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Simple Summary: Appropriate testing models are imperative to facilitate the discovery of effective
personalized treatments against different cancers, including advanced cervical cancer. This review
provides a comprehensive overview of the currently available three-dimensional (3D) models of
cervical cancer and their significance in pre-clinical and clinical studies. The review emphasizes
the potential of 3D tumor models, such as spheroids from cervical cancer cell lines and patient-
derived organoids, to evaluate novel therapies, particularly immunotherapies that target tumor cells
and modulate the tumor microenvironment. Notably, the cervical cancer field is underdeveloped
regarding use of 3D tumor models, and there is an increasing need to develop appropriate models to
address this clinical burden, which will aid in personalized treatment discovery.

Abstract: Cervical cancer is one of the most common malignant diseases in women worldwide.
Despite the global introduction of a preventive vaccine against the leading cause of cervical cancer,
human papillomavirus (HPV) infection, the incidence of this malignant disease is still very high,
especially in economically challenged areas. New advances in cancer therapy, especially the rapid
development and application of different immunotherapy strategies, have shown promising pre-
clinical and clinical results. However, mortality from advanced stages of cervical cancer remains
a significant concern. Precise and thorough evaluation of potential novel anti-cancer therapies in
pre-clinical phases is indispensable for efficient development of new, more successful treatment
options for cancer patients. Recently, 3D tumor models have become the gold standard in pre-clinical
cancer research due to their capacity to better mimic the architecture and microenvironment of tumor
tissue as compared to standard two-dimensional (2D) cell cultures. This review will focus on the
application of spheroids and patient-derived organoids (PDOs) as tumor models to develop novel
therapies against cervical cancer, with an emphasis on the immunotherapies that specifically target
cancer cells and modulate the tumor microenvironment (TME).

Keywords: cervical cancer; pre-clinical drug tests; 3D tumor models; tumor spheroids; patient-derived
organoids (PDOs); immunotherapy; tumor microenvironment (TME)

1. Introduction

Cervical cancer represents the fourth most common cancer in women worldwide, with
an estimated 604,000 cases and 342,000 deaths in 2020. Currently, one in three-hundred-
forty women in Germany dies from cervical cancer. In 2016, 4380 women developed
cervical cancer in Germany and there were 1562 deaths. The 5-year and 10-year relative
survival rates in 2016 were 67% and 63%, respectively [1].
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The distribution of deaths caused by cervical cancer shows an imbalance influenced by
wealth, with nine out of ten cervical cancer deaths worldwide occurring in low- and middle-
income countries. While this is certainly a reflection of the much better developed cancer
prevention system for women in industrialized countries, co-diseases that compromise the
immune system also play a crucial role. Women who have HIV, for example, are six times
more likely to develop cervical cancer than women who are HIV-negative [2].

Infection with carcinogenic human papillomaviruses (HPV) is crucial for the develop-
ment of precancerous lesions or cancers. HPV is detected in 99.7% of all cervical cancers
and more than 400 different HPV genotypes are now known (PaVE (nih.gov, accessed on
4 April 2023)), of which approximately 40 can infect the genital area (www.hpvcenter.se,
accessed on 8 March 2023). Human papillomaviruses are classified according to their risk
potential for inducing invasive cervical cancer. A distinction is made between high-risk
(HR) and low-risk (LR) types. The four high-risk types, HPV 16, 18, 31, and 45, are associ-
ated with approximately 80% of all invasive cancers. HPV 16 alone can be detected in over
half of all cancers. The remaining 11 HR types are significantly less likely to be involved in
carcinogenesis. LR types cause benign condylomas of the cervix, among others.

Human papillomaviruses belong to the Papillomaviridae family. Mechanisms of squa-
mous cell immortalization and malignant transformation by viral E6 and E7 oncoproteins
after HPV infection include inactivation of the tumor suppressors P53 and the retinoblas-
toma protein (RB), respectively, via proteolytic degradation after binding. For successful
infection, HPV must first find a divisible basal or reserve cell of the cervix uteri. As these
cells are usually located in the transformation zone, the vast majority of changes occur
here. A latent infection of the host cells is often observed, in which the virus infects the
cells without causing pathological changes. The oncogenic potency of the virus and the
immune status of the host are important for the further course and the possible develop-
ment of malignancy. In most infected individuals, human papillomavirus appears to clear
spontaneously after a period of time without support from therapeutic measures.

Since 1980, both the number of deaths caused by cervical cancers and the incidence
of higher tumor stages (≥FIGO stage IIB) have been declining [2]. Depending on the
tumor stage, the primary therapy was surgery or radiochemotherapy. In about 12% of
cases, there is a primary metastasis at the initial diagnosis. In stage Figo IV, the 10-year
survival probability decreases to 16% due to resistance to radiotherapy and chemotherapy,
which strongly indicates the need for alternative therapeutic strategies [3,4]. For example,
checkpoint inhibitors have become standard treatments in metastatic and recurrent cervical
cancer with promising results. However, only a subgroup of patients actually benefits
from this therapy. Therefore, additional immunotherapies and new methods to better
identify novel immunotherapeutic strategies and estimate potential success are essential
to improve patient care. Especially, overcoming barriers that protect tumor cells and
create challenges for anti-tumor immune responses, such as the immunosuppressive tumor
microenvironment (TME), remain crucial points to be addressed.

2. 2D Cancer Models and Importance of TME

In cancer research, 2D cell cultures are most commonly used and often considered
to be the golden standard for in vitro studies. To study female reproductive tract malig-
nancies, successful establishment of primary 2D cultures for ovarian [5,6], endometrial [7],
fallopian [8], and vaginal [9] cancer have been reported, whereas the cultivation of primary
cultures for cervical cancer seems to be challenging, with only a few reports about the
successful establishment [10,11] until today. Disadvantages of primary cultures, including
limited expansion and short lifespan, prompted the development of cell lines. Based on
a recent comprehensive study by Martinez and colleagues, twenty-five cell lines were
developed from cervical neoplasias since 1960, of which only nine have identified cervical
cancer genomic patterns [12]. However, it has to be considered that, despite the widely
accepted standards for regulation, the criteria for the characterization of cell lines derived
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from cervical neoplasia continue to change. Most in vitro studies on cervical cancer have
been completed on HeLa, CaSki, SiHa, or C-33-A cell lines [13].

While convenient, 2D cell cultures fail to recapitulate the complex biological structures
that are found within and around tumors, such as interactions with stromal cells and the
extracellular matrix, which can also serve as a reservoir for molecules, such as cytokines,
lactic acid, miRNAs, and extracellular vesicles (EVs), that are produced by tumors. The
combinations of these structures and additional factors such as hypoxia are key to formation
of the TME and control (at least partially) how immune cells as well as drugs can access
the tumor. Furthermore, characteristics of the TME are thought to have important roles
in the inactivation of anti-tumor immune cells and for development of drug resistance.
Thus, the TME is not a homogeneous mixture of cancer cells, but rather contains several
different types of cells (e.g., cancer stem cells, fibroblasts, mesenchymal stem cells (MSCs),
endothelial cells, bone-marrow-derived cells) that contribute to the character of the TME.

The TME has several functions, including orchestration of signals between the tumor
and surrounding cells and tissue to maintain the supply of essential nutrients, to promote
tumor angiogenesis and possible metastasis, and to protect the tumor from elimination by
immune cells by inducing peripheral immune tolerance [14–17]. One of the major obstacles
to development of new therapies with increased effectiveness is the lack of pre-clinical
cancer models that properly recapitulate the complexity of human tumors. In this regard,
2D cell cultures have limited ability to mimic the TME in terms of cell morphology, gene
expression at the RNA level, and intracellular signaling. Drug resistance between 2D cell
cultures and cells in in vivo tumors may differ significantly in this regard [18–20].

3. Role of 3D Models in Cancer Research

With broadening knowledge about cancer biology and cell biology in general, it be-
came apparent that 2D cell culture systems do not reflect the complexity and heterogeneity
of tumors actually present in human disease. Cultivation of cancer cells on plastic dishes
under normoxic conditions, constant supply of nutrients, and high passage numbers caused
changes in the cell morphology, cytoskeletal organization, cell–cell communication, and
accumulation of mutations. Together, these result in modified gene and protein expression
patterns that affect cell viability, differentiation, and proliferation processes [21–23]. Thus,
2D tumor cell cultures significantly differ from in vivo situations and are often insufficient
models for the development of anti-cancer therapies.

Patient-derived xenografts (PDXs) were introduced as a more advanced alternative to
model cancer. PDXs are frequently used pre-clinical models of various tumors in which
primary cancer cells are transplanted into immunodeficient animals. According to a re-
cent systematic review [24], there are ten studies published with PDX models developed
for cervical cancer. In most of these models, cervical cancer tissue from patients was
subcutaneously transplanted in severe immunodeficient animals. Such models were use-
ful for the examination of chemotherapy toxicity and efficacy of drug delivery to the
tumor site [25,26]. Moreover, models with subrenal capsule transplantation [27,28] and
two orthotopic cervical cancer models [29,30] were used to study tumor metastasis and
cancer signaling pathways to identify new potential therapeutic targets. Although PDX
models offer conserved genetic, histological, and molecular signatures of the original
tumor and more closely mimic the TME compared to 2D models, they are still far from
the ideal situation, especially considering the lack of infiltrating human immune cells,
which are crucial components of the TME. Other important weaknesses include the in-
ability to monitor cellular responses to therapeutic challenges in real time, challenges
to predict tumor formation, high costs, high hands-on time requirements, and increased
ethical concerns [31].

These challenges necessitate the introduction of tumor models, which bridge the gap
between cell culture and animal models and more accurately reflect in vivo TME. The
last decade represented a revolutionary era of 3D cell culture tumor models. Various
strategies for 3D models, ranging from spheroids made of cancer cell lines or primary tissue
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to the recent development of more complex organoid models from tumor explants and
microfluidic systems, such as organoids/tumors-on-a-chip, have been developed. Diverse
in vitro models applied nowadays in cancer research are depicted based on their complexity
in Figure 1.
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Figure 1. Development of in vitro tumor models for cancer research. Increased complexity of cancer
in vitro models from simple 2D cell culture to 3D models, established by introduction of immune
cells, extracellular matrix (ECM) proteins, other components of tumor microenvironment (TME), and
microfluidic settings as shown. The figure is created with BioRender.com (accessed on 5 April 2023).

Spheroids and organoids are the two most commonly used 3D tumor models in pre-
clinical cancer research. In this review article, we will focus on these two tumor models and
the improvements in their establishment, complexity, and discuss their potential application
in the development of therapies against cervical cancer.

3.1. Spheroids

Defined as multicellular cellular aggregates that often contain only one cell type,
spheroids are the oldest and one of the most commonly used 3D cultures [32,33]. In 1956,
Ehrmann and Gey reported cellular aggregates that originated from different cell lines,
which were cultivated on collagen isolated from rats [34]. The importance of TME and
novel 3D culturing methods was explored during the 1970s and 1980s by several research
groups [35,36]. Since the late 2000s, the 3D spheroid culture field has rapidly emerged,
which is evident from the drastic increase in the number of techniques developed for
spheroid generation. Most methods are relatively simple and can be divided into two basic
types. Scaffold-free methods are based on spontaneous cell aggregation, e.g., hanging drop
method, agitation-based method in spinner flasks, or seeding the cells on low-attachment
surface dishes. The second type of spheroid generation techniques includes facilitated cell
aggregation using magnetic levitation, 3D bioprinting, encapsulation in gel-like matrices,
and cultivation on natural or synthetic scaffolds. Each method of spheroid generation has
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advantages and limitations, and the choice of method is largely dependent on the assays in
which the spheroids will be applied [37]. For example, the simplest method, such as hanging
drop, is very easy to handle; however, it is not the best choice if spheroid size homogeneity
plays a crucial role in the assay. While scaffolding-based methods are more complicated
to set up, they provide higher uniformity in number and size of spheroids. Multicellular
tumor spheroids (MCTS) can be used to model avascular tumors or micro-metastases [38].
In the simplest form, tumor spheroids refer to cell-line-derived 3D cell cultures. With the
development of new protocols to isolate cancer cells from solid tumors and advances in the
3D cell culture conditions, primary patient-derived tumor cells are also used for spheroid
generation. Incorporation of different cell types into cancer spheroid cultures provides new
levels of complexity. It was clearly shown that spheroids can reproduce essential features
of solid tumors, such as hypoxia, necrotic core, as well as nutrient (glucose and ATP) and
metabolite (lactate) gradients [39]. Therefore, these models can be used to study oxygen
impact, diffusion, and exchange of nutrients and other soluble factors, as well as to provide
a certain level of heterogeneity of cells within the tumor spheroid [40].

Advances in spheroid production with regard to size control, morphological unifor-
mity, and capacity to integrate multiple cell types or different types of gradients enabled
rapid development of high-throughput methods to test new therapeutics with robust re-
producibility. Application of tumor spheroids has demonstrated the importance of 3D
structures to understand the biology of tumor cells and the mechanisms by which they
hijack normal functions of the human body [37]. There are numerous examples of the
development of spheroid cultures from cell lines of different types of cancer, such as
glioblastoma [41], colorectal cancer [42], lung cancer [43], bone cancer [44], and gynecologi-
cal cancers, such as breast [45], ovarian [46,47], endometrial [48], and cervical cancer [49].
Diverse generation methods were used to establish spheroids from different cervical cancer
cell lines. For instance, HeLa, CaSki, and SiHa spheroid cultures can be easily produced
by scaffold-free methods. CaSki and HeLa cells form compact round spheroids, while
SiHa cells produce flat and loose spheroids. Further characterization revealed that CaSki
spheroids can be used to model aggressive invasion, while SiHa and HeLa spheroids
showed slow growth and gradual invasion, respectively [49].

The four main applications of tumor spheroids are (1) cellular functional studies (e.g.,
cell proliferation, migration, differentiation, and invasion) in an avascular tumor microen-
vironment [50–52], (2) tumor angiogenesis, (3) screening of new anti-tumor therapies, and
(4) tumor interactions with immune cells [53,54]. Early studies with spheroids primarily
focused on tumor cell biology [38,55] while exploring the potential of spheroid models
to mimic tumors in vivo. Independent models showed that gene expression profiles in
spheroids more closely resemble in vivo tumor conditions in the context of proliferation,
survival, differentiation, and drug resistance [56,57] compared to 2D cell cultures. Migra-
tion and invasion assays also revealed crucial similarities of tumor spheroids to in vivo
tumor cells and helped to identify major factors in invasion [58,59], which led to develop-
ment of inhibitors of the metastatic phenotype of tumors, for instance, on the U87 cell line
spheroid model for glioblastoma [60].

Tumor angiogenesis is a multi-step process that leads to formation of new blood vessels
within tumor tissue. The process allows supply of tumors with oxygen, nutrients, and
growth factors and facilitates dissemination to distant organs. Inhibition of angiogenesis
is an often-used strategy to prevent the growth of multiple solid tumors by reducing the
blood supply to tumor micro-regions, which eventually leads to necrosis within solid tumor
tissues. Angiogenesis studies provide an assessment of tumor potential for vascularization,
which is often represented by monitoring migration of endothelial cells into spheroids and
forming vascular networks within spheroids [61]. Angiogenesis studies typically include
tumor spheroids co-cultured with endothelial cells as monolayers or spheroids made from
both cell types [61–64]. Such experimental designs aided understanding of how tumors
exploit and rewire angiogenesis mechanisms, which led to discovery of angiogenesis
inhibitors as anti-cancer therapeutics [65,66]. Although blocking proangiogenic factors was
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shown to be an effective strategy to control cervical cancer growth, studies investigating
angiogenesis in cervical cancer spheroid models are lacking. It remains to be clearly
demonstrated whether results from other cancer types can be transferred to cervical cancer.
For example, multiple breast and ovarian cancer spheroid models were developed to
study and test angiogenesis and the effects of angiogenesis inhibitors [67,68] and indicated
the potential of 3D gynecological cancer models to test and discover new angiogenesis
inhibitors. Development of new treatments and drug screening on 3D models in the context
of cervical cancer will be further discussed in the following chapters.

Although many features of tumors and complicated tumor microenvironments can be
mimicked with cell line- and patient-derived spheroids, the impact of the heterogeneity
of tumors, original cell–cell interactions, interactions of tumor cells with the extracellular
matrix, and presence of cancer stem cells are necessary for precise pre-clinical (personalized)
anti-cancer therapies (Table 1). To overcome those limitations, tumor organoid models were
extensively studied.

3.2. Patient-Derived Organoids (PDOs)

Organoids are the second most commonly used 3D tumor models generated by the
proliferation and self-organization of cells directly isolated from patient tumor tissue.
The development of cancer organoids allowed greater retention of the natural cancer cell
heterogeneity of the native tumor, thus preserving the pathophysiology of the tumor
in vitro, including the genetic and phenotypic features of specific tumor types [69]. In
contrast to spheroids, which are formed by facilitated aggregation of cells, tumor organoids
spontaneously form 3D structures based on their genetic programming and more closely
represent the actual development of tumors. Moreover, organoids are more cost-effective
and, in some cases, more physiologically relevant than patient-derived tumor xenograft
animal models depending on the experimental design.

The process of organoid generation includes mechanical disruption or chemical diges-
tion of the original tumor tissue. Tumor cell suspensions are then seeded with required
growth factors and inhibitors in a culture medium within the extracellular matrix (e.g.,
matrigel, collagen, or various hydrogels). Different combinations of growth factors and
inhibitors in the medium contribute to the generation of distinct lineages in organoids,
which was recently described in detail for a breast cancer organoid model [70]. Since the last
decade, there have been increasing numbers of successfully cultured tumor organoids orig-
inating from various tumor types, including lung [71], prostate [72], breast [73], liver [74],
gastric [75], colorectal [76], pancreatic [77], kidney [78], bladder [79], endometrium [80], and
several others. The most studied gynecological cancers in the context of organoid models
are ovarian and breast cancers. A plethora of different ovarian cancer organoid models
based on the histological cancer subtype and cultivation duration were developed [81–83].
Breast cancer organoid cultures are even more advanced. Protocols for establishment were
extensively explored, which resulted in the generation of numerous organoid cell lines that
now serve as organoid biobanks to model disease and test anti-cancer therapies [84–86].

In contrast, cervical cancer organoid models remain challenging to establish. There
are few reports about their successful establishment and cultivation. In 2020, Maru and
colleagues generated organoids of the squamous columnar junction of the normal cervix,
but also were the first who established organoid cultures from a rare type of adenocarci-
noma, cervix clear cell carcinoma (cCCC). Those organoids reflected histological features,
genetic aberrations, and heterogeneity of the original tumor tissue and, thus, represented a
promising model to study this rare type of cancer [87]. Another group further advanced
the field by establishing long-term organoid cultures from healthy ecto- and endocervical
tissue as well as from the associated malignancies from total hysterectomy or Pap smear
brush material, respectively [88]. Organoids of healthy tissue represented mini replicates of
ecto- and endo-cervical tissue with regard to morphology and transcription profiles and
successfully modelled infection with the herpes virus. Cancerous organoids differed in
morphology and structure from healthy organoids, recapitulated cancer-associated gene
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expression patterns, gene alterations, and HPV integration patterns. Recently, Seol and
colleagues reported about new cervical cancer organoid cultures. In this study, organoid
cultures originated from biopsy materials from four patients with various types of cervical
cancer. The histopathological and gene profiles of these organoid models were compara-
ble to the original tumor tissues. Treatment of the cervical organoids with radiotherapy
resulted in different responses that reflected the responses observed by the originating
tumor types [89]. These three recent achievements in cervical cancer organoid cultures
pave the way to the establishment of more organoid cultures and potentially cervical
cancer biobanks that could be used to study disease pathogenesis in vitro and to test novel
anti-cancer therapeutics in a more personalized approach.

Table 1. Advantages and limitations of cervical cancer in vitro models.

Cervical Cancer In
Vitro Models Cell Origin Application Advantage Limitation
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4. 3D Cervical Cancer Spheroids and Organoids in Translational Research
4.1. Drug Discovery

A main goal of academic and industry anti-cancer research is the discovery and
development of novel drugs, potentially useful drug combinations, and repurposing
of known drugs. Only very few of the drugs shown to successfully combat different
types of cancer in pre-clinical development are ultimately translated for clinical use. This
necessitates careful evaluation of the selection and screening processes involved already
in early stages of drug development. Investigation of the suitability of a drug or drug
library to be used against a particular type of cancer typically begins with efficacy studies
against well-characterized cell lines established from patients as disease models. Such
assays are usually carried out as 2D cell culture models as these are readily amenable to
several high-throughput assays, including analysis of proliferation, apoptosis, migration,
gene, and protein expression. Lead compounds extracted from such assays are then further
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evaluated, for example, against primary tissue donated by patients and then in suitable
animal models to ascertain initial safety, bioavailability, and efficacy parameters.

Concerning novel compounds screened for their potential benefit in cancer therapy,
flavonoids, natural compounds commonly used in traditional Chinese medicine, have
shown promising effects against cervical cancer cells [105]. Among these, a study used
cervical cancer spheroids to evaluate the anti-cancer effects of the flavonoid naringenin,
identifying decreased viability and invasion potential, especially in combination with con-
ventional cisplatin-based chemotherapy [96]. By such combinatorial approaches, future
strategies for treating cervical cancer might overcome resistance to conventional chemother-
apeutics. Along these lines, expression of long non-coding RNAs (lncRNA) was higher in
cervical cancer spheroids compared to parental 2D culture and inhibition of those lncRNAs
enhanced cisplatin-induced cytotoxicity [106]. Zhang and colleagues combined imaging
strategies with RNA sequencing approaches to improve the prospective treatment of cer-
vical cancer patients [107]. Based on these outcome predictions, the group tested cervical
cancer spheroids for their response to multiple treatment options, showing resistance of
CaSki spheroids to radiation, but sensitivity to glycolysis inhibition. Apart from cell-line-
derived spheroids, patient-derived-organoids offer the possibility to screen for effective
therapies before applying them to patients, hence offering personalized treatment options.
In one study, organoids were established from patients with cervical cancer and screened
for their response to over 170 drugs. Organoid viability was strongly decreased by seven
of these compounds, which included proteasome-, histone deacetylase-, and translation
inhibitors. The same study used organoids to study their response to chemotherapeutics,
and organoids derived from squamous cell carcinoma showed higher sensitivity than those
derived from adenocarcinomas and large-cell neuroendocrine carcinomas [107].

Cell–cell interactions, but also interactions between tumor cells and the extracellular
matrix ligands, may lead to activation of integrins and other cell adhesion molecules to
cause cell-adhesion-mediated drug resistance (CAM-DR) [108–110]. Furthermore, 3D print-
ing of the cervical cancer model cell line HeLa in a culture system using gelatin/alginate/
fibrinogen hydrogels showed that 3D-printed HeLa cells had higher matrix metallopro-
teinase expression and greater chemoresistance to paclitaxel as compared to 2D cultures [93].
A 3D bioprinting approach that incorporated adipose decellularized ECM showed that the
resulting tumor spheroids had gene and protein expression profiles that more closely resem-
bled in vivo MCF-7 cell line-derived tumors as compared to 2D tumor cell cultures [111].
The in vivo tumorigenicity of the 3D spheroids was also more similar to the original MCF-7
breast cancer cell-line-derived tumors [111]. As further evidence of the contribution of
the ECM to greater drug resistance in 3D tumor models, efficiency of docetaxel-loaded
PEG-PPMT (poly(ethylene glycol)-poly(ω-pentadecalactone-co-N-methyldiethyleneamine-
co-3,3′-thiodipropionate)) nanoparticle (NP) uptake was lower in the 3D tumor model as
compared to the 2D cell culture models [111].

Epigenetic regulation is a crucial biological process that occurs during various stages
of development and plays a pivotal role in maintaining proper gene expression patterns.
During carcinogenesis, aberrant epigenetic reprogramming occurs, which, together with ge-
netic and environmental alterations, promotes tumorigenesis. Aberrant DNA methylation
is one of the cancer hallmarks that often results in modified expression of tumor suppressor
genes and promotes progression and pathogenesis of cancer [112]. Consequently, epige-
netic therapies are regularly applied to treat several different forms of cancer. For instance,
epithelial ovarian cancer patients are treated with GSK343, a potent inhibitor of histone
methyl transferase EZH2, which successfully overcame platinum therapy resistance. Sig-
nificant differences in regulation of transcription by specific epigenetic modifiers between
2D and 3D cultures were reported [113]. Accordingly, while treatment of ovarian cancer
2D cell cultures with GSK343 did not result in reduced growth of the cancer cells, treated
3D spheroids of ovarian cancer cells embedded in ECM exhibited diminished cancer cell
growth and invasion, as well as increased apoptosis [114]. These data indicate that 3D can-
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cer model systems, as compared to 2D cultures, more accurately resemble in vivo tumors
with regard to epigenetic regulation and the influence of epigenetics on drug response [114].

Comparison of EVs derived from 2D and 3D cervical cancer cell culture models
showed significantly different EV secretion dynamics and RNA content, with EVs derived
from 3D cultures having greater similarity to in vivo circulating EVs obtained from the
plasma of cervical cancer patients [94]. This demonstrates the potential of 3D culture
systems to mimic the clinical condition and could help provide better models to establish
tumor biomarkers and improve our understanding of cervical cancer disease stages.

Further, 3D tumor models based on spheroids are suitable for laboratory testing
because of their uniform shape and size. Here, many tests can be performed simultane-
ously in 96- or 384-well plates, enabling screening of a large number of different thera-
peutic agents [115]. Cervical cancer spheroid models started to be more often used to
assess tumor response and sensitivity to chemotherapeutics [96,116] and drug delivery
vehicles [117–119]. The drug screening process involves spheroid formation, incubation
with a drug, measurement of spheroid integrity and growth kinetics, and cell survival [120].
In this aspect, high-throughput application of tumor spheroids to identify potent drug can-
didates and reduce animal experiments is highly favorable. Overall, cancer spheroid models
showed higher resistance to treatments than 2D culture and recapitulated results frequently
observed in solid tumors. Cervical cancer models were conducted on HeLa spheroids and
showed higher chemoresistance compared to 2D cervical cancer models [93,98].

Moreover, 3D co-culture models were also used to mimic T cell infiltration of non-
small-cell lung cancer tumors [121]. Here, the authors showed changes in the T cell
secretome upon tumor infiltration, including proteins related to inflammatory processes
caused by cancers, further supporting the importance of intercellular communication in the
TME. This 3D model was used to examine the anti-tumor effects of docetaxel, a taxane that
causes apoptosis by suppression of microtubule assembly and disassembly, as an initial
step towards establishment of a drug screening platform [121]. Moreover, vincristine is
a chemotherapeutic that acts by inhibiting tubulin polymerization, with a central role in
preventing microtubule formation of mitotic spindles in the metaphase stage. Here, cervical-
cancer-derived spheroids have shown decreased sensitivity to vincristine compared to cells
cultured in monolayers [97], highlighting the benefits of multidimensional model systems
for drug screening.

4.2. Pre-Clinical Testing of Immunotherapies

Tumor immune responses and the immune environment play crucial roles in the
development and progression of cancer. Major effector cells in anti-cancer immune re-
sponses include T- and NK cells, which have been exploited for development of anti-cancer
immunotherapies. To better understand tumor immune networks and to test novel im-
munotherapies, the simplest models containing tumor spheroids co-cultured with im-
mune cells were repeatedly applied for various types of cancers, including ovarian [122],
cervical [100], colorectal [123], and lung [124] cancer, where infiltration of immune cells
and their cytotoxicity were monitored.

Over the past decades, the FDA approved more than a hundred immunothera-
peutic drugs to treat solid cancers. Among those, only three targeted immunothera-
pies were approved for cervical cancer. Those include a checkpoint inhibitor (pem-
brolizumab), an angiogenesis inhibitor (bevacizumab), and a tubulin inhibitor in the form
of an antibody-drug conjugate (tisotumab vedotin-tftv) (cancer.gov, accessed on 7 March
2023). While immunotherapies, such as checkpoint inhibitors, have shown promising
results in multiple solid tumor entities [125,126], the overall response rate remained at
only 20 to 40 percent [127]. Concerning cervical cancer, the phase II KEYNOTE-158 study
identified an overall objective response rate of only 12 percent for pembrolizumab [128],
while the phase I/II Checkmate-358 study showed an objective response rate of 26%
for nivolumab [129].

cancer.gov
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Even before translation into the clinics, the evaluation of immunotherapies commonly
shows differences between in vitro and in vivo experiments. While in vitro assays often
access cell viability and cytokine release of 2D cell culture models, in vivo studies usu-
ally include assessment of more complex murine xenograft models that are often cost-,
time-, and labor-intensive [130]. To streamline the development of new and effective im-
munotherapies for clinical translation, bridging the gap between 2D in vitro and complex
in vivo models is essential. In this regard, spheroid and organoid models enable the in-
vestigation of immunotherapies in a more complex platform, e.g., by adding organized
3D structures that more closely resemble the respective tumor type and corresponding
tumor microenvironment [131].

As an emerging field within immunotherapy, immune cells are equipped with chimeric
antigen receptors (CAR) to specifically detect and eliminate target cells. Regarding cervical
cancer, a recent study investigated CAR-T cells to redirect the immune cells toward engi-
neered CD19-positive HeLa-derived cervical cancer spheroids, showing target cell lysis in
both 2D and 3D conditions [101]. Giannattasio and colleagues [100] used primary NK cells
to examine their infiltration into cervical cancer spheroids formed from SiHa or CaSki cells
and found that most NK cells surrounded the spheroid, while only a subset of less than
20 percent infiltrated the tumor spheroids. Moreover, spheroid destruction took longer
than cytotoxicity experiments performed with the respective 2D cell cultures, potentially
due to decreased expression of activating ligands (e.g., NKG2D) on the spheroid surfaces.
Another study embedded cervical cancer cells in a 3D collagen hydrogel matrix co-cultured
with NK-92 cells to assess cytotoxicity. This experimental design mimicked the physical
barrier of solid tumors, leading to reduced migration of NK cells to the cancer cells and
decreased cytotoxicity compared to 2D model systems [102]. Due to the strong association
of cervical cancer with persistent HPV infections, therapeutic approaches utilizing dendritic
cell (DC)-based vaccination strategies were developed, but showed limited clinical success.
More complex in vitro systems might facilitate development of such novel strategies. Wang
and colleagues [92] compared DC vaccination in 2D and 3D models using an HPV16-E7
DNA vaccine and identified an increase of CD40 and CD80 protein expression, increased
levels of IL-12 and IFN-γ, as well as enhanced T cell proliferation in the 3D culture model.

Although several studies reported the establishment of organoids derived from healthy
and cancerous cervical tissues [82,87–89,103], their utilization for pre-clinical immunother-
apeutic studies remains very limited. In contrast, organoids established from ovarian
cancer cells were used for immune checkpoint inhibition studies. Here, the authors used
a bi-specific antibody targeting PD-1/PD-L1 and observed activation of co-cultured NK
and CD8-positive T cells [132]. Moreover, Schnalzger and colleagues used colorectal cancer
organoids as a 3D model system to evaluate the cytotoxic effects of CAR-modified NK
cells against solid cancer [132]. Patient-derived tumor organoids were also used to study
potential combinatorial effects of CAR T cells and birinapant, a second-generation bivalent
antagonist of inhibitor of apoptosis proteins (IAP), and showed cancer cell sensitization
toward tumor-necrosis-factor-mediated apoptosis [133]. Another study used PDOs to
screen and finally enrich tumor-specific T cells. Here, the authors identified T-cell-specific
killing of tumor organoids, while the survival of healthy organoids was not affected [133].
Although these studies evaluated organoids for immunotherapeutic treatments of different
solid cancer entities, these concepts can be theoretically transferred to cervical cancer.

Multiple clinical studies include patient-derived organoid models to screen for drug
responses in vitro prior to treatment. Hence, organoids are used to identify optimal and per-
sonalized treatment strategies, e.g., for ovarian [NCT04768270] and cervical [NCT04278326]
cancer. Although some clinical studies currently include cancer organoids to test the po-
tential benefit of immunotherapy approaches [NCT03778814, NCT02718235], the use of
organoid assessment to direct clinical decisions remains to be approved by regulatory
agencies for broader use.
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4.3. 3D Cultures as a Platform to Test Combinatorial Treatment Strategies against Cervical Cancer

The current therapies for cervical cancer include surgery, radiotherapy, chemother-
apy, a few targeted therapies, and several emerging immunotherapy options. However,
cervical cancer is a complex disease and current therapies have limited efficacy, which
is partially due to tumor drug resistance associated with existing monotherapies [134].
To overcome these challenges, one idea is to combine two or more different therapeutic
approaches to achieve improved treatment outcomes. Combinatorial therapeutic strategies
may have advantages as they are more likely to inhibit cervical cancer cell survival [134]
and reduce duration and adverse effects of high-dose monotherapies. Different combi-
nations of chemotherapy with either radiotherapy, immunotherapy, or targeted therapy
are often tested. Most frequently, cervical cancer is treated with a combination of chemo-
and radiotherapy [135].

Combining targeted agents with chemotherapy showed increased efficacy against
cervical cancer [135,136]. For instance, while VEGF antibody monotherapy showed limited
anti-tumor efficacy in cervical cancer in the clinic, combination with standard chemothera-
peutic drugs prolonged progression-free and overall survival [135]. The combination of
bevacizumab with cisplatin or paclitaxel resulted in more frequent complete response and
improved median overall survival of a few months compared to chemotherapy alone [137].
Clinical trials have also investigated the PARP-specific targeted therapeutics veliparib and
olaparib in combination with chemotherapeutic agents and showed the feasibility and
promising overall response rates in patients with advanced, persistent, or recurrent cervical
cancer [138]. Despite these promising results of combining chemotherapy with targeted
drugs, results from a number of trials so far have been inconclusive, and, thus, further inves-
tigation is required. Positive clinical evidence from combinations of therapeutic approaches
used in other cancers supports such initiatives. Effective combination treatments are com-
monly identified through computational analyses, bioinformatics, and high-throughput
screening. Pre-clinical, high-throughput screening of combinatorial therapies with tumor
spheroids or PDOs that share similar genetic fingerprints and cellular heterogeneity might
be beneficial in identifying the most appropriate therapy in a short time period. In this
regard, much more has been completed on ovarian and breast cancer models as compared
to cervical cancer. Combination of doxorubicin and immunotherapy with NK cells was
tested on various breast-cancer-derived organoid lines where combinatorial effects were
evident [139]. Moreover, de Witte and colleagues applied mono- or combinatorial chemo-
and targeted therapies on ovarian cancer organoid biobanks and found combinational
approaches to be beneficial. Moreover, responses of ovarian organoids were similar to
observed responses in patients from which the organoid lines were derived [140]. In
the future, such approaches could be applied to cervical cancer organoid biobanks once
these are established. In that scenario, potential therapeutic effects could be assessed with
a high-throughput assay, as has already been utilized to investigate the cytotoxicity of
NK-cell-based immunotherapy on breast cancer 3D spheroid models [141]. A balanced
risk–benefit analysis has to be considered to minimize the exposure of patients to severe
adverse events due to novel therapies or combinations. Additionally, the costs for such
treatments need to be taken into account when considering that many cervical cancer
patients live in low-income countries.

5. Discussion

As HeLa cells, which originate from the cervical cancer patient tissue, were the first
human cell line established, one would expect that cultivation of primary cervical cancer
cells and disease modeling would be among the most advanced areas. However, until
now, most of the studies in the context of cervical cancer were accomplished on cervical
cancer cell lines, with only limited reports of PDX cervical cancer mouse models. There
may be several reasons for this. For example, perhaps cervical cancer models are more
complicated to establish due to tissue organization. It is also possible that interest is limited
as preventative vaccines and very established screening methods are available. In the last
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ten years, attention to 3D cervical cancer models has been revived. Mostly, the studies were
completed on the spheroid models developed from HeLa, SiHa, or CaSki cell lines [49,51]
and focused on the biology of tumor cells, invasion potential, and drug response to com-
monly used chemotherapeutics [96]. However, established as a simple model, 3D spheroid
cultures of cervical cancer indicated higher resistance to a particular drug than standard 2D
monocultures of the same cell lines [49,93]. Extending the earlier work on organoid culture
establishment, recent efforts used whole-exome sequencing and transcriptome analyses to
identify upregulated MYC expression and activating KRAS mutations in patient-derived
cervical cancer organoids. Inhibition of oncogenic KRAS signaling by application of the
MEK inhibitor trametinib led to apoptosis of the cervical cancer organoids, thus showing
the potential of such approaches to direct clinical decisions [142].

Evident changes in the biology of tumor cells cultivated in 2D cell culture conditions
and limitations of established PDX animal models, including lack of predictability for clini-
cal trial outcomes and accumulating ethical concerns [143], made 3D spheroid and organoid
tumor models highlights of modern oncology. Recent developments in patient-derived
spheroids and organoid methods have further improved the reliability of these models in
pre-clinical drug screening for cancer patients. Tumor spheroids and organoids enable repli-
cation of an in-vivo-like TME within in vitro settings, where the biochemical and physical
properties of the TME, including tumor hypoxia, nutrient depletion, acidosis, and heteroge-
neous gene expression, are remarkably retained [144]. While PDOs are currently utilized in
clinical studies to assess personalized treatment options, outcomes of these studies and the
potential benefits of organoid models need to be carefully evaluated. Unfortunately, only
few clinical studies use organoids in this context, especially in relation to cervical cancer,
hence highlighting the need for additional research. Cervical-cancer-derived organoids and
spheroids can be genetically profiled and used in pre-clinical and clinical studies, including
development of more personalized therapeutic approaches (Figure 2).
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samples in biobanks as potential open resources and investigation of novel therapeutics. The figure
was created with BioRender.com (accessed on 5 April 2023).
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Although they offer many advantages in disease modeling and for testing new ther-
apeutics, spheroid and organoid cancer models require higher consumption of reagents
and time than 2D cultures. Observed variability between experiments depends on patient-
derived materials, the origin of the extracellular matrix [133], and the absence of tumor
stroma and vasculature. Patient-derived 3D cultures often contain altered cellular composi-
tions as a result of surgery, mechanical signals, for example, due to shear stress or pressure,
as well as other environmental influences [145]. These limitations can result in variations in
growth and response to therapy, making it challenging to reproduce the same results across
different experiments. Therefore, careful consideration is also necessary when interpreting
data obtained from patient-derived material.

To achieve the full potential of 3D cancer models, new methods and techniques
provided novel ways to generate 3D microtumors using well-defined xeno-free matrices and
facilitate their potential clinical applications. Additionally, manufacturing techniques for
tumor spheroids aim to increase uniformity and reproducibility because high-throughput
drug screening platforms with heterogeneous tumor spheroids have demonstrated that
variability in spheroid size and density significantly affects assay results.

Additionally, there is still a significant need for standardized tests for spheroid imaging,
analysis, quantification, and automation for drug screening. The most commonly used
fluorescence microscopy method, confocal microscopy, has a small penetration depth that
prevents the visualization of large tumor spheroids [146]. Recent advances in non-invasive
automated imaging methods and integration of artificial intelligence greatly accelerated
analysis of spheroid and organoid assays.

To help avoid bias, errors, and achieve faster analysis of 3D tumor models, essential
computer-aided analyses are becoming more widely available. Several artificial intelli-
gence (AI)-based recognition techniques have been developed that incorporate integrated
algorithms, including auto-recognition, auto-focusing, and various parameters to assess
morphological components, as well as behavioral parameters, such as invasiveness, of
organoid and spheroid tumor models [147,148].

Intrinsic limitations of cancer spheroid and organoid systems also include the lack of
supporting stroma and blood vessels. Tumor organoids-on-chips and co-cultures with stro-
mal cells were developed to solve the lack of tumor vascularization and stroma. Optimally,
the TME within patient-derived spheroids and organoids would contain the entire diversity
of immune suppressive cells, including tumor-associated macrophages, myeloid-derived
suppressor cells, regulatory T cells, tumor-associated DCs, and other innate immune cells,
and might conceivably incorporate tumor-infiltrating immune cell populations.

Two highly important aspects of tumor progression, circulating tumor cells and metas-
tasis, remain experimentally challenging to model in vitro. In 2015, a 4D lung cancer model
was developed by introducing the flow of circulating cancer cells as a fourth dimension,
resulting in the successful modelling of tumor growth and metastasis [149]. Progression of
most tumors can be influenced by different environmental factors, such as diet, exercise,
time, microbiome, and altitude. In this direction, there are already 4D spheroid models
established for gastric cancer [150] and a glioblastoma organoid model [151] that consider
stress stimuli and cell cycle status, respectively. Further advancement on these models may
lead to a greater comprehension of tumor biology and, in turn, enable the development of
more efficient therapeutic interventions.

6. Conclusions

The ability to model the TME in vitro using tumor spheroids will greatly benefit
therapeutic development, such as in vitro screening and optimization of pharmacological
therapies. This will also provide a platform to elucidate the molecular pathways associated
with solid tumor malignancy. Although some limitations remain, recent advances in 3D
bioprinting, tumor-on-a-chip, and other microfabrication technologies will accelerate the
development of more biologically relevant in vitro TME models. As discussed earlier,
animal models have certain limitations in mimicking the highly complex process of human
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carcinogenesis, physiology, and progression. Furthermore, based on the recent FDA deci-
sion, animal models are no longer required to validate all drugs before human trials [152].
Ultimately, cancer organoids are becoming the new gold standard in vitro model with high
translational potential. As shown in Figure 2, cervical cancer spheroids and organoids may
provide the tools to improve our understanding of the complex interactions relevant to
tumor biology and increase the success rate of clinical translation of potential anti-cancer
strategies discovered in in vitro experiments. We look forward to a world in which “off-the-
shelf” immunotherapies will be economically feasible for broad distribution to patients who
desperately need them. Current worldwide efforts to develop and deliver these therapies
will hopefully address the medical needs of cervical cancer patients.
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