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Simple Summary: The appearance of microcalcifications in mammogram images is an essential
predictor for radiologists to detect early-stage breast cancer. This study aims to demonstrate the
strength of persistent homology (PH) in noise filtering and feature extraction integrated with machine
learning models in classifying microcalcifications into benign and malignant cases. The methods are
implemented on two public mammography datasets: the Mammographic Image Analysis Society
(MIAS) and Digital Database for Screening Mammography (DDSM). This study discovered that
PH-based machine learning techniques can improve classification accuracy, which could benefit
radiologists and clinicians in early diagnosis.

Abstract: Microcalcifications in mammogram images are primary indicators for detecting the early
stages of breast cancer. However, dense tissues and noise in the images make it challenging to classify
the microcalcifications. Currently, preprocessing procedures such as noise removal techniques are
applied directly on the images, which may produce a blurry effect and loss of image details. Further,
most of the features used in classification models focus on local information of the images and are
often burdened with details, resulting in data complexity. This research proposed a filtering and
feature extraction technique using persistent homology (PH), a powerful mathematical tool used to
study the structure of complex datasets and patterns. The filtering process is not performed directly
on the image matrix but through the diagrams arising from PH. These diagrams will enable us
to distinguish prominent characteristics of the image from noise. The filtered diagrams are then
vectorised using PH features. Supervised machine learning models are trained on the MIAS and
DDSM datasets to evaluate the extracted features’ efficacy in discriminating between benign and
malignant classes and to obtain the optimal filtering level. This study reveals that appropriate PH
filtering levels and features can improve classification accuracy in early cancer detection.

Keywords: topological data analysis; persistent homology; microcalcification; filtering; image processing

1. Introduction

Female breast cancers continue to record increases in the numbers of new cases and
are reported as the most common incidence and mortality cancer worldwide, surpassing
other types of cancer [1]. According to the World Health Organization (WHO), more than
2.3 million women were diagnosed with breast cancer globally in 2020, and 685,000 died
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from the disease [2]. This means that, on average, a woman is diagnosed with breast
cancer every 14 s. Preventive measures, including imaging screening, can potentially detect
cancer at an early stage, which in turn increases the patient’s survival rate [3]. Among
the numerous screening methods currently available for the detection of breast cancer,
mammography has become the main and most effective imaging method. Apart from that,
it has increased the rate of early-stage cancer detection [4,5].

One of the important signs in cancer detection on mammographic images is the pres-
ence of microcalcifications, which appear as small bright spots within an inhomogeneous
background [6]. Figure 1a,b illustrates an example of benign and malignant microcalcifica-
tions on mammogram images taken from the MIAS database [7]. Note that the morphology
of this microcalcification is a crucial predictor of its pathological nature. Large, round, and
oval calcifications of uniform size exhibit benign (non-cancerous) characteristics. In contrast,
smaller and non-uniform calcifications exhibit characteristics of malignant growth [8,9]. In
clinical practice, it is difficult and time-consuming for radiologists to interpret and evaluate
microcalcifications accurately. This is true especially when the microcalcifications appear in
low contrast and are obscured by the background tissue of the images [10]. Here, human
errors based on subjective evaluations may lead to unnecessary biopsy procedures, which
can cause harm and anxiety for patients [11].
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diologists in distinguishing benign and malignant microcalcifications [3]. The standard 
computer-aided detection (CAD) processes consist of image preprocessing, segmentation, 

Figure 1. Sample microcalcification on mammogram images in the MIAS dataset [7]. (a) Benign
microcalcifications and (b) malignant microcalcifications.

In order to improve the accuracy of assessing microcalcifications, numerous studies
have been conducted to develop computational approaches that could potentially aid
radiologists in distinguishing benign and malignant microcalcifications [3]. The standard
computer-aided detection (CAD) processes consist of image preprocessing, segmentation,
feature extraction, feature selection, and classification model, as depicted in Figure 2a. Each
phase involves a different technique, and the performance relies heavily on the preceding
phase. Preprocessing is the initial phase of the image processing pipeline. Filtering is
commonly applied as a preprocessing technique for removing noises and other artefacts
in the image. Noise emerges in mammograms when the image’s brightness varies in
areas representing the same tissues owing to non-uniform photon distribution [3]. It
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produces a grainy appearance, reducing the visibility of some features within the image,
especially microcalcifications in dense breast tissue. Because noise, edge, and texture are
high-frequency components, distinguishing them is challenging [12].
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Figure 2. Computer-aided detection processes. (a) Standard processes and (b) proposed techniques.

Various filtering techniques have been used in the literature to reduce noise in mam-
mogram images. Each method has its benefits and drawbacks. For example, the Wiener
filter is considered a linear filter that can improve the images by reducing random noise
but may produce a blurry effect and incomplete noise filtration [13]. Non-linear filters,
such as the median filter, can overcome the limitations of linear filters thanks to several
benefits, such as being straightforward and offering a sensible noise removal performance,
but they could distort fine edges even at low noise densities [14]. The comparative reviews
from [12] agreed that different types of noise require different filtering techniques.

Another important phase that influences classification performance is feature extrac-
tion [11]. Feature extraction methodologies analyse images to extract the most prevalent
features and are employed as inputs to machine learning classifiers to distinguish between
benign and malignant classes. Such features included intensity, statistical, shape, and
textural features [5]. The grey-level cooccurrence matrix (GLCM), which calculates the
occurrence of various grey levels in a region of interest (ROI), is a well-known texture
feature and is utilised extensively in the literature [5,15–17]. Nevertheless, all of these
features focus on local information of the images and are often burdened with details,
resulting in data complexity [18].

This study proposes a new classification approach based on persistent homology (PH)
that can extract informative features from the images, which consists of filtering and feature
extraction processes, as shown in Figure 2b.

PH, the topological data analysis (TDA) core tool, has recently been widely used as a
multi-scale representation of topological features. It can extract topological summaries from
data that capture the birth and death of connected components, loops, and voids through a
filtration process [19]. Apart from that, persistence diagrams (PD) are one of the topological
descriptors produced by PH [20]. They comprise a collection of points in the half-plane
above the diagonal with coordinates (birth and death) of topological features, helpful in
distinguishing robust and noisy topological properties [21]. Other than that, the geometric
measurement of the associated topological properties directly correlates with the lifespan
(differences between death and birth). A long lifespan is considered a prominent feature
represented by points far from the diagonal in the diagram. In contrast, short lifespans,
represented by points close to the diagonal, are interpreted as noise [22].
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There has been minimal effort to explore the potential use of PD as a filtering approach,
especially in mammogram images. A noteworthy study by [23] filtered out 20% of points
close to the diagonal in PD, but they focused on interpreting quality assessment in the eye
fundus image. The PD of a microcalcification image contains thousands of points with
many short lifespans (noise), necessitating an additional filtering procedure. Thus, a novel
method for filtering noise in a persistent diagram based on the maximum lifespan of the
image is proposed.

In PH, the topological features generated from PD can be vectorised and integrated
into machine learning models. Various vectorisation approaches have been proposed, with
promising results in various fields. For example, the persistent image (PI) feature proposed
by [24] has been utilised in hepatic tumour classification with considerable accuracy [25,26].
Meanwhile, the persistent entropy (PE) and p-norm features were applied for dark soliton
detection [27] and persistent landscapes (PL) in the quantitative analysis of fluorescence
microscopy images [28]. Furthermore, the authors of [29] employed Betti numbers for
evaluating tumour heterogeneity in image feature extraction. Nevertheless, a recent study
by [30] stated that keeping track of the lifespan is more informative than the progression of
Betti numbers. The researchers used the mean, the standard deviation of lifespan for each
cycle, and PE for 0- and 1-dimensional features to embed in machine learning techniques
in detecting the correct Gleason score of prostate cancer, reporting an accuracy above 95%.

PH-based machine learning is a promising technique with many potential applications
across different fields [31]. However, one of the challenges mentioned in the published
literature is PH-based feature representation [19]. In other words, selecting suitable topo-
logical features is crucial because the suitability of features depends on the data type and
the problem at hand. This study explored the potential use of the PH method for noise
filtering and feature extraction processes. To the best of our knowledge, this is the first work
using PH to tackle the challenge of filtering noise and selecting suitable topological features
to improve the classification performance of microcalcifications in mammogram images.
The purpose of this paper can be summarised as follows: (i) to propose multi-level noise
filtering of 1-dimensional homology group PD based on maximum lifespan, (ii) to obtain
the vectorised topological features from the filtered PD using the PI and PE, (iii) to compare
the performance of the filter and non-filter PD including the performance of an individual
feature and concatenated features using several machine learning models, as well (iv) to
suggest the optimal filtration level for the MIAS and DDSM datasets. As this work aims to
highlight the importance of a topological approach to classify the microcalcifications in a
machine learning setting, prior knowledge of machine learning is assumed. Therefore, it
will not be recalled in this section or elsewhere in the paper.

2. Materials and Methods

The proposed classification framework consists of four main steps: data acquisition,
topological filtering, topological features vectorisation, and classification using machine
learning classifiers, as illustrated in Figure 3.

2.1. Dataset

The data utilised in this study consist of two publicly available datasets. The first
dataset was taken from the MIAS dataset [7], containing 26 image patches with a size
of 200 × 200 pixels. These patches were cropped manually as the centre and radius of
microcalcification clusters are provided. There were thirteen malignant and benign cases,
each with three types of background tissue: fatty, fatty glandular, and dense glandular. The
second dataset was taken from the digital database for screening mammography (DDSM)
dataset [32], consisting of 140 image patches randomly selected with seventy cases for
each of malignant and benign cases. The size of the images is set to 300 × 300 pixels.
Subsequently, the diagnostics status of each patch is either benign or malignant, annotated
by radiologists based on biopsy results. Despite the large number of mammograms in these
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two datasets, not all have microcalcifications. Therefore, the number of microcalcification
patches is substantially lower than the total number of images in the datasets.
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2.2. Persistent Homology

PH is a primary technique in TDA based on the concept that topological features
detected over varying scales are more likely to represent intrinsic features [33]. Other than
that, PH studies geometric patterns by looking at the evolution of k-dimensional holes,
such as 0-dimensional holes (H0) representing connected components, 1-dimensional holes
(H1) representing loops, and 2-dimensional holes (H2) representing voids.

Images can be interpreted as geometric shapes known as cubical complexes. In 2D
greyscale images, the cubical complexes are topological spaces consisting of a combination
of 0-cube (vertices), 1-cube (edges), and 2-cube (squares). It can be efficiently constructed
by assigning a vertex to each pixel, then combining vertices corresponding to nearby
pixels by an edge and filling process in the resulting squares [34]. Let I be a greyscale
image of size N ×M with grey intensities 2n (we use an 8-bit greyscale n = 8). The pixel
intensity value of I on the intervals [0, 2n − 1] is [0, 255], where 0 represents black colour
and 255 represents white colour, with shades of grey for the values in between. Once these
images are interpreted as 2-cubical simplices, greyscale filtration with 256 sublevels can
be constructed as a nested sequence K0 ⊂ K1 ⊂ K2 ⊂ . . . ⊂ K2n−1 called sublevel set
filtration [25] (see the example in Figure 4).

Figure 4a,b present an example of cubical complex filtration in a matrix representing
the pixel value of the image. The lifespan can be seen in Figure 4c, where the connected
component appears at the intensity of 100 and continues to exist because all subsequent
pixels are always connected to the preceding ones. At filtration 120, a loop exists (full white
pixels inside components made of black pixels) and deaths exist at filtration 210. Apart
from that, another loop exists at filtration 150 and deaths shortly after at filtration 185. This
information can be transformed in the persistent diagram representation as in Figure 4d,
which will be discussed in the following section.

2.2.1. Interpreting the Persistent Diagrams

PD represents a pattern-generating field and provides a (visual) summary of the set of
points

{
(b, d)

∣∣b, d ∈ R2} and d > b, where the births (b) are marked on the x-axis and deaths
(d) on the y-axis. The lifespan d-b > 0 indicates the prominence of features. Long-lived
features are those far from the diagonal line. They are usually regarded as significant
features and represent the robustness of holes against noise, whereas short lifespans are
represented by points close to the diagonal and are interpreted as noise [25,35]. All points
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of the different homological dimensions are present in PD, such as 0-dimensional holes
denoted as H0 (connected complete black pixels) and 1-dimensional holes denoted as H1
or loops (complete white pixels inside components made of black pixels). However, some
dimensions may be irrelevant to the study [31]. As microcalcifications appear as white
spots, this study employs only H1. Figure 5 illustrates samples of PD for H1 obtained from
benign and malignant microcalcifications in different datasets.
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Similar structure of the images will have comparable pattern in PDs [36]. For example,
based on Figure 5, the benign microcalcifications indicate a similar pattern for different
types of density and datasets where topological features associated with long-lived lifespan
are observed. Conversely, in malignant microcalcifications, the PD illustrates short-lived
features where the points are tightly packed and close to the diagonal. Furthermore, it is
known that the points close to the diagonal line are usually regarded as less “useful” and
linked with noise [37,38]. Thus, multi-level filtering of PDs offers a rigorous solution to
the problem of distinguishing between anomalies and noise in these representations. The
proposed procedures are described in the following steps:

Step 1: Obtain PDs for 1-dimensional holes (H1);
Step 2: Calculate the lifespan for each point in the PD;
Step 3: Find the maximum lifespan;
Step 4: Filter.

Filter_10% = lifespan > (0.1 ∗max_lifespan)
Filter_20% = lifespan > (0.2 ∗max_lifespan)
Filter_30% = lifespan > (0.3 ∗max_lifespan)
Filter_40% = lifespan > (0.4 ∗max_lifespan)
Filter_50% = lifespan > (0.5 ∗max_lifespan)
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Figure 5. Persistent diagram of H1 (loops) for benign and malignant microcalcifications in the
MIAS [7] and DDSM datasets [32]. For the MIAS dataset, the first row is a sample of dense glandular
tissue, the second is a sample of fatty tissue, and the third is fatty glandular tissue.

We choose the filter interval range from 10% to 50% with 10% increments to facilitate
interpretation when determining which level yields the best classification results for each
dataset. The number of points in the PD can be reported as Betti numbers, denoted as B1 for
H1. Hence, the filtering process will reduce the number of B1 values. Figure 6 demonstrates
a schematic representation of a multi-level filtering PD in a sample of a malignant image.
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Referring to Figure 6a, we calculate the lifespan for each point in the PD and obtain
the maximum lifespan. In Figure 6b–f, the points are filtered out based on a lifespan greater
than 10% to 50% of the maximum lifespan, which implies the number of B1 reduced from
1341 points initially to 510, 162, 68, 32, and 18, respectively. Subsequently, the original and
filtered PD is then used to obtain the feature vector representations, which can be easily
incorporated as input in machine learning models.

2.2.2. Vectorised Topological Features

Vectorising topological features in PH converts the topological features obtained from
a PD into a vector representation that can be employed for machine learning models. This
study employs two topological features so that the distribution of the persistence feature
(lifespan) can be characterised as either benign or malignant. The vectorised topological
features used are described as follows.

• Persistent Entropy (PE)

PE measures the disorder in the distribution of lifespan (persistence). Let
PD =

{
(bj, dj)

}
j∈I be a persistent diagram where bj and dj are the birth and death points,

respectively, of the topological structure in pixel image I and lifespan l =|d− b|. The
entropy of PD is defined as follows [23,39]:

ε(PD) =
n

∑
j=1

lj

S(lj)
log

(
lj

S(lj)

)
(1)
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where S(lj) is the sum of the lifespan in the PD. Every PD will produce one entropy value.
Based on [27], an entropy value of 0 represents a single feature in the image, while N
features consist of ε(PD) = log(N).

• Persistent Image (PI)

PI is one of the prevalent vectorisation methods adopted to convert the topological
information in PDs into a finite-dimensional vector representation. It was introduced by
Adams et al. [24]. The PD, which consists of the persistence point at birth (b)/death (d)
coordinates, is rotated by π

4 to construct the PI. Consequently, the rotated PD denoted as R
can be discretised into the persistent surface (ρ) in (x, y) coordinates, defined as

ρR(x, y) = ∑
(b,d)∈R

g(b,d)(x, y)· f (b, d), (2)

where g(b,d) is a gaussian smoothing function given by

g(b,d)(x, y) =
1

2πσ2 e−[(x−b)2+(y−d)2]/2σ2
, (3)

and f (b, d) ≥ 0 are non-negative weighting functions [40]. Finally, the PI can be obtained
by integrating the persistence surface function ρR(x, y) over each pixel [24].

2.3. Machine Learning Classifier

Once the topological features are vectorised, the dataset can be implemented in the
following machine learning classifiers:

• Neural network (NN);
• Support vector machine (SVM);
• K-nearest neighbour (KNN);
• Decision tree (DT).

The machine learning models are applied for comparison purposes to evaluate the
performance of individual and concatenated features and to determine the optimum
filtering level for each dataset.

2.4. Performance Evaluation

Many different evaluation metrics can be used to measure how well the method and
classifier work. This study uses the confusion matrix, accuracy, and area under the receiver
operating characteristic curve (AUC). The metrics used to evaluate the results are described
below [41]:

• Confusion matrix: Provide a matrix as output that describes the method’s performance
consisting of the total number of correct and incorrect predictions. The matrix is shown
in Figure 7.

• Classification Accuracy (CA): The percentage of microcalcifications correctly classified
to the total number of observations. It can be measured as follows:

CA =
TP + TN

TP + TN + FP + FN
. (4)

• Area under the Curve (AUC): The AUC can be measured by calculating the area under
the receiver operating characteristic (ROC) curve. The ROC curve is a plot of the true
positive rate (TPR), called sensitivity or recall, versus the false positive rate (FPR). TPR
is defined in this context as the number of correctly diagnosed malignant cases divided
by the total number of malignant cases. In contrast, FPR is defined as the number of
benign cases wrongly classified as malignant divided by the total number of benign
instances. TPR and FPR can be calculated using Equations (4) and (5), respectively:
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TPR =
TP

TN + FN
. (5)

FPR =
FP

FP + TN
.
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2.5. Implementation Details

The cubical complex filtration and H1 of PD are generated in all experiments using an
open-source program, Cubical Ripser (https://github.com/shizuo-kaji/CubicalRipser_
3dim/, accessed on 2 February 2022) [42]. The vectorised topological features consisting
of PI and PE features can be obtained using Scikit-TDA library written in Python (https:
//persim.scikit-tda.org/, accessed on 19 May 2022). The PI parameters, such as pixel size,
are set to 1, meaning that one vectorises the PI value for every PD. Other parameters,
such as the weighting function, f (b, d), are based on the persistence values [24], and the
smoothing parameter in the Gaussian function σ is set to default.

MATLAB R2021b classification learner is implemented with a fivefold cross-validation
approach for machine learning models. The input data for all models are vectorised
topological features, i.e., PI and PE values for each image. Each experimental test uses 11th
Gen Intel(R) Core(TM) i7-11800H, CPU 2.30 GHz, 16 GB memory, and NVIDIA Geforce
RTX 3050Ti for the graphics card. The hyperparameters used for each model are described
as follows:

• Neural network (NN): classifier type = medium, the number of fully connected layers
= 1, the first layer size = 25, and the activation function = ReLu.

• Support vector machine (SVM): kernel type = linear, kernel scale = automatic, and box
constraint level = 1

• K-nearest neighbour (KNN): classifier type = fine, number of neighbours = 1, distance
metric = Euclidean, and distance weight = equal.

• Decision tree (DT): classifier type = fine tree, the maximum number of splits = 100,
and split criterion = Gini’s diversity index.

3. Results

This section presents the results based on the proposed method discussed in Section 2
applied to two public datasets, MIAS and DDSM. Furthermore, this section discusses the
usefulness of the PH approach in discriminating the topological features between two
classes, benign and malignant. The performances of single and concatenate features are
also examined using four machine learning classifiers by comparing the CA and AUC.
Finally, the optimal topological filter for each dataset is also presented.

3.1. Topological Filtering

Figures 8 and 9 illustrate the scatter plot of PE versus PI feature values with different
levels of topological filtering in the MIAS and DDSM datasets, respectively.

https://github.com/shizuo-kaji/CubicalRipser_3dim/
https://github.com/shizuo-kaji/CubicalRipser_3dim/
https://persim.scikit-tda.org/
https://persim.scikit-tda.org/
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Figures 8 and 9 demonstrate scatter plots where each point corresponds to the value
of PE versus PI. The number of points represents 26 images in the MIAS dataset and 140
in the DDSM dataset. Note that non-filtered PD in Figures 8a and 9a refers to the original
images containing noise. Noise can cause spurious features to appear in the image, leading
to incorrect topological inferences. This is because noise can introduce false persistence of
features that are not truly persistent and may also obscure the persistence of real features.
Thus, the separation between two classes, benign and malignant, is more difficult to
distinguish by the value of PE and PI features. Removing the short lifespan or noise
through PD filtration at 10 to 30% provides a positive impact, where the benign class tends
to have smaller values of PE and PI than the malignant class, as in Figures 8 and 9b–d.
However, high PD filters (40% and 50%) cause the PE and PI values to overlap, as in
Figures 8 and 9e–f.

3.2. Classification Performance

The optimum filtering level was selected by comparing the individual’s performance
and concatenating topological features using four machine learning classifiers, namely,
the NN, KNN, SVM, and DT models. Tables 1 and 2 present the performance of the
persistence image feature, while Tables 3 and 4 present the PE feature in the MIAS and
DDSM datasets, respectively.

Table 1. Classification performance of the PI feature in the MIAS dataset. CA = accuracy and
Std = standard deviation.

Pers. Image Condition
NN KNN SVM DT

CA ± Std AUC CA ± Std AUC CA ± Std AUC CA ± Std AUC

Non-Filter 76.9 ± 8.3 0.76 73.1 ± 8.7 0.73 69.2 ± 9.1 0.85 73.1 ± 8.7 0.74
Filter 10% 80.8 ± 7.7 0.91 73.1 ± 8.7 0.73 73.1 ± 8.7 0.86 73.1 ± 8.7 0.74
Filter 20% 92.3 ± 5.2 0.93 88.5 ± 6.3 0.88 76.9 ± 8.3 0.93 92.3 ± 5.2 0.9
Filter 30% 76.9 ± 8.3 0.89 76.9 ± 8.3 0.77 73.1 ± 8.7 0.89 73.1 ± 8.7 0.74
Filter 40% 73.1 ± 8.7 0.72 73.1 ± 8.7 0.73 73.1 ± 8.7 0.9 76.9 ± 8.3 0.73
Filter 50% 69.2 ± 9.1 0.69 69.2 ± 9.1 0.69 73.1 ± 8.7 0.85 73.1 ± 8.7 0.68

Table 2. Classification performance of the PI feature in the DDSM dataset.

Pers. Image Condition
NN KNN SVM DT

CA ± Std AUC CA ± Std AUC CA ± Std AUC CA ± Std AUC

Non-Filter 71.4 ± 3.8 0.74 50 ± 4.2 0.5 59.3 ± 4.2 0.69 63.6 ± 4.1 0.68
Filter 10% 86.4 ± 2.9 0.93 82.9 ± 3.2 0.83 82.9 ± 3.2 0.83 85.7 ± 3 0.92
Filter 20% 90.7 ± 2.5 0.95 86.4 ± 2.9 0.86 92.9 ± 2.2 0.94 90 ± 2.5 0.93
Filter 30% 93.6 ± 2.1 0.94 93.6 ± 2.1 0.94 93.6 ± 2.1 0.94 94.3 ± 1.9 0.95
Filter 40% 91.4 ± 2.4 0.97 87.1 ± 2.8 0.87 89.3 ± 2.6 0.97 87.1 ± 2.8 0.85
Filter 50% 81.4 ± 3.3 0.91 85 ± 3 0.85 82.9 ± 3.2 0.93 83.6 ± 3.1 0.88

Table 3. Classification performance of the PE feature in the MIAS dataset.

Pers. Entropy Condition
NN KNN SVM DT

CA ± Std AUC CA ± Std AUC CA ± Std AUC CA ± Std AUC

Non-Filter 53.8 ± 9.8 0.55 50 ± 9.8 0.5 69.2 ± 9.1 0.78 46.2 ± 9.8 0.59
Filter 10% 57.7 ± 9.7 0.7 65.4 ± 9.3 0.65 65.4 ± 9.3 0.79 65.4 ± 9.3 0.69
Filter 20% 84.6 ± 7.1 0.9 92.3 ± 5.2 0.92 80.8 ± 7.7 0.89 73.1 ± 8.7 0.75
Filter 30% 80.8 ± 7.7 0.83 80.8 ± 7.7 0.81 80.8 ± 7.7 0.89 80.8 ± 7.7 0.8
Filter 40% 76.9 ± 8.3 0.81 80.8 ± 7.7 0.81 76.9 ± 8.3 0.92 84.6 ± 7.1 0.79
Filter 50% 76.9 ± 8.3 0.79 73.1 ± 8.7 0.73 80.8 ± 7.7 0.89 88.5 ± 6.3 0.83
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Table 4. Classification performance of the PE feature in the DDSM dataset.

Pers. Entropy Condition
NN KNN SVM Decision Tree

CA ± Std AUC CA ± Std AUC CA ± Std AUC CA ± Std AUC

Non-Filter 50.7 ± 4.2 0.55 50 ± 4.2 0.5 49.3 ± 4.2 0.53 55.7 ± 4.2 0.54
Filter 10% 87.9 ± 2.8 0.92 79.3 ± 3.4 0.79 87.9 ± 2.8 0.94 80.7 ± 3.3 0.84
Filter 20% 92.1 ± 2.3 0.96 91.4 ± 2.4 0.94 93.6 ± 2.1 0.97 90.7 ± 2.5 0.95
Filter 30% 95 ± 1.8 0.97 96.4 ± 1.6 0.98 95.7 ± 1.7 0.99 92.9 ± 2.2 0.94
Filter 40% 92.1 ± 2.3 0.97 89.3 ± 2.6 0.89 94.3 ± 1.9 0.97 90.7 ± 2.5 0.89
Filter 50% 85.7 ± 2.9 0.93 82.9 ± 3.2 0.83 87.9 ± 2.8 0.97 85.7 ± 3 0.91

It can be observed that the classification performance from all classifiers is improved
when the filtering process is applied. Tables 1 and 3 present that the optimal filtering
level for persistent images and entropy features in the MIAS dataset is at a filter of 20%.
Here, NN, DT, and KNN attain an accuracy of 92.3% for both topological features with an
AUC value of 0.9 and above. For the DDSM dataset in Tables 2 and 4, filter 30% delivered
remarkable results, with all classifiers achieving above 92.9% accuracy and up to 0.99 AUC.
Note that the performance in the DDSM dataset is more consistent in all classifiers because
it utilised more images (140 images) than the MIAS dataset, which only used 26 images.

The classification performance can be significantly improved by concatenating features
(multi-vector). In the MIAS dataset, the performance is improved from 92.3% to 96.2%
accuracy and, in the DDSM dataset, it is increased to 99.3%, as shown in Tables 5 and 6.

Table 5. Classification performance of concatenating features in the MIAS dataset.

Concatenate Features
NN KNN SVM DT

CA ± Std AUC CA ± Std AUC CA ± Std AUC CA ± Std AUC

No Filter 61.5 ± 9.5 0.6 53.8 ± 9.8 0.54 69.2 ± 9.1 0.82 69.2 ± 9.1 0.68
Filter 10% 61.5 ± 9.5 0.67 53.8 ± 9.8 0.54 69.2 ± 9.1 0.79 73.1 ± 8.7 0.74
Filter 20% 96.2 ± 3.7 0.96 92.3 ± 5.2 0.92 88.5 ± 6.3 0.93 92.3 ± 5.2 0.91
Filter 30% 84.6 ± 7.1 0.84 80.8 ± 7.7 0.81 80.8 ± 7.7 0.89 84.6 ± 7.1 0.82
Filter 40% 84.6 ± 7.1 0.83 80.8 ± 7.7 0.81 80.8 ± 7.7 0.89 84.6 ± 7.1 0.77
Filter 50% 76.9 ± 8.3 0.81 80.8 ± 7.7 0.81 80.8 ± 7.7 0.89 84.6 ± 7.1 0.8

Table 6. Classification performance of concatenating features in the DDSM dataset.

Concatenate Features
NN KNN SVM DT

CA ± Std AUC CA ± Std AUC CA ± Std AUC CA ± Std AUC

No Filter 71.4 ± 3.8 0.75 73.6 ± 3.7 0.79 75 ± 3.7 0.81 68.6 ± 3.9 0.73
Filter 10% 90 ± 2.5 0.95 90 ± 2.5 0.9 91.4 ± 2.4 0.96 90 ± 2.5 0.91
Filter 20% 94.3 ± 1.9 0.95 94.3 ± 1.9 0.94 97.1 ± 1.4 0.99 92.9 ± 2.2 0.93
Filter 30% 97.9 ± 1.2 0.98 99.3 ± 0.7 0.99 98.6 ± 1 0.99 97.9 ± 1.2 0.98
Filter 40% 92.9 ± 2.2 0.95 92.1 ± 2.3 0.91 95 ± 1.8 0.99 96.4 ± 1.6 0.95
Filter 50% 91.4 ± 2.4 0.94 87.9 ± 2.8 0.88 87.9 ± 2.8 0.97 87.9 ± 2.7 0.9

3.3. Performance of Machine Learning Models

Based on the optimal filtering level in both datasets, the performances of four classifiers
were evaluated and compared in terms of accuracy, the AUC, and the confusion matrix.
Referring to the MIAS dataset in Figure 10a,b, most models perform well on concatenating
features with greater than 0.9 AUC and a maximum of three misclassified cases in the
confusion matrix. Moreover, the accuracy obtained is greater than 90%, except for the
SVM model. As this dataset contains three different types of densities, particularly when
the breast density is high, the microcalcifications could be obscured by the dense tissues,
making it more challenging to classify them. These findings align with the results reported
by [43], where the SVM accuracy drops because of the greyscale image’s brightness. On the
other hand, NN indicated the best performance model for this dataset, with the highest
accuracy and AUC and only one false negative (FN) case in the confusion matrix.
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In contrast, all models in the DDSM dataset exhibit outstanding classification perfor-
mance on concatenating features, with greater than 95% accuracy, greater than 0.97 AUC,
and a maximum of three misclassified cases in the confusion matrix, as shown in Figure 11a,b.
The KNN model performed the best in this dataset, with the highest accuracy and only one
FN result.
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4. Discussion and Future Work

The literature commonly describes PHs robust against image noise [25,31]. This
study demonstrates that if the PD is taken directly without any filtering on the diagram,
machine learning models cannot successfully classify the vectorised topological features of
microcalcification. Other than that, experimental results indicate that the performance was
improved by implementing the optimal filtering level for each dataset.

It is discovered that, in terms of topological features, PI is more prominent in the
MIAS dataset, whereas PE in the DDSM dataset. Figure 12a,b illustrates the discriminant
values of every feature based on the DT model. Compared to malignant microcalcifications,
benign microcalcifications will have a lower value of PI and PE.
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In Figure 13, we present some examples of the images from both datasets where
benign images have higher values (PI and PE) in non-filter topological features than
malignant features. This results in misclassification between the two classes and impacts
the classification performance. Because benign microcalcifications present a long lifespan
in the PD (refer to Figure 5), the significant topological features can be distinguished after
filtering in the PD.
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PH offers some unique advantages. One of the advantages is its ability to analyse
data at multiple scales, which can be particularly useful for medical images with features
of different sizes and scales. By analysing the data at multiple scales, PH can capture
information about features that other methods may miss. Besides, it represents a lower
computational burden to the system because the classification operation is not on the
image matrix but on a compact vector from the input data [23]. This study uses two
topological features for each image: PE and PI features. The complexity of a CAD system
increases rapidly with the number of features used [44]. Furthermore, the proposed filtering
procedure does not influence the image quality, because the process only operates on the
PD, as opposed to some preprocessing methods, such as linear filtering, which can cause
degradation of edges and image details, giving the images a blurred effect [13].
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Comparative Analysis

Several existing state-of-the-art non-PH models used to conduct experiments with the
same MIAS and DDSM datasets were chosen for performance comparison, as shown in
Table 7. Based on this table, two types of images were applied for both datasets: greyscale
and binary images. Greyscale indicates that the classification process is performed straight
from the original image from the dataset, consisting of 256 pixel values. Meanwhile, the
classification of binary images indicates that the original images undergo a segmentation
process to produce a black-and-white image, where pixel values of 0 (black) are considered
as the background region and pixel values of 1 (white) are considered as segmented regions
of microcalcifications. However, some microcalcifications, usually malignant cases, are not
clearly visible and are closely connected to background tissue, making it impossible for
segmentation algorithms to obtain complete segmentation for these calcifications [45]. For
that reason, the proposed methods are tested for the greyscale images so that the whole
topological structure of the image can be considered.

Table 7. Comparative analysis with other methods.

Method Features Image Type Dataset Classifier Result

Fadil et al. [15] Texture (GLCM) Greyscale DDSM DWT-RF CA = 95%, AUC = 0.92

Suhail et al. [46] Local Features Binary DDSM LDA-SVM CA = 96%, AUC = 0.95

Mahmood et al. [16] Textural and
Statistical Binary MIAS Radiomic-SVM CA = 98%, AUC = 0.90

Gowri et al. [17] Textural with
Fractal Analysis Binary MIAS NN CA = 96.3%, AUC = NA

Melekoodappattu et al. [5] SURF, Gabor,
and GLCM Greyscale MIAS GSO-ELM-FOA CA = 99.15%, AUC = NA

Chen et al. [47]
Multiscale

Morphology
Graph

Binary MIAS KNN CA = 95%, AUC = 0.96
DDSM KNN CA = 85.2%, AUC = 0.90

Strange et al. [48] Mereotopological
Barcode

Binary MIAS KNN CA = 95%, AUC = 0.96
DDSM KNN CA = 80%, AUC = 0.82

Proposed Approach PI and PE Features Greyscale MIAS NN CA = 96.2%, AUC = 0.96
DDSM KNN CA = 99.3%, AUC = 0.99

Various features have been studied in the literature to classify benign and malignant
microcalcifications. Research by Fadil et al. [15] used 2D discrete wavelet transform for
contrast enhancement of the microcalcifications and extracted eight textural features on
the GLCM, achieving 95% accuracy and 0.92 AUC using the random forest (RF) classifier.
On the other hand, Suhail et al. [46] present a way to obtain a single feature value by
applying a scalable linear fisher discriminant analysis (LDA) approach, achieving up to
96% accuracy with 0.95 AUC using SVM. Mahmood et al. [16] employed machine learning
integrated with the radiomic approach to classifying the textural and statistical features,
attaining 98% accuracy and 0.90 AUC. Apart from that, Gowri et al. [17] also used textural
features with fractal analysis and obtained 96.3% accuracy. Melekoodappattu et al. [5]
proposed a hybrid extreme machine learning classifier consisting of the extreme learning
machine (ELM) with the fruitfly optimization algorithm (ELM-FOA) along with glowworm
swarm optimization (GSO). The preprocessing stage was conducted using the Wiener filter
and enhanced using contrast-limited adaptive histogram equalisation (CLAHE). Here,
44 features are extracted using the speed up robust feature (SURF), Gabor filter, and GLCM,
and achieved 99.15% accuracy.

In addition, topological features have also been studied by [47,48] for modelling and
classification of microcalcifications, with promising results. To the best of our knowledge,
our proposed method is the first work using a persistent diagram as a filtering approach as
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well as PH features to tackle the challenge of discriminating between benign and malignant
microcalcifications. This method achieves 96.2% accuracy with 0.96 AUC for the MIAS
dataset and 99.3% accuracy with 0.99 AUC for the DDSM dataset. This is comparable to
other state-of-the-art non-PH approaches developed to solve the same problem.

Although the performance is satisfactory, this study has several limitations. First,
this study used a limited number of images. Hence, additional testing must be conducted
on mammographic images collected from hospitals or population-screening projects. In-
creasing the number of images would permit a more in-depth assessment and can prevent
bias in the data. Second, external validation of model performance was not conducted.
Doing so could have further demonstrated its generalisability. Third, the performance of
the model is not compared to deep learning approaches owing to the small amount of
data. For future studies, the persistent homology features can be extended to deep learning
architectures and potentially achieve even better performance and robustness of image
classification algorithms, particularly in the context of medical imaging, where complex
structures and patterns are often present. Lastly, the choice of preprocessing steps, such as
image enhancement or denoising, can also affect the resulting persistent homology features
and introduce bias into the model. It is important to carefully consider the appropriate
preprocessing steps for the specific dataset and to evaluate the impact of these steps on
model performance.

5. Conclusions

In conclusion, this study presents an approach to classifying microcalcifications in
mammogram images using PH and machine learning models. This study demonstrates
that machine learning models successfully classify microcalcifications using appropriate PH
filtering levels and features. In addition, filtering PD with concatenate features improves
the classification accuracy of microcalcifications.

Integrating PH-based machine learning into clinical practice for breast cancer diagnosis
can offer several potential benefits for patient care. The topological features extracted by
PH can provide additional information that may not be captured by traditional image
analysis methods, leading to a more accurate diagnosis. This, in turn, may facilitate early
detection of breast cancer, ultimately reducing the number of unnecessary biopsies for
patients. Additionally, accurate machine learning models can enable faster and more
effective analysis of mammogram images, easing the workload of radiologists and other
healthcare providers.
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