time and are associated with increased exam-related costs.

The concept of panendoscopic evaluation of the GI tract with a single exam was
introduced with the advent of minimally invasive capsule panendoscopy [42,43]. Never-
theless, capsule endoscopy (CE) is incapable of tissue sampling and therapeutic procedures.
Therefore, DAE is the only exam with therapeutic purposes capable of the evaluation
and management of esophageal, gastric, enteric and colonic mucosa pathologies. Thus,
the development of a CNN capable of identifying lesions in a panendoscopic setting is
of utmost importance to increase the clinical applicability of the model and the exam
itself. Indeed, this is the first validated model to detect several clinically relevant lesions
in a panendoscopic setting, achieving excellent results throughout esophagus, stomach,
enteric and colonic segments of the exam. This model represents a critical milestone in
implementing AI in digestive endoscopy, increasing the cost effectiveness of the exam in a
panendoscopic evaluation.

In spite of the exponential growth in the development of deep learning models for
CE [44,45], the application of AI technologies to DAE is still in a premature state, with
scarce works applying deep learning models to augment the diagnostic performance of
the exam. Additionally, the existing works were focused on detecting a specific type of
lesion [18–20], which guarantees a diminished clinical applicability and a lower technol-
ogy readiness level (TRL) of the technology. This work constitutes a landmark with the
development of a CNN capable of detecting clinically relevant lesions during DAE, namely,
vascular and protuberant lesions, hematic residues, ulcers and erosions. Additionally, this
work was developed with images of both single-balloon, double-balloon and motorized
spiral enteroscopes, solving a relevant interoperability challenge. The development of
an explainable AI method like heatmap generation is of great importance to address the
model’s trustworthiness and accountability.

Our group trained and validated the first panendoscopic CNN for detecting clinically
relevant lesions during DAE, with high global accuracy and image processing capacities.
Nevertheless, our CNN is still in an embryonic phase and not ready for clinical applicability.

This study contains some limitations. Firstly, it was developed with a retrospective
design. Therefore, there is a need for larger prospective multicentric studies in the future
to ensure clinical implementation of the models. Secondly, the CNN was based on still
images, creating a need for real-time evaluation of panendoscopic lesions during DAE.

5. Conclusions

In conclusion, DAE is the only exam with diagnostic and therapeutic purposes capable
of assuring panendoscopic evaluation of GI tract. However, the multiplicity of findings
during this exam and regional differences between the mucosa of the different GI tract
portions favors the implementation of AI models to increase the diagnostic ability and
aid during therapeutic procedures. To our knowledge, our study reveals the first deep
learning model capable of identifying clinically relevant lesions in a panendoscopic and
multidevice setting (including the majority of DAE devices used in clinical practice). The
development and application of these systems could amplify the indications and benefits of
DAE, increasing its diagnostic yield and cost-effectiveness. In the future, larger prospective
multicentric studies are needed to develop and apply these models.
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