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Simple Summary: Endometrial cancer, the most common gynecological malignancy in developed
countries, poses a growing challenge with rising incidence and mortality rates. This review explores
how metabolomic technology can offer valuable insights into the molecular aspects of the disease. By
identifying new possible metabolite biomarkers, it has the potential to improve the accuracy of diagnosis,
prognosis, and monitoring, thereby revolutionizing the management of endometrial cancer.

Abstract: Endometrial cancer, the most prevalent gynecological malignancy in developed countries,
is experiencing a sustained rise in both its incidence and mortality rates, primarily attributed to
extended life expectancy and lifestyle factors. Currently, the absence of precise diagnostic tools
hampers the effective management of the expanding population of women at risk of developing this
disease. Furthermore, patients diagnosed with endometrial cancer require precise risk stratification
to align with optimal treatment planning. Metabolomics technology offers a unique insight into the
molecular landscape of endometrial cancer, providing a promising approach to address these unmet
needs. This comprehensive literature review initiates with an overview of metabolomic technologies
and their intrinsic workflow components, aiming to establish a fundamental understanding for
the readers. Subsequently, a detailed exploration of the existing body of research is undertaken
with the objective of identifying metabolite biomarkers capable of enhancing current strategies
for endometrial cancer diagnosis, prognosis, and recurrence monitoring. Metabolomics holds vast
potential to revolutionize the management of endometrial cancer by providing accuracy and valuable
insights into crucial aspects.

Keywords: endometrial cancer; metabolomics; biomarker discovery; metabolic profile

1. Methods

This review adheres to the guidelines outlined in the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) [1]. A-V.M. and E.N. conducted the
study selection using two major databases, PubMed and Scopus, before December 2023.
Various combinations of terms such as “endometrial cancer”, “metabolomics”, “endometrial
cancer biomarkers”, “metabolomics for biomarker discovery”, and “data analysis for
metabolomics” were employed in the search. Given the interdisciplinary nature of this
study, a wide range of data sources, encompassing peer-reviewed articles such as reviews,
systematic reviews, and investigative papers, as well as book chapters were considered.
Articles were considered eligible for the review if they met the following inclusion criteria:
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(a) gave relevant information on endometrial cancer, (b) gave relevant information on
metabolomics, data analysis, or biomarker discovery (c) gave relevant information on
endometrial cancer biomarker discovery for either diagnosis or prognosis. Exclusion
criteria were: (i) case reports, editorials, unpublished studies, (ii) in silico analysis only,
(iii) data not fully written in English.

2. Endometrial Cancer
2.1. Epidemiology

Endometrial cancer (EC) is the most prevalent gynecological malignancy across devel-
oped countries [2]. The incidence of EC is steadily increasing, together with disease-associated
mortality, and has become the sixth most common female cancer with 471,336 cases and
89,000 deaths in 2020 [3,4]. Three factors can be directly linked to the EC increase: the de-
mographic shift towards an aging population, continued fertility decline, and the growing
prevalence of obesity [5,6].

2.2. Diagnosis

Postmenopausal bleeding (PMB) is a prevalent symptom of EC and accounts for
around two-thirds of all gynecological visits among perimenopausal and postmenopausal
women. While postmenopausal bleeding is considered a red-flag symptom of EC and is
reported in 90% of women with EC, the likelihood of an EC diagnosis in women with PMB
is only between 5% to 10% [7–9].

Diagnosing EC typically involves a standard work-up that may include transvaginal
ultrasound, which can be followed by endometrial biopsy, or dilatation and curettage, often
accompanied by hysteroscopy. These procedures can be costly, invasive, and painful for
patients, with a risk of life-threatening uterine perforation and other complications. Thus,
the development of a safer, more cost-effective alternative to the current standard diagnostic
practice is urgent. In this context, myriad biomarkers from distinct biological origins (lipids,
sugars, nucleic acids, proteins, etc.) have been studied but only a few, namely, CA-125 or
HE4, have been successfully developed [10]. However, these methodologies are not yet
considered as the standard for EC diagnosis because there is a lack of definitive clinical
evidence to support their extended use [11–14].

2.3. Prognosis

Most patients with EC are diagnosed at early stages of disease. Overall, the five-year
survival rate for endometrial cancer stands at an encouraging 81%. The outlook becomes
more favorable when the cancer is detected and treated in its early stages. For patients who
receive treatment before the cancer progresses beyond stage II, and if a hysterectomy is
effectively performed, the survival rate skyrockets to an impressive 95% [15]. In young
women diagnosed with early-stage EC with no invasion of the myometrium, it should be a
priority to preserve fertility. Metabolomic screening presents an opportunity to diagnose
and categorize those women, offering valuable insights into the suitability of fertility-
preserving treatments for specific patients [16]. Unfortunately, prognosis takes a dramatic
downturn when EC advances to stage III. At this juncture, the five-year survival rate
drops to 17%. This contrast in survival rates highlights the critical role played by routine
screenings, quick diagnostics, and effective treatment. Other than spread or tumor grade,
there are other factors that are taken into account when performing a prognosis: risk of
nodal involvement and muscle invasion, which have a proven influence in recurrence, and,
finally, hormone receptor status [8].

In conclusion, the statistics surrounding endometrial cancer survival rates underscore
the significance of early detection and appropriate treatment options. While an 81% overall
survival rate is encouraging, it is essential to strive for early diagnosis to maximize the
chances of a positive outcome, with a remarkable 95% survival rate attainable in cases
where treatment commences before the cancer progresses.
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2.4. EC Types: Histological and Molecular Classification

Defining the histological tumor type is a very relevant prognostic factor in EC. Tra-
ditionally, ECs were classified either as type I or endometrioid carcinoma or type II or
non-endometrioid endometrial carcinoma. This dualistic classification has proven inef-
fective due to the overlapping characteristics at the clinicopathological and molecular
levels [17,18]. The 5th edition of WHO Classification of Female Genital Tumors [19] has
generated a new classification method based on 8 groups: (i) Endometrioid carcinoma
(EEC); (ii) serous carcinoma (SC); (iii) clear cell carcinoma (CCC); (iv) mixed carcinomas
(MC); (v) undifferentiated carcinoma (UC); (vi) carcinosarcoma (CS); (vii) other unusual
types, such as mesonephric-like; and (viii) gastrointestinal mucinous type carcinomas. All
of these different histological tumor types exhibit different precursor lesions, molecular
features, microscopic appearance, and clinical progression [19]. Moreover, there are ad-
ditional histopathological characteristics that can be analyzed to determine prognosis or
risk stratification of ECs such as tumor grade and Federation of Gynecology and Obstetrics
(FIGO) stage [20,21].

In 2013, the Cancer Genome Atlas (TCGA) Research Network revolutionized the
approach to EC classification [22]. Using a combination of whole genome or exome se-
quencing, microsatellite instability (MSI) assays, and copy number analysis, ECs were
grouped into 4 distinct molecular subtypes. Subsequent research has revealed that cost-
effective immunohistochemical and molecular tests can function as substitutes for the
intricate and expensive analyses conducted by TCGA, providing a more economically
viable alternative [23,24]. The four EC molecular subtypes defined by the TCGA include:
(i) the POLE ultra-mutated group comprising tumors with POLE exonuclease domain
mutations that has the best prognosis, (ii) the MSI or mismatch repair deficient (MMRd)
hypermutated group with intermediate prognosis, (iii) the p53 abnormal tumor group
(also named “copy number high”) with the worst prognosis, (iv) and, finally, the group
characterized by a low number of somatic copy number alterations (“also known as copy
number low”), which presents good to intermediate prognosis.

3. Metabolomics: A Tool against Cancer

Over the past four decades, solid advancements in technology and computational
tools within the field of metabolomics have greatly increased the accessibility of these
technologies. These developments have paved the way for the creation of personalized
metabolic profiling, which, when combined with personalized genomics, form the corner-
stone of personalized medicine. These emerging metabolomic platforms have opened new
possibilities in cancer screening, diagnosis, and treatment [25].

The metabolome is the total number of metabolites present within an organism. Since
metabolites are both intermediate and downstream molecules of the genome, transcriptome,
and proteome, the metabolome serves as a comprehensive representation of the human
phenotype in both health and disease, effectively summarizing the findings of other ‘omic’
technologies. It is considered that metabolites associated with cancer may arise from
two distinct sources: Firstly, as by-products of cellular processes triggered by neoplastic
transformation and cellular proliferation and, secondly, due to the body’s immunological
response to the disease [26,27].

In metabolomics analysis, two distinct approaches are employed, each serving dif-
ferent objectives: Nontargeted metabolomics and targeted metabolomics. Nontargeted
metabolomics, also referred to as profiling metabolomics, takes a hypothesis-free approach
by striving to detect as many metabolites as possible in a given sample. On the other
hand, targeted metabolomics aims to precisely quantify the absolute concentrations of a
predefined set of metabolites and is therefore, a hypothesis-driven approach [28]. While
untargeted metabolomics are very suitable for the discovery phase of biomarker research,
targeted approaches are applied for verification and validation of such biomarkers, hence,
the combination of both approaches is needed to complete the discovery and validation of
a biomarker [26].
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3.1. Metabolomics Workflow

A metabolomics assay for either cancer diagnosis or prognosis involves a systematic
workflow to analyze and identify changes in the metabolome of individuals to detect
cancer-related biomarkers. This workflow typically consists of several key steps that are all
equal in relevance (Figure 1).
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Figure 1. Diagram depicting the typical workflow followed in a biomarker discovery process.
Adequate cohort selection, as well as appropriate sample collection and conservation are fundamental
to avoid identification of false or irrelevant biomarkers. The most commonly employed platforms are
mass spectrometry based. After spectra acquisition, statistical tests are run to discover biomarkers.
These targets are finally employed to develop machine learning models and/or validated in a clinical
context. Created with Biorender.com.

3.1.1. Sample Selection and Handling

The careful selection of patients is very relevant when conducting biomarker discovery
or validation studies to mitigate selection bias. This bias arises when study participants
are chosen in a manner that may not accurately represent the intended population for
analysis [29]. To minimize selection bias, it is essential that both cases and controls closely
resemble each other in all aspects except for the condition of interest. For example, for
diagnostic and prognostic biomarker studies related to EC, controls should include women
undergoing investigation for PMB who do not have EC. Whenever possible, controls should
be matched to cases based on demographic factors such as age, ethnicity, BMI, comorbidities,
and lifestyle factors [30]. Cases should be confirmed to have EC through histology to
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reduce misclassification bias. Additionally, sample size considerations are closely linked to
statistical power and are vital for the reproducibility of study findings [28,31].

In the field of EC metabolomics, five main categories of samples are typically utilized,
including blood, serum, urine, tumor tissue, and uterine aspirates (UA). Among these,
blood, and serum, often collectively referred to as blood-based samples, are particularly
favored as sources of biomarkers. This preference arises from their high accessibility
and the ability to obtain repeated measurements over short time intervals. In contrast,
collecting tumor tissue or UA is more invasive and distressing [32–34]. Although blood
biomarkers are more cost and time-effective than tumor or UA samples, their immediate
practical applicability in clinical settings is relatively uncertain. The main limitations stem
from the challenges of measuring and standardizing thresholds, as well as their lack of
specificity and sensitivity. On the other hand, tumor tissue sampling, while less palatable
and conforming to patients’ preferences, serves as the gold standard for diagnosis by
pathologists worldwide and since extraction comes from the primary site of cancer, the
amount of confounding variables is reduced [33,35–37].

An alternative biomarker source is uterine aspiration, a minimally invasive medical
procedure that employs vacuum aspiration to safely remove contents of the uterus. This
procedure stands as an important intermediary step bridging the delicate balance between
patient comfort and providing robust biomarkers. With its growing importance in the field
of medical research, there is a body of evidence that indicates the utility of UA as a means
to develop innovative biomarkers for EC. Numerous reports have already harnessed the
potential of UA in their efforts to uncover novel and more precise biomarkers associated
with EC [38–40].

A final source of metabolomics-based biomarkers is urine. Urine is an advantageous
source of metabolic-based biomarkers due to its non-invasive nature and ease of collection
without any associated risks. Urinary metabolites can arise from systemic compounds
that undergo chemical alterations and are subsequently excreted in urine, or from the
possible presence of tumor-derived metabolites released into the lower genital tract and
contaminating the urine. Nevertheless, only a limited number of urinary metabolomic
investigations have been conducted in the context of EC and there is still uncertainty
regarding its clinical utility [41,42].

Maintaining the integrity of samples is of utmost importance to discover reliable
metabolomic biomarkers. Pre-analytical factors related to sample collection, storage, trans-
portation, and processing can introduce false signals into clinical samples, leading to
erroneous positive results [43]. Therefore, it is essential to handle samples with care and
consistency to ensure meaningful outcomes. Standard operating procedures should be in
place, including quality control checks at every step of the analytical process. Exposure of
clinical samples to unfavorable conditions that could lead to significant metabolite degra-
dation should be avoided. For instance, sample preparation techniques should include
temperature and pH regulation to prevent alterations in sample metabolites. It is also
recommended to encourage effective sample storage practices, such as storing samples
in multiple aliquots, to minimize the introduction of artifacts from multiple freeze-thaw
cycles, which can affect study results [44,45].

3.1.2. Sample Processing

Metabolomic profiling is commonly performed on two different platforms: Nuclear
magnetic resonance spectroscopy (NMR) and Mass spectrometry (MS). However, there are
alternative platforms like metabolic flux analysis and vibrational spectroscopy [46]. NMR
spectroscopy is a powerful analytical technique used to examine the composition of samples by
harnessing the unique electromagnetic properties of metabolites within a given sample when
subjected to a magnetic field. Each metabolite within a sample emits its distinct NMR signal,
which is sensitive to its molecular structure and chemical environment. The NMR platform
offers quick results and the chance to safeguard samples for future investigations [47].
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There are a number of chromatography platforms that can be coupled to MS for molecule
separation including: Ion-mobility-MS (IM-MS), direct injection-MS (DI-MS), liquid chro-
matography (LC-MS), capillary electrophoresis-MS (CE-MS), and gas chromatography-MS
(GC-MS). All of them provide vast amounts of chemical information and are more suitable
for quantitative screenings. However, chromatography platforms are more expensive and
time-consuming than NMR. The two most popular approaches are LC-MS and GC-MS. LC-
MS is a moderately high-throughput method that allows to separate an indefinite number
of mixed compounds in a liquid phase using a stationary phase. It obtains good molecular
resolution and presents a rather simple sample preparation. LC-MS is ideal for studying
intricate biological samples and has emerged as the most commonly used technique in
metabolite profiling of biological tissue since it can process high molecular weight, polar,
and thermally liable molecules, unlike GC-MS. A further optimization is the ultra-high
pressure liquid chromatography, which is capable of producing the best resolution and
has a higher peak capacity by packing samples in <2 µm units and employing very high
pressure to improve the mobile phase speed. On the other hand, GC-MS is commonly used
for the analysis of small molecular substances that are thermally stable. It relies on sample
vaporization at >300 ◦C, which obtains astounding resolution and very high reproducibility.
However, it’s a rather expensive technique with intricate sample preparation that requires
derivatization of the original analytes [48,49].

Following the separation of molecules based on their retention time through chro-
matography, the next step involves their analysis using either a single-configuration mass
analyzer (MS) or tandem (MS/MS). The most commonly used mass analyzers are the
Quadrupole (Q), Quadrupole ion trap (QIT), Time-of-flight (TOF), and Orbitrap (OT). In
this procedure, molecules are sorted based on their mass-to-charge ratio by utilizing either
an electric or magnetic field to control the movement of ions generated from a target analyte.
These ions are subsequently directed through a detector, which quantifies the abundance
of ions at each mass-to-charge ratio. The acquired data is then subjected to analysis and
compared with existing mass spectral databases to determine the molecular constituents.
The exceptional sensitivity of mass analyzer makes it suitable for both targeted and non-
targeted analyses. However, it is highly dependent on specific experimental conditions
and instrument settings; therefore, sample preparation and handling become critical steps
that determine the outcome of the analysis. Mass analyzer offers the chance to perform
large-scale clinical studies with minimal sample volume due to its high sensitivity, but it is
laborious and consumes the sample. For these reasons, thorough application of a suitable
platform for each goal is essential to correctly perform metabolomics analysis [6,50].

3.1.3. Data Analysis

Adequate data analysis is equally important as correct sample preparation and han-
dling. The choice of statistical analysis is particularly important given the number of
features that are simultaneously analyzed and the impact of confounding variables. The
risk of a false positive test result is very high in this type of assay; therefore, certain
statistical tools need to be applied. Confounding variables derived from demographic
variability and exogenous metabolite variability can be managed via group stratification,
exclusion of metabolite markers, and application of multivariate statistics [51,52]. Raw
data is processed to remove noise, correct for instrument variability, and align spectra
accurately. Data preprocessing steps may include peak picking, noise reduction, baseline
correction, and normalization. Processed data is subjected to statistical and bioinformatic
analyses. Multivariate statistical techniques, such as principal component analysis (PCA)
and partial least squares-discriminant analysis (PLS-DA), are commonly used to identify
patterns and differences between cancer and control groups. Univariate statistical tests
may be employed to identify individual metabolites that are significantly altered in cancer
samples. Additionally, hierarchy and classification analysis such as heatmaps and random
forests are applied to visualize the degree of separation between study groups [53–56].
Metabolites that exhibit significant differences between cancer and control groups are con-
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sidered potential biomarkers. To gain insights into the underlying biological mechanisms,
pathway analysis is conducted to identify metabolic pathways that are perturbed in cancer
as this can help in understanding the metabolic alterations associated with the disease.

3.1.4. Model Development and Clinical Validation

Artificial Intelligence (AI) has gained significant attention in the last years, both as
a conceptual framework and a robust research field. It offers a multitude of applications
for comprehending structures and trends within vast datasets produced by modern high-
throughput experiments [51].

Machine Learning (ML) algorithms are fundamentally rooted in their ability to con-
struct mathematical models from a set of sample data [57,58]. Typically, a dataset used to
develop a machine learning model is split into two subsets: a training subset, and a testing
subset. The initial learning process relies on an ample supply of data, providing the ML
algorithm with numerous opportunities to learn and refine the model. The training dataset
guides the algorithms to make predictions without the need for explicit programming.
The final step is to assess the model’s performance on an independent dataset containing
previously unseen data [59].

The union of AI and ML opens up an extensive realm of possibilities. ML, specifically,
is instrumental in crafting models capable of handling massive datasets and resolving
intricate problems. However, in comparison to other biomedical and life science areas,
such as neuroscience and genomics, the incorporation of AI into metabolomics research has
lagged. One primary reason for the slower integration of AI in the metabolism field is the
scarcity of high-quality datasets, which are fundamental for the successful implementation
of ML algorithms and platforms.

Nevertheless, there are already several reports that utilize this technology to develop
EC biomarkers. For instance, in 2022, Troisi and colleagues successfully developed a
machine learning model that obtained 96% accuracy in EC diagnosis [60]. In another
study, Houri and colleagues generated a machine learning model to predict EC recurrence.
Employing a multifactorial approach, their model showed a specificity of 55% and a
sensitivity of 98%, with an AUC (area under the curve) of 0.84 [61].

Next, biomarkers and models are validated in larger clinical cohorts to assess their clinical
utility and diagnostic accuracy. Subsequently, results are reported, and interpretations are
made based on the identified biomarkers and predictive models. Finally, clinical trials and
studies are conducted to evaluate the efficacy of metabolomics-based cancer diagnosis in
real-world settings. Consequently, clinical reports are generated to aid in cancer diagnosis
and treatment decisions. Additionally, metabolomics data can be integrated with genomic,
proteomic, and clinical data to provide a comprehensive understanding of cancer biology.

4. Metabolomics: Applications in EC Diagnosis and Prognosis
4.1. Metabolomics for EC Diagnosis

An optimal EC diagnostic biomarker should possess the capability to identify ECs at
various grades and stages in women experiencing symptoms and to screen asymptomatic
high-risk individuals, with minimal occurrence of false positives or false negatives. In
recent years, multiple groups have described various metabolite signatures that aim to
accurately diagnose EC (summarized in Table 1).

The most commonly dysregulated metabolic pathways in EC are lipid and glycolysis-
related pathways. Consequently, there are multiple reports that have identified phos-
phocholines (PC), acylcholines, carnitines, and other lipid by-products as promising di-
agnostic biomarkers. For example, a study developed by Knific and colleagues, em-
ployed 126 plasma samples (61 patients with endometrial cancer and 65 control patients)
and identified three phosphatidylcholines (PC C40:1, PC C42:0 and PC C44:5) that are
decreased in EC patients. Furthermore, they composed a diagnostic model that is defined
as the ratio between acylcarnitine C16 and phosphatidylcholine PC C40:1, the ratio between
proline and tyrosine, and the ratio between the two phosphatidylcholines PC C42:0 and
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PC C44:5; which provided a sensitivity of 85.25%, a specificity of 69.23%, and an AUC of
0.837 [62]. Moreover, these biomarkers have proven to be dysregulated in other sample
types such as cervicovaginal fluids and endometrial tumor tissues [63,64]. In another report,
Cheng and colleagues designed a unique lipid biomarker panel that gathers lipidomic
and transcriptomic data. They developed a machine learning model using a total of 78 pa-
tients: 38 samples were used as the discovery set and 40 samples as the validation set. The
lipidomic study unveiled an increase in various lipid species (isolithocholic acid, TG (16:0)
among others) and a decrease in certain carnitines (Carnitine C9:0 and Carnitine C10:1-OH).
Additionally, pathway enrichment analysis consistently demonstrated disturbances in
sphingolipid and glycerophospholipid metabolism. Consequently, a lipid biomarker panel
was established, consisting of ursodeoxycholic acid, PC(O-14:0_20:4), and Cer(d18:1/18:0).
This panel exhibited strong diagnostic efficacy, with an AUC of 0.903 for distinguishing
early-stage EC patients from healthy controls and an AUC of 0.928 for distinguishing
them from atypical endometrial hyperplasia patients. Remarkably, the lipid biomarker
panel outperformed the clinically established indicators for EC diagnosis, including HE4,
CA125, CA153 and CA199 [65]. Audet-Delage and their research team applied MS-based
untargeted metabolomics to analyze pre-operative serum samples from 36 patients with EC
and 18 control subjects. Their study revealed an increase in the levels of conjugated lipids,
specifically acylcholines, monoacylglycerols, and acylcarnitines in EC cases, while free fatty
acids exhibited a decrease. Additionally, they identified an increase in C5 acylcarnitine
2-methyl butyryl carnitine in EC cases [66]. These findings were in line with those reported
by Bahado-Singh, who also observed an increase in acylcholines in EC [67].

Some papers suggest acylcholines might enhance the penetration of estradiol into tis-
sues, potentially contributing to endometrial carcinogenesis [63], explaining why multiple
research articles have described their dysregulation. On the other hand, acyl-carnitines are
14-carbon fatty acids linked to a carboxylate through an ester bond and play vital roles in mi-
tochondrial fatty acid oxidation [68]. They are known to be enriched in hypoxic tissues and
have previously been associated with the biochemistry of breast cancer [68–70]. Other lipid
metabolites upregulated in EC include monoacylglycerols, which result from the enzymatic
breakdown of triacylglycerols and diacylglycerols [66,68]. These glycerides are ultimately
metabolized by monoacylglycerol lipase into free fatty acids, a group of lipid metabolites
that are downregulated in EC. The potential downregulation of the monoacylglycerol lipase
enzyme in EC could theoretically account for these observed findings [66,71].

In a cross-sectional diagnostic accuracy study, Paraskevaidi and colleagues used
342 plasma samples from women with EC, 68 samples of atypical hyperplasia, and
242 healthy controls to demonstrate that spectroscopy has the capability to detect EC
with 87% sensitivity and 78% specificity [72]. Notably, the diagnostic accuracy was most
pronounced for Type I EC and atypical hyperplasia, with sensitivities of 91% and 100%,
and specificities of 81% and 88%, respectively [72]. In a study conducted in 2022 by Arda
Düz and team, HR-MAS NMR spectroscopy was employed on a cohort of 17 EC tumor
samples and 18 samples of healthy endometrial tissue. The aim was to validate a distinct
metabolomic profile associated with EC. The findings of this study suggest elevated levels
of lactate, glucose, choline, and various amino acids in EC tumor tissue compared to healthy
endometrial tissue. These results closely align with and reinforce the findings reported in
several of the studies presented earlier [73].

Table 1. Overview of the most relevant metabolomics biomarkers for EC diagnosis.

Metabolite Group Platform Sample Type Function and
Relevance

PC C40:1, PC C42:0, PC44:5
Acylcarnitine C16

Hydroxysphingomyelins
[60]

Phospholipids
Conjugated lipids

Sphingolipid

Electrospray
ionization-tandem
mass spectrometry

Serum

Related with cell
membrane synthesis
and transport of fatty
acids for B-oxidation
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Table 1. Cont.

Metabolite Group Platform Sample Type Function and
Relevance

PCs
Phosphatidylethanolamine

(PE)
Phosphatidylinositol (PI)

Phosphatidylglycerol (PG)
Linoleic acid
Glutamine,

phenylalanine [61]

Phospholipids
Polyunsaturated
carboxylic acid
Amino acids

UPLC-ESI-TOF-MS
In-vitro assays

Tumor and non-tumor
tissue samples

Related with cell
membrane synthesis,

RNA transcription, etc.

PC
Malate

Asparagine
[62]

Phospholipids
Dicarboxylic acid

Amino acids
NMR Cervicovaginal Fluid

Related with cell
membrane synthesis,

protein synthesis, and
NADH transport for
energy production.

Ursodeoxycholic acid
PC(O-14:0_20:4)
SM(d18:0/18:0)
Cer(d18:1/18:0)

HexCer(d18:1/18:1)
[63]

Steroid acids
Phospholipids
Sphingolipid

UHPLC-MS/MS
(Lipidomics) Serum

Pro-inflamatory
capacities, de-novo

synthesis of ceramides,
cell survival and

transduction.

PC C14:2
PC C38:1 [65]

Carnitine
(Conjugated lipid) NMR and MS Serum Fatty acid transport

Octenoylcarnitine
Linoleic acid
Stearic acid
Valine [68]

Conjugated lipids
Polyunsaturated
carboxylic acid

Saturated
monobasic acid

Amino acids

GC-MS Serum

Fatty acid transport,
tumor growth,

inhibition of tumor
growth

(downregulated in EC),
protein synthesis.

6-keto-PGF1
PA(37:4)

LysoPC(20:1)
PS(36:0) [71]

Prostaglandin
Phospholipids UPLC-MS (Lipidomics) Serum

6-keto-PGF1 is a
prostaglandin

derivative, which can
promote tumor growth.

Serine
Glutamic acid
Phenylalanine

Glyceraldehyde-3-
phopsphate [58]

Amino acids
Sugar GC-MS Serum

Protein synthesis, ROS
buffering and
metabolites of

anaerobic glycolysis.
(Warburg effect)

Stearamide
Monoolein

Hypoxanthine
1,2-dihexadecanoyl-sn-

glycerol [74]

Endocannabinoids
Purine derivative

Amino acid
derivative

LC-ESI-QTOF-MS/MS Tumor tissue

Endocannabinoid
system regulates cell

proliferation,
differentiation and

survival. Migration of
endometrial cells,

as well.

Another application for diagnostic biomarkers is differential diagnosis. Endometrial
polyps (EP) and endometrial hyperplasia (EH) are lesions very closely related to EC and
can eventually develop into it, however, when detected, have to be treated differently. In
a study by Yan and colleagues, nontargeted lipidomic analysis was conducted on serum
samples from 326 patients with endometrial diseases and 225 healthy volunteers. Through
a combination of multivariate and univariate analyses, they successfully identified and
validated six, eight, and seven potential biomarkers in the sera of patients with EP, EC, and
EH, respectively. Leveraging a logistic regression algorithm and receiver operating charac-
teristic (ROC) curve analysis, a biomarker panel consisting of four specific EP biomarkers
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(6-keto-PGF1α, PA(37:4), LysoPC(20:1), and PS(36:0)) demonstrated strong classification
and diagnostic capabilities in distinguishing EP from EC or EH. For distinguishing EP
from EC, this biomarker panel had an AUC of 0.915, with a sensitivity of 100% and a
specificity of 72.41%. Likewise, when distinguishing EP from EH, the AUC reached 1.000,
with a sensitivity of 100% and a specificity of 100%. Notably, these two diagnostic models
exhibited robust diagnostic performance in the validation set as well [74].

However, not only lipid-derivatives have been identified as prospective biomarkers,
various amino acids and their derivatives have been proposed as potential diagnostic
biomarkers for EC. Amino acids are essential for protein synthesis and are pivotal for
sustaining the survival of cancer cells. Moreover, amino acids have the ability to mod-
ulate the redox equilibrium and have been associated with the epigenetic and immune
regulatory functions within cancer cells [75,76]. In a cornerstone study in the field, Troisi
and colleagues developed a unique metabolic signature that is able to accurately diagnose
EC based on serine, glutamic acid, phenylalanine and glyceraldehyde 3-phosphate serum
concentrations [60]. Using machine learning, they were able to successfully generate a
metabolic signature using serum samples from 691 gynecological surgery patients. These
samples were divided in three different groups: Training (90 samples), test (38 samples),
and validation (563 samples). Afterwards, the signature was tested against a new set of
871 serum samples taken from women with unknown EC status, to evaluate efficiency,
accuracy, and overall accuracy of their model, showing an error rate of less than 5% in iden-
tifying EC. In another study performed by our group, we utilized an LC-ESI-QTOF-MS/MS
platform to reveal a distinct metabolomic signature that has the potential to characterize
endometrioid endometrial carcinoma. Our findings implicated the endocannabinoid sys-
tem as a potential contributor to the pathogenesis of EC. We observed differences in the
metabolomic profiles between surface EC and the invasive front within the myometrium,
suggesting a potential role of purine metabolism in tumor myometrial invasion [77].

4.2. Metabolomics for EC Prognosis and Disease Progression Tracking

Another possibility is identifying key metabolites or developing metabolic signatures
that allow accurate prognoses. Prognostic instruments are essential for preoperative risk
stratification of patients, enabling informed treatment recommendations, and tailored
planning while preventing both under- and over-treatment [78].

In a 2021 paper, Skorupa and colleagues investigated the tissue metabolomic char-
acteristics associated with EC grades. Metabolic profiles were generated from a cohort
of 64 patients, including 14 with grade 1 (G1) EC, 33 with grade 2 (G2) EC, and 17 with
grade 3 (G3) EC, and these profiles were compared to those from ten patients with benign
disorders. The results of this study demonstrated notable changes in metabolite levels.
Across all EC grades, in comparison to non-transformed tissue, there were increased levels
of valine, isoleucine, leucine, hypotaurine, serine, lysine, ethanolamine, and choline, while
levels of creatine, creatinine, glutathione, ascorbate, glutamate, phosphoethanolamine, and
scyllo-inositol decreased. Moreover, elevated levels of taurine were detected in both G1
and G2 tumors compared to control tissues. G1 and G3 tumors exhibited increased levels of
glycine, N-acetyl compounds, and lactate. Specifically, G1 tumors were characterized by in-
creased dimethyl sulfone and phosphocholine, as well as decreased glycerophosphocholine
and glutamine levels. G2 and G3 tumors were distinguished by decreased myo-inositol
levels. Additionally, G3 tumors displayed elevated 3-hydroxybutyrate, alanine, and betaine
levels. The differences between G1 and G3 malignancies were primarily associated with dis-
ruptions in phosphoethanolamine and phosphocholine biosynthesis, inositol metabolism,
betaine metabolism, serine metabolism, and glycine metabolism [79].

Audet-Delage and colleagues identified 98 metabolites that exhibited differential
expression between Type I and Type II endometrial cells (EC). Among these, 30 metabolites
demonstrated higher expression in Type I EC, while 68 exhibited lower expression. Notably,
two of the most promising biomarkers were identified: bradykinin, which displayed a
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2.7-fold increase in Type I EC (fold-change = 2.70, p = 0.003), and heme, which exhibited a
4.5-fold increase in Type II EC [66].

In a previous report from our group, we conducted a metabolomic analysis involving
31 patients with EC, comprising 20 cases of endometrial endometrioid carcinomas (EECs)
and 11 cases of serous carcinomas (SCs). Employing multivariate statistical techniques,
we discerned 232 metabolites exhibiting significant differences between the SC and EEC
patient cohorts. It is noteworthy that the majority of these identified metabolites (89.2%)
belonged to the lipid category and exhibited reduced levels in SCs as compared to EECs. In
addition to lipids, we also observed variations in metabolites related to amino acids and
purine nucleotides, including 2-oxo-4-methylthiobutanoic acid synthesized by the enzyme
acireductone dioxygenase 1 (ADI1). Notably, these metabolites displayed higher levels in
SCs. To delve deeper into the role of ADI1 in SC, we examined protein expression levels of
ADI1 in 96 EC cases (67 EECs and 29 SCs), demonstrating that ADI1 expression was signifi-
cantly elevated in SCs compared to EECs. Furthermore, we found that ADI1 mRNA levels
were higher in ECs with p53 abnormalities compared to those with wild-type p53 tumors.
Moreover, our analysis unveiled a statistically significant negative correlation between
elevated ADI1 mRNA levels and overall survival, as well as progression-free survival in
EEC patients [37]. Alternatively, lipid-derived biomarkers that have been postulated to
have prognostic value include picolinic acid, vaccenic acid, phosphatidic acid, arachidonic
acid, 13Z-docosenamide, UDP-N-acetyl-d-galactosamine, 1-palmitoyl-2-linoleoyl, inosine,
palmitic amide, gleamide, linoleic acid, phosphatidylserine, phosphatidylinositol, and
various glycerophosphocholines. Picolinic acid, a byproduct of the kynurenine pathway, is
notably downregulated in cases of EC, consistent with its recognized anti-tumoral proper-
ties. Conversely, UDP-N-acetyl-D-galactosamine and arachidonic acid exhibit upregulation
in advanced stages of EC [63,68].

In another report, Strand and colleagues aimed to investigate potential links between
specific metabolic patterns and the characteristics of aggressive disease as well as reduced
survival rates among patients from a Norwegian cohort. In this report, the researchers stud-
ied 20 patients with EC who had short survival and matched them based on histology and
FIGO staging with 20 patients who had long survival. They employed a multiplex system
that included 183 metabolites, which were later determined with LC-MS, to differentiate
between short and long survival cases. From this project, they extracted a novel metabolite
signature associated with survival, with an AUC ranging from 0.820 to 0.965 (p ≤ 0.001).
Notably, methionine sulfoxide was linked to poor survival rates in these patients. Further-
more, in a subgroup of patients who underwent preoperative contrast-enhanced computed
tomography, the researchers observed correlations between selected metabolites and esti-
mated parameters of abdominal fat distribution. These metabolic signatures hold promise
for predicting prognosis and could serve as valuable supplements when assessing patient
phenotypes and exploring metabolic pathways related to EC progression [80]. Table 2
summarizes the studies described in this section.

Table 2. Overview of the most relevant metabolomics biomarkers for EC prognosis, staging and
disease tracking.

Metabolite Group Platform Sample Type Function and Relevance

Increased: Valine,
Isoleucine, Leucine,

Hypotaurine, serine, lysine,
ethanolamine, choline.
Decreased: Creatine,

creatinine, glutathione,
ascorbate, glutamate, PE

and PC [76]

Amino acids
Phospholipids

High resolution magic
angle spinning (HR-MAS)

proton spectroscopy
(NMR)

Tumor tissue

PE and PC are identified as
the two most differential

biomarkers. They intervene
in cell proliferation and

metabolism.
Amino acidic variation may
depend on protein synthesis,

ROS buffering, etc.
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Table 2. Cont.

Metabolite Group Platform Sample Type Function and Relevance

Bile acids
Bradykinin
Ceramides

Glycine, Cystathionine
Heme [64]

Steroid acids
Polypeptide

Lipid
Amino acids

Iron-contaning
porphyrin

UPLC-MS Serum

Pro-inflamatory capacities,
fatty acid transport, cell
signaling, synthesis of

cysteine,
proteinogenesis, etc.

2-oxo-4-
methylthiobutanoic

acid [35]
Purine nucleotide LC-MS/MS Tumor tissue

sample
Increased migration and

invasion capabilities.

Methionine sulfoxide
SM-C20:2

PC-aa-C36:5
Spermine [77]

Amino acids
Phospholipid
Phospholipid

Polyamine

LC-MS/MS Serum

Methionine sulfoxide is
involved in cell oxidation
buffering and biological
ageing. SM and PC are

involved in cell proliferation
and fatty acid distribution.

Spermine is involved in
cell metabolism.

5. Conclusions

In this review, we aimed to soundly describe the fundamental aspects of EC and
metabolomics in order to set a framework that allowed the reader to clearly understand the
current state of this young field. Despite the small body of literature, this study includes the
latest and most interesting advancements in the field. The data here presented underscores
the potential exhibited by various metabolites, mainly lipids and fatty acid derivatives, but
also amino acids and hormones, as new EC biomarkers for detection, prognosis, and even
treatment monitoring. Despite the very encouraging findings within existing literature,
the evidence for clinical translation is still insufficient, since most identified biomarkers
have failed to compete against existing clinical tests. In this context, further research is
essential to establish a biomarker as a clinically approved test, requiring its confirmation
and validation using a substantial number of specimens. Although metabolomics cannot
currently be used as a standalone tool for diagnosis, the accumulated research experience
and the ongoing exploration of the metabolome ensure that there will be no shortage of
newly discovered biomarker metabolites in the future. This is particularly relevant as
metabolomics, when combined with minimally invasive sampling techniques holds great
potential for delivering clinically relevant biomarkers that could eventually become part of
routine clinical practice.

Taking into account the need for sensitive and more affordable diagnosis and prognosis
tools, future research efforts should revolve around integrating multi-omics data and
generating multi-center datasets that can firmly advocate for the integration of metabolic
biomarkers in endometrial cancer management. In the era of personalized medicine, the
inherent high-throughput capabilities of metabolomics render it an excellent choice to assess
EC treatment efficacy or to opt for alternative therapies during the course of the treatment.
Leveraging advancements in artificial intelligence and machine learning techniques will
determine the final outcome of these efforts.
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73. Düz, S.A.; Mumcu, A.; Doğan, B.; Yılmaz, E.; Çoşkun, E.I.; Sarıdogan, E.; Tuncay, G.; Karaer, A. Metabolomic analysis of
endometrial cancer by high-resolution magic angle spinning NMR spectroscopy. Arch. Gynecol. Obstet. 2022, 306, 2155–2166.
[CrossRef]

74. Yan, X.; Zhao, W.; Wei, J.; Yao, Y.; Sun, G.; Wang, L.; Zhang, W.; Chen, S.; Zhou, W.; Zhao, H.; et al. A serum lipidomics study for
the identification of specific biomarkers for endometrial polyps to distinguish them from endometrial cancer or hyperplasia. Int.
J. Cancer 2022, 150, 1549–1559. [CrossRef]

75. O’Connell, T.M. The Complex Role of Branched Chain Amino Acids in Diabetes and Cancer. Metabolites 2013, 3, 931–945.
[CrossRef]

76. Lieu, E.L.; Nguyen, T.; Rhyne, S.; Kim, J. Amino acids in cancer. Exp. Mol. Med. 2020, 52, 15–30. [CrossRef]
77. Jové, M.; Gatius, S.; Yeramian, A.; Portero-Otin, M.; Eritja, N.; Santacana, M.; Colas, E.; Ruiz, M.; Pamplona, R.; Matias-Guiu, X.

Metabotyping human endometrioid endometrial adenocarcinoma reveals an implication of endocannabinoid metabolism.
Oncotarget 2016, 7, 52364–52374. [CrossRef]

78. Romano, A.; Rižner, T.L.; Werner, H.M.J.; Semczuk, A.; Lowy, C.; Schröder, C.; Griesbeck, A.; Adamski, J.; Fishman, D.; Tokarz, J.
Endometrial cancer diagnostic and prognostic algorithms based on proteomics, metabolomics, and clinical data: A systematic
review. Front. Oncol. 2023, 13, 1120178. [CrossRef]

79. Skorupa, A.; Poński, M.; Ciszek, M.; Cichoń, B.; Klimek, M.; Witek, A.; Pakuło, S.; Boguszewicz, Ł.; Sokół, M. Grading of
endometrial cancer using 1H HR-MAS NMR-based metabolomics. Sci. Rep. 2021, 11, 18160. [CrossRef]

80. Strand, E.; Tangen, I.L.; Fasmer, K.E.; Jacob, H.; Halle, M.K.; Hoivik, E.A.; Delvoux, B.; Trovik, J.; Haldorsen, I.S.; Romano, A.;
et al. Blood Metabolites Associate with Prognosis in Endometrial Cancer. Metabolites 2019, 9, 302. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s00404-022-06587-0
https://doi.org/10.1002/ijc.33943
https://doi.org/10.3390/metabo3040931
https://doi.org/10.1038/s12276-020-0375-3
https://doi.org/10.18632/oncotarget.10564
https://doi.org/10.3389/fonc.2023.1120178
https://doi.org/10.1038/s41598-021-97505-y
https://doi.org/10.3390/metabo9120302

	Methods 
	Endometrial Cancer 
	Epidemiology 
	Diagnosis 
	Prognosis 
	EC Types: Histological and Molecular Classification 

	Metabolomics: A Tool against Cancer 
	Metabolomics Workflow 
	Sample Selection and Handling 
	Sample Processing 
	Data Analysis 
	Model Development and Clinical Validation 


	Metabolomics: Applications in EC Diagnosis and Prognosis 
	Metabolomics for EC Diagnosis 
	Metabolomics for EC Prognosis and Disease Progression Tracking 

	Conclusions 
	References

