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Simple Summary: Focal radiation necrosis of the brain (fRNB) is a late side effect that can occur after
treatment of brain lesions with focal radiation therapy (stereotactic radiosurgery [SRS] or stereotactic
radiation therapy [SRT]). This is becoming more common as more cancer patients are receiving
effective systemic therapy for brain metastases, extending survival, and putting them at risk for fRNB.
Currently, treatment options are limited to long-term corticosteroid therapy, which has significant
side effects, or surgery with its inherent risks. Bevacizumab, a monoclonal antibody that targets the
vascular endothelial growth (VEGF), is effective in treating fRNB but its use has remained limited
due to its cost. In this single-center case series, a fixed low dose of bevacizumab (400 mg loading dose
followed by 100 mg every 4 weeks) was shown to be a safe and cost-effective alternative treatment
option for fRNB.

Abstract: Focal radiation necrosis of the brain (fRNB) is a late adverse event that can occur following
the treatment of benign or malignant brain lesions with stereotactic radiation therapy (SRT) or
stereotactic radiosurgery (SRS). Recent studies have shown that the incidence of fRNB is higher
in cancer patients who received immune checkpoint inhibitors. The use of bevacizumab (BEV),
a monoclonal antibody that targets the vascular endothelial growth factor (VEGF), is an effective
treatment for fRNB when given at a dose of 5–7.5 mg/kg every two weeks. In this single-center
retrospective case series, we investigated the effectiveness of a low-dose regimen of BEV (400 mg
loading dose followed by 100 mg every 4 weeks) in patients diagnosed with fRNB. A total of
13 patients were included in the study; twelve of them experienced improvement in their existing
clinical symptoms, and all patients had a decrease in the volume of edema on MRI scans. No clinically
significant treatment-related adverse effects were observed. Our preliminary findings suggest that
this fixed low-dose regimen of BEV can be a well-tolerated and cost-effective alternative treatment
option for patients diagnosed with fRNB, and it is deserving of further investigation.

Keywords: radiation necrosis of the brain; bevacizumab; low-dose regimen; stereotactic radiation
therapy; radiotherapy; case series; VEGF inhibitor

1. Introduction

Stereotactic radiosurgery (SRS) and stereotactic radiotherapy (SRT) are increasingly
used in the treatment of both benign and malignant (primary or metastatic) brain lesions.
SRS and SRT irradiate brain lesions more accurately while sparing healthy brain struc-
tures compared to whole-brain radiation therapy (WBRT). Nevertheless, because radiation
dosing delivered to the tumor and surrounding normal brain can be higher using these
methods, both SRS and SRT have a potential important side effect under the form of focal
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radiation necrosis of the brain (fRNB) [1,2]. The incidence of fRNB is estimated to be
between 7–24% [3–6]. Signs and symptoms include neurological deficits, cognitive decline,
increased intracranial pressure and/or seizures [7]. The primary pathogenesis of fRNB is
not yet fully understood, but damage to small blood vessels is suspected to be the principal
cause [8,9]. Excessive production of vascular endothelial growth factor A (VEGF-A) and the
associated neo-angiogenesis cause the formation of edema and worsening of brain tissue
hypoxia and necrosis [10–12].

The main risk factor associated with the development of fRNB is the cumulative
radiation dose, also taking into account re-irradiation [13,14]. Furthermore, fRNB is more
often seen after SRS as compared to SRT, indicating a risk-lowering effect of fractiona-
tion [15]. It has recently been noted that the incidence of fRNB following SRT/SRS of
brain metastases from solid tumors has been increasing in patients who received immune
checkpoint inhibitors (ICI, such as anti PD-(L)1 and anti CTLA-4 monoclonal antibodies
(mAb)) and possibly also targeted therapies [16,17]. In these cases, fRNB tends to occur
after a median interval of 1 year (range: 8 to 46 months) following SRS/SRT [16–20]. Du
Four et al. reported an increased incidence (12.8%) of fRNB in a series of 142 advanced
melanoma patients treated with the PD-1 inhibiting mAb pembrolizumab after having
previously undergone SRS/SRT [16]. In another cohort of 135 melanoma patients, almost
20% of melanoma patients that received SRS/SRT and anti-PD-1 who survived beyond
1 year developed fRNB [21]. Based on another series from our group, fRNB may also be
more frequent after treatment with BRAF-/MEK inhibitors in patients treated for BRAF
V600-mutant melanoma brain metastases with SRS/SRT.

The differential diagnosis between fRNB and recurring diseases can be challenging.
Pathology remains the gold standard for making a diagnosis. Advanced magnetic resonance
imaging (MRI), including MR-spectroscopy and perfusion MRI, can be useful for establishing
the diagnosis without the need for a surgical intervention [22]. 18F-fluoro-deoxy-D-glucose
positron emission tomography/computed tomography (18F-FDG PET-CT) imaging of the
brain can be of additional value, as fRNB will be characterized by decreased uptake of
18F-FDG compared to malignant lesions and surrounding healthy brain tissue [22–24].

Currently, high doses of corticosteroids are most often used as first-line therapy for
symptomatic patients that are not good candidates for neurosurgical debridement. By
decreasing the secretion of pro-inflammatory cytokines and reducing the blood–brain bar-
rier permeability, corticosteroids reduce cerebral edema and related symptoms. However,
the side effects of prolonged administration of high-dose corticosteroids, which is often
necessary to treat fRNB, are common. These include myopathy, hyperglycemia, atrophy of
the skin, weight gain, gastritis, and immunosuppression [25,26]. The surgical debridement
of fRNB can offer a permanent solution, but its indication is limited to patients that are
eligible for a safe neurosurgical intervention in non-eloquent regions of the brain and it
inherently carries a risk for the deterioration of neurological symptoms [27,28].

In 2014, Tye et al. reported that the vascular endothelial growth factor A (VEGF-A),
blocking monoclonal antibody bevacizumab (BEV) was an effective new therapeutic option
for fRNB [29]. BEV was the first approved angiogenesis inhibitor. It is approved at a
dose of 5 to 10 mg/kg every 2 weeks as a component of several chemotherapy regimens
for advanced solid tumors [30]. When used to treat fRNB, it allows to reduce or replace
the need for corticosteroids and avoid the complications of their long-term use [26,29,31].
Despite its well-known potential side effects, such as hypertension and decreased wound
healing, BEV is a well-tolerated medical therapy. Several small studies demonstrated that
doses between 5 to 7.5 mg/kg, reflecting the approved dosing regimens for oncological
indications, reduce neurological symptoms and cerebral edema [32,33].

Bevacizumab has (as of 2022) not yet been registered for the treatment of fRNB, and
its high drug cost has been prohibitive in its use in this indication. Gordon et al. made
the observation that significantly lower doses of bevacizumab (down to 0.3 mg/kg) than
those approved for oncological indications, reduced free serum VEGF concentrations below
the detection limit of the assay [34]. Based on these findings, we started using a low-dose
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bevacizumab regimen (400 mg I.V. loading dose followed by 100 mg I.V. Q4w) for the
treatment of patients diagnosed with symptomatic fRNB not eligible for neurosurgical
debridement [34]. The initial reports of this regimen were presented at the 2021 ESMO-
congress (European Society for Medical Oncology) [35]. Recently, other research groups
demonstrated the efficacy of a low dose of bevacizumab, including regimens of 1 mg/kg
and 3 mg/kg [36,37]. Here, we report a retrospective analysis of patients receiving treatment
with this low-dose bevacizumab regimen at our center between 2016 and 2022.

2. Materials and Methods
2.1. Patient Selection, Clinical Outcomes, and Adverse Events

We conducted a single-center, retrospective identification of patients with benign or
malignant cerebral lesions who received SRT or SRS, subsequently developed symptomatic
fRNB and were treated with a low-dose bevacizumab regimen at the UZ Brussel hospital
(Belgium) between 2016 and 2022. All patients that received at least one administration
of 100 mg bevacizumab I.V were included. Patients were diagnosed with fRNB based on
multiple arguments and consensus between physicians from complementary subspecialities
(including radiologist, neurosurgeon, and radiation and medical oncologist), location
within the irradiated volume, timing relative to radiotherapy, evolution of primary disease,
and (in selected cases) biopsy and/or 18F-FDG PET/CT.

Data concerning patient characteristics, patient history and clinical status, diagnosis of
fRNB, bevacizumab treatment disposition, adverse events (graded according to the Com-
mon Terminology Criteria for Adverse Events (CTCAE) v5.0), and response assessments
was extracted from their medical records.

The study was conducted in accordance with the Declaration of Helsinki and approved
by the Ethics Committee of UZ Brussel (EC-2022-164). All patients signed informed consent
allowing the use of their data for the purpose of this analysis.

2.2. Statistical Analysis

In this study, descriptive statistics were used to summarize and present the results.
Demographic information, including age, sex, and primary tumor, were collected and
summarized using frequency tables and proportions. For continuous variables, the median
and standard deviation were calculated. Categorical variables, such as adverse events,
were analyzed using frequency and percent distributions. As this is a retrospective case
series, no statistical significance can be reported.

2.3. Imaging

T1-weighted gadolinium and T2-weighted FLAIR (fluid-attenuated inversion recov-
ery) MRI images from one month prior to the first dose and after the last dose were
reviewed. To determine the effect of the treatment, volumetry was performed on these
images using a semi-automated technique (Brainlab AG, Munich, Germany).

3. Results
3.1. Baseline Characteristics

Between March 2016 and July 2022, 13 patients (six females and seven males) with
a median age of 52 years (range: 33–68 years) were treated with low-dose bevacizumab
for fRNB. Baseline patient characteristics are summarized in Table 1. Among the patients,
six patients (46%) had melanoma as a primary disease, three patients (23%) had non-small
cell lung cancer, and one patient (8%) had an arteriovenous malformation. Seven patients
(54%) received SRS, three patients (23%) received SRT, and two patients (23%) received
both. Two out of the seven and one out of three patients who, respectively, received
SRS and SRT had multiple courses for different lesions. One patient received two SRT
courses for the same lesions. Four patients (31%) were initially treated with corticosteroids
prior to receiving bevacizumab but had unsatisfactory outcomes. Three out of these four
patients received concomitant corticosteroids at the initiation of BEV. The steroid dose
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was gradually reduced in these patients. Eight (62%) and four (31%) patients received,
respectively, immunotherapy and chemotherapy between SRS/SRT and the first dose
of bevacizumab. The median volume of FLAIR-hyperintensity at baseline was 20.1 cm3

(range: 2.74–98.3 cm3) and 4.49 cm3 for the T1 enhancing lesion (range: 1.79–21.3 cm3) on
T1-weighted gadolinium MRI. The majority (69%) of the patients had a single fRNB lesion.

Table 1. Baseline patient characteristics. fRNB = focal radiation necrosis of the brain,
WHO-PS = World Health Organization Performance Status.

Characteristics No. of Patients (%)
Total (n = 13)

Median age, years (range) 52 (33–68)
Sex

Male 7 (54%)
Female 6 (46%)

Primary disease
Melanoma 6 (46%)
Non-small cell lung carcinoma 3 (23%)
Breast cancer 1 (8%)
Renal cell carcinoma 1 (8%)
Medulloblastoma 1 (8%)
Arteriovenous malformation 1 (8%)

WHO-PS at inclusion
0 10 (77%)
1 3 (23%)

Number of fRNB locations
1 9 (69%)
2 3 (23%)
3 1 (8%)

Prior radiation therapy
Stereotactic radiosurgery 6 (46%)
Stereotactic radiotherapy 3 (23%)
Both 4 (31%)

Corticosteroid treatment prior to initiation of
bevacizumab

Yes 5 (39%)
No 8 (62%)

Diagnosis of fRNB based on MRI supported by
Histopathological examination of biopsy 6 (46%)
18F-FDG PET-CT 6 (46%)
MRI-only 3 (23%)

Symptoms at baseline
Headache 1 (8%)
Epileptic seizures 6 (46%)
Focal neurological deficit 9 (69%)

The diagnosis of fRNB was based on the medical history and MRI of the brain in all
patients and was further complemented with 18F-FDG PET-CT in six patients and with a
surgical biopsy in six patients. Median time between the first course of SRS/SRT and the
start of the low-dose BEV regimen was 39 months (range: 18–90 months).

All patients had at least one fRNB-associated neurological symptom at the start of the
treatment, including focal neurological deficits (e.g., paresis) (69%, n = 9), epileptic seizures
(46%, n = 6), and headache (8%, n = 1,) (Tables 1 and 2).
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Table 2. Individual patient characteristics. BEV = bevacizumab, AVM = arteriovenous malformation, BC
= breast cancer, MB = medulloblastoma, MEL = melanoma, NSCLC = non-small cell lung carcinoma,
RCC = renal cell carcinoma, IPI = ipilimumab, NIVO = nivolumab, PEMBRO = pembrolizumab, Y = yes,
N = no, Y/N = mixed, ICI = immune checkpoint inhibitor. 1 indicates concomitant continuation of
corticosteroids. Time expressed in months.

Patient Primary
Disease

Location
of fRNB

Radiation
Therapy Prior ICI

Prior
Chemother-

apy
Time since
SRS/SRT

WHO-PS
Evolu-

tion

Time on
Treat-
ment

Re-
challenge
Needed

Steroids
Prior

Symptomatic
Improve-

ment

1 NSCLC Right
frontal SRS (1 × 20 Gy) 23 1 -> 1 5 N Y1 Y

2 MEL Left
parietal SRS (1 × 20 Gy) IPI + NIVO

+ PEMBRO 43 0 -> 1 40 Y N Y/N

3 NSCLC Bilateral
parietal SRS (20 Gy) PEMBRO 37 0 -> 1 5 N N Y

4 RCC Right fron-
toparietal

SRS (20 Gy) +
SRT (5 × 7.5 Gy) NIVO 58 0 -> 0 8 N N Y

5 MB Left supra-
tentorial

SRT (doses see
case report 1)

Carboplatin
+

etoposide
79 0 -> 0 11 Y N Y

6 AVM Right
parietal SRS (1 × 20 Gy) 79 0 -> 0 5 N N Y

7 BC Left
temporal

SRS (1 × 20 Gy) +
SRT (5 × 7 Gy) Paclitaxel 90 0 -> 0 3 Y N Y

8 MEL Left fron-
toparietal

SRT+SRS (see
case report 2) IPI + NIVO 18 1 -> 1 11 Y Y1 Y

9 MEL Right
frontal SRS (1 × 20 Gy) IPI + NIVO

+ PEMBRO 60 0 -> 1 1 N Y1 Y

10 MEL
Bilateral

frontopari-
etal

SRS (1 × 20 Gy) IPI + NIVO Temozolomide 38 0 -> 0 4 Y N Y

11 MEL Left
cerebellar SRT (3 × 9 Gy) 24 0 -> 0 10 N N Y

12 MEL Right
cerebellum SRT (4 × 8 Gy) PEMBRO 39 0 -> 0 20 N N Y

13 NSCLC Right
temporal

SRS (1 × 20 Gy) +
SRT (5 × 7 Gy) PEMBRO Cisplatin +

docetaxel 32 1 -> 0 2 N Y N

3.2. Treatment Disposition

All patients, except three, received a loading dose of 400 mg bevacizumab I.V at the
start of treatment. A median of seven maintenance doses (100 mg) was given (range: 2–
38 doses). Two out of the three patients who did not receive a loading dose had previously
received a conventional dose regimen of bevacizumab. Prolonging the interval between
administrations from Q4w to Q6w in three patients after the initial response did not result in
an increase in symptoms. In four patients, bevacizumab treatment was resumed following
elective discontinuation. In one of these patients because of recurring symptoms, in two
other patients following an asymptomatic increase in T1-weighted gadolinium and T2-
weighted FLAIR MRI volume, and in one patient (25%, n = 4) because of both MRI changes,
as well as an increase in symptoms (Figure 1). On average, patients were given 2–4 doses
of BEV before their first evaluation. At this evaluation, treatment was either stopped or
continued based on clinical symptoms and MRI response.
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3.3. Clinical Outcome

Eleven patients (84.6%) experienced a complete symptomatic improvement during
treatment. Six patients suffered from epileptic seizures within three months preceding
the initiation of BEV; three of these patients suffered from therapy refractory epilepsy
(defined by refractory to two or more anti-epileptic drugs). These patients experienced a
marked improvement in refractory epileptic seizures, including two patients who became
seizure-free. The other three patients experiencing epileptic seizures all became seizure-free
while under the low-dose regimen. All patients continued their anti-epileptic medication.
The WHO-PS (World Health Organization Performance Status) remained the same in nine
patients (69%) while on treatment, improved in three patients (23%), and decreased in one
patient (8%) (Tables 1 and 2)

3.4. Objective Response on MRI of the Brain

All patients underwent at least one MRI scan at baseline and on treatment. Slice thick-
ness ranged between 0.5 and 2 mm, depending on the MRI apparatus. T2-weighted FLAIR
MRI-images demonstrated a decrease in the volume of edema in all patients. The median
relative decrease in the FLAIR-hyperintensity volume was 81.1% (range: 7.1–95.4%). Three
patients (23%) relapsed after electively discontinuing treatment following symptomatic and
radiographic improvement while on treatment. After reinitiating treatment, these patients
had a renewed radiographic decrease in the edema volume.

All patients who were evaluated by T1-weighted gadolinium MRI of the brain (n = 12)
had a decrease in the contrast enhancing volume. One patient had a slight increase in the
contrast enhancing volume after re-challenge, but a decrease in FLAIR-hyperintensity over
the same period (Figure 2).
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3.5. Safety

In general, the treatment was well-tolerated, and the adverse events were mild (Table 3).
No unexpected adverse events were observed. There were no Grade 3 or higher adverse
events. None of the patients needed to receive medical therapy for adverse events. One
patient had to discontinue treatment because of a Grade 2 wound dehiscence (which was
successfully treated with local treatment).

Table 3. Adverse events according to the Common Terminology Criteria for Adverse Events (CT-
CAE) v5.0.

All AE n = 6

Grade I Grade II Grade III Grade IV

Arterial Hypertension (n [%]) 2 (15%) 0 0 0
Headache (n [%]) 1 (8%) 1 (8%) 0 0
Alopecia (n [%]) 2 (15%) 0 0 0

Mucositis oral (n [%]) 2 (15%) 0 0 0
Diarrhea (n [%]) 1 (8%) 0 0 0
Epistaxis (n [%]) 1 (8%) 0 0 0

Proteinuria (n [%]) 0 1 (8%) 0 0
Wound dehiscence (n [%]) 0 1 (8%) 0 0

3.6. Survival

The median time between the first dose of bevacizumab and the database lock was
22 months (range: 5–56 months). Two patients died during this follow-up period due to
progressive disease of their primary tumor (lung and melanoma). All the other patients
remained alive at the time of the database lock and were still in follow up. Only one of
patient remains in treatment.

4. Case Illustrations
4.1. Case Illustration 1

We present the case of a 33-year-old male patient with a cerebellar medulloblastoma,
who initially presented in 2011 with orthostatic headache. Surgical resection and radiother-
apy were performed in 2011 (20 × 1.8 Gy full neuraxis + 10 × 1.8 Gy boost locally) and
2013 (recurrence, 26 × 2 Gy). In 2016, perilesional edema was visualized on follow-up MRI,
and the patient experienced epileptic seizures. Therefore, a treatment of standard-dosing
7.5 mg/kg Q4w bevacizumab as well as levetiracetam was initiated. After four doses of
bevacizumab, T2-weighted FLAIR MRI demonstrated a decrease in the perilesional edema
and the patient did not experience epileptic seizures anymore, after which the treatment
was discontinued. In 2018, he experienced a new epileptic seizure and T2-weighted FLAIR
MRI demonstrated an increase in perilesional edema (A). Despite increasing the dosage of
the anti-epileptic drug levetiracetam, the patient still experienced seizures. Therefore, a
low-dose bevacizumab regimen of 100mg Q4w was initiated (omitting the 400mg loading
dose). After four doses, treatment was discontinued because the patient did not experience
epileptic seizures anymore and a decrease in volume on T2-weighted FLAIR MRI was
observed (C). The patient remained in follow up every three months (clinical and MRI).
After six months, a T2-weighted FLAIR MRI demonstrated a new increase in edema (D)
prompting a restart of low-dose BEV. Another four doses later, he again had a reduction
in edema volume, after which treatment was permanently discontinued (E). Two months
after discontinuing the treatment, no increase in edema was visualized (F). The patient
remained asymptomatic up to the last follow up (more than 2.5 years after the last dose of
bevacizumab) (Figure 3).
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4.2. Case Illustration 2

The second case is a 52-year-old female patient who presented with two melanoma
brain metastases for which she received SRT in January and March of 2019. In July 2020 (A),
a diagnosis of fRNB was made based on T1-weighted gadolinium and T2-weighted FLAIR
MRI, further confirmed by a hypometabolic spot on 18F-FDG PET-CT. Because of frontal
and parietal left-sided headaches, a low-dose regimen bevacizumab was initiated, starting
with a loading dose of 400 mg, followed by a Q4w 100 mg I.V. maintenance dose. In January
2021, a decrease in edema on T2-weighted FLAIR MRI was observed (B). Treatment was
interrupted because of diarrhea and minimal improvement in symptoms. Nine months
later, because of an increase in edema (C) a new low-dose regimen was started with a
400 mg I.V. loading dose. In January 2022, she received SRS for a new metastatic lesion but
continued BEV maintenance. After six maintenance doses, BEV was stopped because of
radiological improvement (D). Edema on this MRI is a result of the intracranial progression
of her melanoma for which new systemic treatment options were started. Six weeks after
stopping BEV, no subsequent increase in edema was visualized (E) (Figure 4).
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5. Discussion

Focal radiation necrosis of the brain (fRNB) is an important and increasingly com-
mon late adverse event of stereotactic radiotherapy and radiosurgery. Our case series
confirms the observations in the literature, indicating that fRNB is more frequent after SRS,
as compared to SRT (10 out of 13 patients received SRS). When symptoms occur, treatment
is indicated. Depending on the localization and the prognosis of the patient, surgical
debridement or systemic corticosteroids are currently considered as standard treatment op-
tions. Bevacizumab has been proven to be an effective alternative, avoiding the side effects
resulting from prolonged administration of corticosteroids [29]. Gonzalez et al. reported
that using a dosing regimen of 5 to 7.5 mg/kg bevacizumab administered every 2–3 weeks
reduced fRNB-related neurocognitive deficits and cerebral edema [32]. Later, an observa-
tional study and a randomized controlled trial confirmed these finding [29,33]. However,
until recently, bevacizumab has not been widely adapted as the preferred treatment option,
as the high drug costs remain an important hurdle. More recently, bevacizumab biosimilars
have been introduced, rendering the use of this drug more accessible. Our research group
was among the first to report the effect of a fixed, low-dose bevacizumab regimen [35].
We have summarized all available evidence regarding the use of bevacizumab for the
indication of fRNB in Table 4. Most data relate to retrospective case series, with important
variations in sample size and patient heterogeneity.

Table 4. Overview of available evidence regarding the use of bevacizumab for the treatment of focal
radiation necrosis of the brain.

Citation Study Design No. of
Patients

BEV Dose
Regimen

Primary
Pathologies (n) Radiation (n)

Radiographic
Response Rate

(%)

Symptomatic
Improvement

(%)
Adverse Events
Described (n)

Gonzalez et al.,
2007. USA. [32] Retrospective 8

5 mg/kg q2w
or 7.5 mg/kg

q3w

AOA (1), AOD
(1), AA (1), HP

(1), GBM (4)
RT/SRS 100% None

Tye et al., 2014.
USA. [29] Review 71 7.5 mg/kg q2w

GBM (22), Met
(11), pG (15),
Men (6), NPC
(5), other (5),
ponG (3), HP
(2), AVM (2)

EBRT (57),
SRS (9),

BNCT (3),
PT (2)

100%

Small vessel
thrombosis (3),
sagittal sinus

thrombosis (1),
aspiration

pneumonia (1),
pneumonia with

sepsis (1),
pulmonary
embolus (1)

Levin et al.,
2012. USA. [33]

Randomized
controlled trial 7 7.5 mg q3w

NPC (2), MS (1),
A (1), ODG (1),
SCC (1), PA (1)

RT (7) 100% 100%

Small vessel
thrombosis (3),

aspiration
pneumonia (1),

pulmonary
embolus secondary

from a deep vein
thrombosis (1),

superior sagittal
sinus

thrombosis (1)

Wang et al.,
2012.

China. [38]
Retrospective 17 7.5 mg/kg q2w

GBM (7), Met
(6), AA (1),
AVM (1),
Men (1),
ODG (1)

EBRT (12), SRS
(4), FSRT (2) 100% 94.1%

Hypertension (1),
proteinuria (1),

temporary
fatigue (1)

Boothe et al.,
2013. USA [39]. Retrospective 11

7.5 mg/kg q2w
or 10 mg/kg

q3w or
15 mg/kg q6w

Met (11) SRS (11),
WBRT (5) 100% 63.6% None

Furuse et al.,
2013.

Japan. [40]
Retrospective 11 5 mg/kg q2w

GBM (4), AM
(3), Met (3),

AA (1)

XRT (7), SRS (6),
BNCT (3),
SRT (1),

100% None

Yonezawa et al.,
2014.

Japan. [41]

Non-
randomized
clinical trial

9 5 mg/kg q2w GBM (6), Met
(2), ODG (1)

GTV (6), SRT(2),
EL (1), SRT (1),

WBRT (1)
PT (1)

100%

Anemia,
thrombocytopenia,
lymphocytopenia,

and/or
neutropenia (3)
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Table 4. Cont.

Citation Study Design No. of
Patients

BEV Dose
Regimen

Primary
Pathologies (n) Radiation (n)

Radiographic
Response Rate

(%)

Symptomatic
Improvement

(%)
Adverse Events
Described (n)

Sadraei et al.,
2015. USA. [42] Retrospective 24

5 mg/kg q2w
or 7.5 mg/kg

q3w or 10
mg/kg q2w or
15 mg/kg q3w

Met (17), GBM
(2), AVM (2),
ODG (1), AE

(1), TA (1)

WBRT (10), SRS
(18), PT (1) 95.8% 95.8%

Grade 2 or less:
hypertension,

fatigue, urinary
tract infection, and

proteinuria (6).
Grade 3:

pulmonary
embolism (1)

Zhuang et al.
China. 2016.

[36]

Non-
randomized
clinical trial

21 1 mg/kg q3w Met (21) SRS (16),
WBRT (5) 95.2% 81% Allergy (1),

hypertension (1)

Zhuang et al.
China. 2016.

[43]
Retrospective 14 5 mg/kg q3-4w Met (14) STI (10),

WBRT (4) 92.9% 83.3% Allergy (1),
hypertension (1)

Weng et al.,
2021. China.

[37]
Retrospective 22 3 mg/kg q2w Met (22) SRS (22) 100% None

Li et al., 2017.
China. [44] Retrospective 50 5mg/kg q2w NPC RT 76% Not collected

Xu et al., 2018.
China. [45]

Randomized,
open label

clinical trial
58 5 mg/kg q2w NPC RT 51.8% 62.1%

Hypertension (12),
fatigue (7),

infection (4),
hemorrhage (4),

insomnia (3),
headache (3), rash

(3), fever (2),
blurred vision (1),
hyperglycemia (1),

stroke (1)

Alessandretti
et al., 2021.
Brazil. [46]

Retrospective 2 5 mg/kg q2w Met (2) SRS (2) 100% 50% None

Glitza et al.,
2017 USA. [47] Retrospective 7 5, 7.5, 10 mg/kg Melanoma SRS/WBRT 57.4% 71.5% Arthralgia (1),

dysgeusia (1)

This study Retrospective 13

400 mg loading
dose, 100 mg

q4w
maintenance

dose

Met (11), MB
(1), AVM (1) SRS (8), SRT (5) 100% 11

Hypertension (2),
headache (2),

mucositis oral (2),
alopecia (2),
diarrhea (1),
epistaxis (1),

proteinuria (1),
wound

dehiscence (1)

Abbreviations: AA = anaplastic astrocytoma, AOA = anaplastic oligoastrocytoma, AOD = anaplastic oligo-
dendroglioma, AM = anaplastic meningioma, AVM = arteriovenous malformation, BEV = bevacizumab,
BNCT = boron neutron capture therapy, EBRT = external beam radiation therapy, EL = extended local,
FSRT = fractionated stereotactic radiotherapy, GBM = glioblastoma, GTV = gross tumor volume, HP = heman-
giomapericytoma, MB = medulloblastoma, Men = meningioma, Met = metastasis from solid tumor, n = number of
patients, NPC = nasopharyngeal carcinoma, ODG = oligodendroglioma, pG = primary glioma, ponG = pontine
glioma, PT = proton therapy, RT = radiotherapy, SRS = stereotactic radiosurgery, SRT = stereotactic radiotherapy,
STI = stereotactic irradiation, WBRT = whole brain radiotherapy, XRT = X-ray radiotherapy.

This study included 13 patients who received at least one administration of 100 mg
I.V. bevacizumab between 2016 and 2022. Ten of these patients received an initial loading
dose of 400 mg, followed by a monthly maintenance dose of 100 mg. 18F-FDG PET-CT
was useful to differentiate fRNB from brain metastasis, and therefore, can aid in diagnosis.
This is in line with recent reviews, although further research is still needed [48,49]. While
the study population is heterogeneous in their primary disease, all patients were treated
for fRNB presenting after SRS/SRT. Within this population, 92% of the patient population
experienced an improvement in clinical symptoms. Almost all the patients experiencing
epileptic seizures became seizure-free under anti-epileptic medication in combination
with low-dose bevacizumab, including two patients with refractory epileptic seizures.
All patients had a radiographic decrease in edema volume on T2-weighted FLAIR MRI
after starting BEV. These findings are in line with other reports on lower-dose regimens of
bevacizumab for fRNB [36,37] (see Table 4 for a full overview). We first reported the results
of a fixed-dose regimen, as opposed to weight-based dosing. The fixed doses used in this
regimen were generally well-tolerated with only mild adverse events, and no new safety
signs were observed. Almost all patients (10 out of 13) received an initial loading dose,
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followed by at least two maintenance doses (100 mg) before their first evaluation (=after
3 months) to decide on whether to continue treatment. This is in line with what is described
in the literature (2–4 initial courses of BEV, both for a lower dose, as well as a conventional
dose). In cases where a significant beneficial effect on MRI imaging is observed, as well as
symptomatic improvements without a remaining need for corticosteroids, we will discuss
the possibility of treatment interruption with the patient. Further dosing is adapted to
patient symptoms and imaging.

Notwithstanding the limited number of patients in this retrospective single-center data
collection, our preliminary data suggest that a low-dose regimen bevacizumab comprising
a fixed loading dose of a 400 mg I.V. dose and a maintenance dose of 100 mg Q4w can be a
simple and effective treatment option for symptomatic fRNB. While the design comes with
its inherent risk of biases, we think the real-world experience described in this manuscript
demonstrates a uniform and clinically meaningful activity in all patients treated with this
treatment regimen. In the future, more data on outcome according to primary pathology
should be collected within the context of a prospective clinical trial. Based on our results,
this regimen is a valid cost-sparing alternative for the expensive standard dose of 5 to
7.5 mg/kg of BEV every 3–4 weeks, especially since the recent availability of bevacizumab
biosimilars and the subsequent reduced drug cost. We have, therefore, adapted this regimen
as our institutional standard of care treatment regimen for fRNB that is not amenable for
neurosurgical resection.

6. Conclusions

Our preliminary data demonstrate that treatment of fRNB with a low-dose regimen
of bevacizumab can be an effective and cost-lowering alternative for standard-dose beva-
cizumab and likely has fewer side effects as compared to long-term high-dose corticosteroid
use. 18F-FDG PET/CT can be a useful supplementary imaging modality to differentiate
fRNB from malignant brain lesion recurrence or metastasis. Further research is needed to
prospectively validate this low-dose treatment protocol in larger studies and homogenous
patient cohorts.
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