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This Special Issue includes original articles and reviews on both established and
innovative approaches to cancer targeting, showcased at the 29th IGB Workshop titled
“Targeting the (un)usual suspects in cancer” “https://29thigbworkshop.sciforum.net/
(accessed on 19 December 2023), held on 2–3 December 2021.

Since the inception of the “war on cancer” 52 years ago through the US National
Cancer Act, numerous therapeutic strategies promoting the death of cancer cells have
been developed, resulting in a diverse range of available cancer treatments [1,2]. However,
conventional treatments often lack selectivity in killing tumor cells, facing challenges due
to the tumor heterogeneity [3,4]. In this context, the identification of new drugs or drug
combinations targeting well-known signaling pathways [5,6], along with the repurposing
of approved drugs with undiscovered antitumor activities [7–9], offer refreshed arrays
of therapeutic options in oncology. Among them, anastrozole, an aromatase inhibitor,
demonstrated new antitumor activities in breast cancer [10].

Federico et al. introduced an innovative network pharmacology strategy, combining
mechanistic and chemocentric approaches to drug repositioning [11]. This involves a
multilayer network-based computational framework integrating disease perturbational sig-
natures with drug intrinsic characteristics, encompassing factors such as their mechanism
of action and chemical structure. Public data from The Cancer Genome Atlas were used
[https://www.cancer.gov/tcga (accessed on 27 November 2023)], identifying paclitaxel as
a promising candidate for combination therapy across various cancer types [11]. Further-
more, in the spirit of drug repositioning, the analysis identified several non-cancer-related
unconventional drug targets as potential candidates for combinatorial pharmacological
intervention in cancer treatment. These include hormonal drugs (carbimazole and methima-
zole), psychoanaleptics (phenelzine, tranylcypromine, and pentobarbital), calcium channel
blockers (perhexiline), and antihypertensives (clonidine). These promising findings support
the use of this framework as a tool to facilitate the prioritization of drug combinations and
repositioning by integrating the mechanistic characteristics of the disease with the intrinsic
properties of the drugs.

A different approach was described by Casalino et al., who reviewed diverse strategies
aiming to inhibit tumor growth, metastasis, and drug resistance by targeting the FOS-
family transcription factor Fra-1, encoded by FOSL1 gene, which has emerged as a notable
therapeutic target within the AP-1 complex [12]. Fra-1 is frequently overexpressed in
various solid tumors, triggered by major oncogenic pathways like BRAF-MAPK, Wnt-
beta-catenin, Hippo-YAP, and IL-6-Stat3. In agreement with new approaches targeting
transcription factors in cancer [13], the discussed strategies include the design—and tumor-
specific delivery—of Fra-1/AP-1-specific drugs, RNA-based therapeutics targeting the
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FOSL1 gene, its mRNA, or regulatory circular RNAs (circRNAs), blocking peptides, small-
molecule inhibitors, and innovative Fra-1 protein degraders.

A novel therapeutic strategy was also described in the study by Che et al. [14], using
a previously established array of pancreatic ductal adenocarcinoma (PDAC) cell lines,
primary cultures, and chorioallantoic membrane models [15]. This strategy involved the
utilization of nanotechnology for the delivery of chemotherapeutics, with a preference
for radiosensitizing agents, aiming to enhance the efficacy of chemoradiation. The study
specifically assessed the impact of biodegradable ultrasmall-in-nano architectures (NAs)
containing gold ultra-small nanoparticles enclosed in silica shells loaded with a cisplatin
prodrug (NAs-cisPt) in combination with ionizing radiation (IR). The main findings high-
lighted the heightened cytotoxic effect of NAs-cisPt, particularly through the controlled
release of the cisplatin prodrug [14]. Given cisplatin’s recognized role as a radiosensi-
tizer [16], the administration of the cisplatin prodrug in a controlled manner through
encapsulation presents a promising and innovative treatment approach. Moreover, a recent
study showed that PDAC paclitaxel-resistant cells exhibit enhanced sensitivity to IR due to
the greater accumulation of DNA damage depending on the radiation-induced modulation
of autophagy and of the Hippo pathway [17], prompting further research on new strategies
to promote the antitumor effects of IR in PDAC [18].

Apart from key genetic factors, desmoplasia and the tumor microenvironment (TME)
have been recognized as key contributors to PDAC chemoresistance [19,20], and Gregori
et al. integrated biomechanical and pharmacological approaches to investigate the role of
the cell-adhesion molecule Integrin Subunit Alpha 2 (ITGA2), a crucial regulator of the
extracellular matrix [21], in PDAC resistance to gemcitabine [22]. Notably, high ITGA2
expression was correlated with shorter progression-free and overall survival, indicating its
prognostic significance and association with gemcitabine treatment ineffectiveness. Tran-
scriptomic and proteomic analyses revealed upregulated ITGA2 in gemcitabine-resistant
cells, whereas silencing ITGA2 reduced the aggressive behavior of these cells both in vitro
and in vivo, associated with the upregulation of phospho-AKT.

Notably, the PI3K/AKT/mTOR signaling pathway, a crucial downstream effector
of KRAS, plays a significant role in regulating key hallmarks of cancer [23], and several
studies support the application of agents targeting the PI3K/AKT/mTOR pathway in
the context of PDAC [24–26]. However, for certain tumors, such as colorectal and PDAC,
even highly selective therapies fail to completely eradicate the disease because they do not
target the niche of cancer stem cells (CSCs), capable of reconstituting and perpetuating
malignancy [27]. Therefore, targeting pathways specific to the maintenance of CSCs and
disrupting communication between tumor cells and the TME are emerging as additional
fundamental approaches in the ongoing “war on cancer” [28,29].

For instance, a recent study reported a LAMC2-expressing cell population, which
is endowed with enhanced self-renewal capacity and is sufficient for tumor initiation
and differentiation and driving metastasis [30]. The profiling of these cells indicated a
prominent squamous signature and differentially activated pathways critical for tumor
growth and metastasis, including the deregulation of the TGF-β signaling pathway [30],
a key pathway in the biology of cancer progression [31]. Treatment with Vactosertib, a
new small-molecule inhibitor of the TGF-β type I receptor, completely abrogated lung
metastasis, primarily originating from LAMC2-expressing cells [30].

Lastly, the list of tumor hallmarks and cancer-causing factors has been updated in
the last decade to include new cellular processes (e.g., metabolism; [32,33]) and molecular
factors (e.g., non-coding RNAs; [34]) as significant contributors to tumor onset, progres-
sion, and drug sensitivity. Despite metabolic alterations being reported approximately a
century ago [35], targeting tumor metabolism has recently regained interest as a plausible
interventional strategy [36,37]. Additionally, mounting evidence suggests a previously
unrecognized role for long non-coding RNAs (lncRNAs) as oncogenes and tumor suppres-
sors due to their ability to regulate various cancer hallmarks. These findings, particularly
the cancer-specific expression of most lncRNAs, establish the rationale for considering
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lncRNAs as therapeutic targets [38,39], as silencing them would not induce side effects in
other tissues or cell types.

In summary, echoing the famous sentence expressed in the renowned crime movie
The Usual Suspects, which states, “The greatest trick the devil ever pulled was convincing
the world he didn’t exist”, it becomes apparent that concentrating solely on recognized
oncogenic factors can narrow our perspectives and limit the effectiveness of existing cancer
therapies [40]. This underscores the need to delve into novel therapeutic targets and
approaches, encompassing new strategies that involve the individual—or in some cases
simultaneous—targeting of the TME, metabolism, CSCs, and non-coding RNAs.
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