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Simple Summary: A lack of sensitive biomarkers hinders lung cancer detection and monitoring,
resulting in late diagnosis and missed treatment response. Liquid biopsies have recently emerged as
a promising method of detecting biomarkers in lung cancer patients without the need to conduct
invasive procedures. New approaches for biomarker discovery have emerged due to advances in high-
throughput sequencing technologies and bioinformatics tools. In this review, we comprehensively
describe established and emerging methods for identifying lung cancer biomarkers using liquid
biopsy. Furthermore, we highlight advanced bioinformatics tools and methods for processing NGS
data, as well as recently developed software tailored for liquid biopsy biomarker detection.

Abstract: Lung cancer detection and monitoring are hampered by a lack of sensitive biomarkers,
which results in diagnosis at late stages and difficulty in tracking response to treatment. Recent
developments have established liquid biopsies as promising non-invasive methods for detecting
biomarkers in lung cancer patients. With concurrent advances in high-throughput sequencing
technologies and bioinformatics tools, new approaches for biomarker discovery have emerged.
In this article, we survey established and emerging biomarker discovery methods using nucleic
acid materials derived from bodily fluids in the context of lung cancer. We introduce nucleic acid
biomarkers extracted from liquid biopsies and outline biological sources and methods of isolation. We
discuss next-generation sequencing (NGS) platforms commonly used to identify novel biomarkers
and describe how these have been applied to liquid biopsy. We highlight emerging biomarker
discovery methods, including applications of long-read sequencing, fragmentomics, whole-genome
amplification methods for single-cell analysis, and whole-genome methylation assays. Finally, we
discuss advanced bioinformatics tools, describing methods for processing NGS data, as well as
recently developed software tailored for liquid biopsy biomarker detection, which holds promise for
early diagnosis of lung cancer.
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1. Introduction

Lung cancer is one of the most commonly diagnosed types of cancer and is the leading
cause of cancer deaths worldwide [1]. Liquid biopsy, which involves analyzing body fluids
to detect cancer-specific biomarkers, has emerged as a promising tool for the diagnosis
and management of lung cancer patients [2–5]. One of the main advantages of a liquid
biopsy test is that it provides a minimally invasive method for detecting and monitoring
the disease. Traditional tissue biopsies are invasive, associated with pain and carry the
risk of complications, such as infections. In contrast, a liquid biopsy test only requires the
collection of body fluid, such as blood, which is a much less invasive procedure [2]. Liquid
biopsy can be serially repeated, with additional advantages, such as speed, low cost and
safety of isolating body fluids compared to tumor tissue [6]. Liquid biopsies are useful
to detect cancer-specific DNA and other biomarkers that are shed into the bloodstream
from cancer cells, providing a way to monitor the disease even in its early stages [7]. In
fact, liquid biopsies are clinically applicable to guiding treatment decisions, such as de-
termining the best therapeutic regimen or assessing if a patient’s cancer has changed or
progressed [8]. Liquid biopsy tests are useful to monitoring response to treatment and
detecting the emergence of drug-resistance mutations, allowing for treatment intervention
and optimization. Liquid biopsy monitoring of drug response helps to improve overall
outcomes and quality of life of lung cancer patients [2,9]. Therefore, liquid biopsy tests offer
a number of important benefits for lung cancer patients, including improved accuracy and
reliability of diagnosis, minimally invasive disease monitoring and the ability to guide and
adjust treatment according to test results. The emergence of high-throughput sequencing
technologies and bioinformatics tools has led to the development of new approaches for
biomarker discovery using liquid biopsies [10–12]. High-throughput sequencing tech-
nologies allow for the simultaneous analysis of multiple biomarkers in a single sample,
providing a comprehensive picture of the genomic landscape of a tumor. Bioinformatics
tools applied to the analysis of large liquid biopsy datasets are key to identifying clinically
actionable changes and predictive biomarkers to guide treatment decisions. Also, next-
generation sequencing (NGS) technologies enable the simultaneous sequencing of millions
of DNA fragments in a single test, providing a highly sensitive and specific method for
detecting cancer-specific mutations, gene fusions and other genetic alterations associated
with development and progression of lung cancer [13,14]. Such approaches are of utmost
importance to improving the accuracy of lung cancer diagnosis and prognosis. The aim of
this review is to survey the recent applications of NGS technologies to liquid biopsies in
the context of non-small-cell lung cancer (NSCLC).

2. Sample Types and Materials for Biomarker Analysis

Liquid biopsy is a method that involves analyzing circulating tumor cells (CTCs) or
molecules originating from the tumor in biological fluids [7]. These molecules include
circulating tumor DNA (ctDNA) and RNA (ctRNA), proteins and extracellular vesicles
(EVs) present in the biofluids of patients [7,15]. These biofluids include plasma, serum,
sputum, bronchoalveolar lavage fluid (BAL), pleural effusion, urine, saliva and cerebral
spinal fluid (CSF) [16] (Figure 1). Currently, the body fluid most commonly used for
liquid biopsy in lung cancer is blood [16,17], which is used to identify specific biomarkers
correlated with clinical outcomes in advanced NSCLC [18] and enables the monitoring of
disease relapse and resistance of cancer [19]. Here, we briefly summarize materials used
in liquid biopsy for biomarker analysis, as their features have been reviewed in depth
elsewhere [7,15,16,20,21].



Cancers 2023, 15, 2275 3 of 27
Cancers 2023, 15, x FOR PEER REVIEW 3 of 26 
 

 

 

Figure 1. Types of biomarkers used to detect lung cancer in liquid biopsy and the types of bodily 

fluid samples from which they can be derived. 

2.1. Circulating Tumor Cells (CTCs) 

CTCs are isolated tumor cells or in clusters that are released by the primary tumor or 

metastatic cells that leak into the bloodstream towards the metastatic site [7]. CTCs are 

present only in extremely low concentrations in the blood, approximately one CTC per 

million leukocytes [22], but their presence can have diagnostic implications, for example, 

in lung cancer where high levels of CTCs have been associated with worse outcomes [23]. 

The presence of CTCs was also associated with low response rates, shorter progression-

free survival and shorter overall survival in patients with advanced NSCLC treated with 

both targeted- and chemotherapy [24]. Different methods for enrichment, isolation and 

identification of CTCs have been developed according to the physical and biological char-

acteristics of these cells [25–27]. In lung cancer, isolation by size of epithelial tumor cells 

(ISET) was the earliest size-based method used for CTC detection, showing high sensitiv-

ity and reproducibility [28]. Flow cytometry, fluorescence-activated cell sorting (FACS) 

and microfluidics are all commonly used techniques for isolating CTCs from liquid biopsy 

samples [29–32]. The most widely used immunomagnetic assay of epithelial cell adhesion 

molecule (EpCAM) enables the enumeration of CTCs of epithelial origin in whole blood, 

but it potentially misses a large cell population of “stem-like” characteristics [33,34]. Laser 

capture microdissection is another CTC sequestration method, which involves encapsu-

lating a CTC on a hydrogel, extracting it with a laser and sequencing it [35]. 

2.2. Circulating Tumor DNA (ctDNA) 

Circulating tumor DNA is part of the pool of total circulating cell-free DNA (cfDNA) 

and is released from tumor cells that have entered into apoptosis or necrosis [36]. In 

Figure 1. Types of biomarkers used to detect lung cancer in liquid biopsy and the types of bodily
fluid samples from which they can be derived.

2.1. Circulating Tumor Cells (CTCs)

CTCs are isolated tumor cells or in clusters that are released by the primary tumor or
metastatic cells that leak into the bloodstream towards the metastatic site [7]. CTCs are
present only in extremely low concentrations in the blood, approximately one CTC per
million leukocytes [22], but their presence can have diagnostic implications, for example,
in lung cancer where high levels of CTCs have been associated with worse outcomes [23].
The presence of CTCs was also associated with low response rates, shorter progression-
free survival and shorter overall survival in patients with advanced NSCLC treated with
both targeted- and chemotherapy [24]. Different methods for enrichment, isolation and
identification of CTCs have been developed according to the physical and biological char-
acteristics of these cells [25–27]. In lung cancer, isolation by size of epithelial tumor cells
(ISET) was the earliest size-based method used for CTC detection, showing high sensitivity
and reproducibility [28]. Flow cytometry, fluorescence-activated cell sorting (FACS) and
microfluidics are all commonly used techniques for isolating CTCs from liquid biopsy
samples [29–32]. The most widely used immunomagnetic assay of epithelial cell adhesion
molecule (EpCAM) enables the enumeration of CTCs of epithelial origin in whole blood, but
it potentially misses a large cell population of “stem-like” characteristics [33,34]. Laser cap-
ture microdissection is another CTC sequestration method, which involves encapsulating a
CTC on a hydrogel, extracting it with a laser and sequencing it [35].

2.2. Circulating Tumor DNA (ctDNA)

Circulating tumor DNA is part of the pool of total circulating cell-free DNA (cfDNA)
and is released from tumor cells that have entered into apoptosis or necrosis [36]. In
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addition, fragments of tumor DNA resulting from the phagocytosis of necrotic tumor cells
by macrophages can be released by these cells in circulation. The level of ctDNA present can
vary by cancer type, but overall increases in ctDNA correspond with tumor burden, disease
progression and metastasis [36–39]. Circulating tumor DNA is commonly quantified in
serum and plasma samples, which are obtained by removing cellular components from
whole blood samples by centrifugation, but it has also been reported in other bodily fluids,
such as cerebrospinal fluid. The three main categories of methods to isolate the ctDNA,
irrespective of the sample of origin, are phase isolation, silicon membrane-based spin
column and magnetic bead-based isolation [36]. Once isolated, ctDNA can be analyzed by
a variety of methods, for example, methylation markers can be measured using bisulfite
sequencing [40]. Specific sequences and mutations can be targeted using polymerase
chain reaction (PCR)-based methods, including conventional PCR and digital droplet PCR
(ddPCR) [41,42]. Untargeted sequencing methods, such as shotgun massively parallel
sequencing, can be used to quantify copy number alterations, and NGS can be used
to screen for mutations in large regions of the genome [43,44]. It is important to note
that standardization for pre-analytical factors, such as clotting, number of freeze-thaws,
DNAse activity in the blood and the time elapsed between the blood draw and analysis
is still required [7]. DNA input is also an issue, with low input also potentially impairing
sensitivity [36].

2.3. Circulating Tumor RNA (ctRNA)

Circulating tumor RNA includes protein-coding RNAs (mRNAs), long non-coding
RNAs (lncRNAs), microRNAs (miRNAs) and others. Circulating tumor RNA is most com-
monly collected from peripheral blood, but can also be detected in BAL fluid, saliva,
pleural effusion, urine and CSF (largely in the form of miRNAs, the most abundant
ctRNA) [15,45,46]. Both ctDNA and ctRNA contain mutational information, but ctRNA can
also provide information about the quantitative expression levels of genes of interest [47].
Similar to ctDNA, ctRNA is likely released from apoptotic or necrotic cells but may also
be released in exosomes (discussed below), which protect them from degradation [46,48].
RNAs that are not encapsulated are also released into bodily fluids, but certain classes (e.g.,
mRNAs and lncRNAs) are more likely to be degraded by ribonucleases (RNases) [15,49].
miRNAs, however, are less susceptible to this due to their small size and their associa-
tion with RNA-binding proteins [15,50]. Circulating tumor RNAs can be isolated from
liquid biopsies by using commercial RNA extraction kits, phenol-chloroform methods, or
guanidium thiocyanate methods [51]. Kits may introduce biases, but this can be controlled
by using exogenous RNA spike-ins [51]. After or prior to extraction, samples should
also be treated with a DNase to prevent DNA contamination [51]. Following collection,
ctRNAs can be analyzed using ddPCR, reverse-transcription quantitative PCR (RT-qPCR),
microarray or NGS methods, such as RNAseq or small RNAseq [52,53]. For biomarker
discovery, RNAseq/small RNAseq are the gold standard, while PCR-based methods are
more commonly used for the detection of specific, predetermined ctRNAs [51,54].

2.4. Extracellular Vesicles (EVs)

EVs are small, membrane-bound vesicles that include both exosomes, which are
secreted from the endosomal system of the cell, and microvesicles, which bud off the plasma
membrane. They contain cargo, such as DNA fragments, non-coding RNAs, mRNAs
and proteins that facilitate extracellular communication and thus tumor progression and
metastasis through a variety of downstream mechanisms [55]. EVs are present at high levels
in bodily fluids including blood and are stable in circulation, but isolating tumor-specific
EVs is an ongoing challenge in the field [56]. Differential expression of surface markers
on tumor-derived EVs, as well as differential loading of disease-related cargo into EVs,
mean that EVs can be used as a tool for liquid biopsy for detection, monitoring of disease
progression and prognosis [57–59]. Differential ultracentrifugation is currently the gold
standard for EV isolation [60]. Newer approaches use immunoaffinity [61], and other
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physical properties or combinations of both [56]. Isolated EVs should be characterized with
a Western blot for common EV-specific markers, such as CD63, CD81 and CD82 as well
as at the single-exosome level with techniques, such as nanoparticle tracking or electron
microscopy, to confirm their identity [62]. Isolated EVs can then be used for conventional
protein analysis with Western blot, ELISA or novel methods, nucleic acid analysis with
RT-qPCR or PCR-based technologies, such as digital droplet PCR and NGS [56].

3. Commonly Used Techniques for Biomarker Discovery in Lung Liquid Biopsy

There are several techniques that are commonly used for liquid biopsy, depending
on the type of biomarkers being analyzed and the specific clinical application [15,63–65].
At present, ctDNA is the most extensively studied and widely used biomarker for liquid
biopsy in NSCLC [66,67]. Both the European Medicines Agency (EMA) and the US Food
and Drug Administration (FDA) have approved the use of ctDNA information for selecting
NSCLC patients with EGFR-mutant cells for treatment with certain targeted therapies when
a tumor sample cannot be evaluated [68–70]. Platforms and strategies currently available to
detect ctDNA in lung cancer include both non–NGS- and NGS-based approaches [11,15,71].

3.1. PCR-Based Approaches

In general, the fraction of ctDNA in the blood of patients with cancer is thought to
be relatively low, typically ranging from a few copies per milliliter to a few percent of the
total DNA in the sample [72]. Consequently, traditional DNA analysis techniques (such
as Sanger sequencing and pyrosequencing) are insufficient for detecting low amounts
of DNA in blood samples [73]. PCR-based methods, such as real-time quantitative PCR
(qPCR), digital PCR (dPCR) and mass-spectrometry-based methods, have been widely
used as alternatives to traditional techniques since they have shown better sensitivities
and are of low costs [2,11,15,74,75]. There are some variations of PCR-related methods
including co-amplification at lower denaturation temperature-PCR (COLD-PCR) [76],
refractory mutation system-PCR (ARMS-PCR) [77], locked nucleic acid (LNA)/DNA-
PCR [78], peptide nucleic acid (PNA) clamp-PCR [79], beads, emulsions, amplification,
magnetics (BEAMing) [80], ddPCR [81–85], intelligent multiplexed amplification for NGS
applications (InPlex) [86,87] and Endpoint PCR [88]. The features of each method have been
reviewed elsewhere [15,89]. Although the sensitivity of PCR-based methods is better when
compared to traditional DNA analyses, it is still low, with the limit of detection of ctDNA
ranging from < 0.0001% to 0.1% [15]. These techniques are also limited to the analysis of
one or a very small number of genomic loci, even with multiplex analysis, and the specific
mutation to be assayed is typically determined a priori [15,90,91]. While there have been
promising uses of selective gene panels to screen ctDNA for oncogenic mutations in NSCLC
patients, the sheer number of possible pathogenic mutations means that a predetermined
panel is comparatively restricted in scope for biomarker discovery [92].

3.2. NGS-Based Approaches

To overcome the aforementioned limitations of PCR-based techniques, recent advances
in NGS technologies have made it possible to detect even very low levels of ctDNA in the
blood, allowing the detection of different types of alterations (e.g., point mutations, gene
fusions and translocations) in multiple genes in the same analysis [11,39,93–95]. Currently,
NGS technology has the ability to detect a minor allele frequency (MAF) of less than 1% in
lung cancer [96]. Furthermore, the use of unique molecular identifiers (UMIs) or unique
barcodes can help to improve the accuracy and sensitivity of NGS-based liquid biopsy
assays for lung cancer, especially for samples with low ctDNA concentrations [97,98].
Targeted NGS approaches with molecular barcoding have been used to detect ctDNA in
early-stage lung cancer patients. The assay was able to detect ctDNA in both patients
with stage I or II NSCLC, though the sensitivity of the assay increased with higher ctDNA
concentrations and was highest for patients with stage II disease [39]. Another study used a
targeted NGS approach with UMIs to detect ctDNA in NSCLC patients. The assay was able
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to detect ctDNA in 59% of stage I or II NSCLC patients with a median MAF of 0.1% [98].
These studies demonstrated that the use of UMIs can reduce PCR and sequencing errors
and improve the detection of low-frequency variants [98].

NGS uses probes to capture specific DNA fragments that are then sequenced in paral-
lel and computationally aligned to a reference genome, enabling the sequencing of large
numbers of gene targets and variant types in a single experiment. Furthermore, newer se-
quencing technologies provide options for sequencing portions of the genome at extremely
high depths of coverage (i.e., the number of sequencing reads covering a specific position
in the genome), which can reveal known mutations occurring at a low frequency or even
uncover new driver mutations. Many methods are currently available to perform NGS
analyses in liquid biopsy using either targeted or untargeted panels (Table 1). Targeted
panels are designed to sequence specific genomic regions of interest, such as genes known
to be frequently mutated in cancer. These panels can provide high coverage and depth
of sequencing for the selected targets, which can increase the sensitivity of the assay for
detecting low-frequency mutations. However, targeted panels may miss mutations outside
of the selected regions, which can limit their ability to identify novel or unexpected muta-
tions [8,11,15]. In contrast, untargeted panels, also known as whole-genome sequencing
(WGS) or whole-exome sequencing (WES), can provide comprehensive and unbiased se-
quencing of the entire genome or exome, which can allow for the identification of novel
or unexpected mutations [99]. However, untargeted panels may have lower coverage and
depth of sequencing for specific regions, which can limit their sensitivity for detecting
low-frequency mutations. Thus, both targeted and untargeted panels have advantages
and limitations, and the choice of the panel may depend on the specific research or clinical
question being addressed [8,11,15].

3.3. Clinically Validated Platforms for Biomarker Detection

In clinical practice, there are FDA-approved laboratory tests to analyze liquid biopsy
biomarkers (typically ctDNA) for NSCLC. These include the Guardant360 CDx [100,101],
FoundationOne Liquid CDx [102,103] and the cobas EGFR mutation Test v2 [104]. They
use different panels to monitor a set of genes that may impact a patient’s response to drug
treatments. The Guardant360 CDx test can identify the EGFR exon 20 insertion mutation
and thus indicate if patients are eligible for treatment with amivantamab-vmjw [105,106].
The FoundationOne NGS test indicates whether gefitinib, osimertinib or erlotinib are the
appropriate treatment, while the real-time PCR cobas EGFR mutation test v2 identifies
specific EGFR mutations for erlotinib [102–104].

Table 1. NGS platforms designed for biomarkers in liquid biopsy.

Technology Brief Description References

Non Targeted

WES
Whole Exome Sequencing sequences all exons in ctDNA for mutation detection. Less
expensive than WGS (lower coverage). Sample requirement not always feasible in liquid
biopsy.

[107–109]

Digital
Karyotyping

Uses WGS to sequence short DNA tags and then aligns these tags to the reference genome to
identify genomic alterations, e.g., CNVs, SNVs and SVs. The short DNA tags are typically
generated by restriction enzyme digestion. Requires high-quality genomic DNA.

[43,110–112]

FAST-SeqS

Fast Aneuploidy Screening Test-sequencing System uses individual primer pairs to amplify
the repeat regions of interest. The WGS version, called mFAST-SeqS, identifies any somatic
mutations in the tumor and then uses those mutations as unique markers for monitoring the
disease.

[113–115]

PARE Personalized Analysis of Rearranged Ends uses WGS data to identify rearranged ends in
ctDNA. Detects structural variations, e.g., translocations and inversions. [111,116,117]
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Table 1. Cont.

Technology Brief Description References

Targeted panel

Tam-seq Tagged-Amplicon deep sequencing uses primers targeting regions of interest for a
pre-amplification step. Templates undergo individual amplification, aiding purification. [44]

Safe-SeqS

Safe-Sequencing System is a method for profiling low-frequency mutations. The method
combines PCR amplification of targeted genomic regions with UMIs and deep sequencing to
achieve high accuracy and sensitivity. The use of UMIs reduces errors introduced by PCR
amplification and sequencing.

[118]

CAPP-Seq

Cancer Personalized Profiling by Deep Sequencing uses a library that generates many hybrid
affinities captures of recurrently mutated genomic regions to create the selector, which is used
to identify individual-specific mutations in the tumor DNA. The selector is then applied to
ctDNA for quantification.

[119]

Ion AmpliSeq™ Customized multiplex PCR amplifies target regions for analysis with the Ion Torrent
sequencing platform. [120]

Guardant360®
Analyzes 73 genes commonly mutated in cancer. Digital sequencing technology for mutation
detection with 99.5% sensitivity and 99.999% specificity. FDA approval for use in patients
with advanced cancer without treatment options.

[100,101]

Foundation
One®CDx

Analyzes 324 genes and selects genomic signatures, including MSI and TMB. Detects single
nucleotide variants, small in/dels, copy number alterations and gene fusions. FDA-approved
for use in patients with solid tumors, including NSCLC, to sort patients for specific targeted
therapies.

[102,103]

iDES

In Integrated Digital Error Suppression, DNA is tagged with UIDs and tracked through
library preparation and sequencing for error correction. By incorporating UIDs into NGS,
iDES can improve the accuracy and sensitivity of NGS assays, particularly in low-frequency
variant detection.

[121]

TEC-Seq

Targeted Error Correction Sequencing is a method for profiling low-frequency mutations in
cfDNA. Utilizes molecular barcoding to distinguish true mutations from false positive
variants. Before any amplification, DNA fragments are tagged with different “exogenous”
DNA barcodes. Additionally, the start and end genome mapping positions of paired-end
sequenced fragments are used as “endogenous barcodes” to differentiate between individual
molecules. This combination of barcodes enables tracking each fragment, allowing for the
detection of rare mutations with high accuracy and sensitivity.

[98]

Abbreviations: CNVs: Copy Number Variations; ctDNA: circulating tumor DNA; FDA: US Food and Drug
Administration; mFAST-SeqS: Mutation-focused Assessment of Sequencing and Tracking by Sequencing; MSI:
microsatellite instability; SNVs: Single Nucleotide Variations; SVs: Structural Variations; TMB: Tumor Mutational
Burden; UIDs: Unique Identifiers; UMIs: Unique Molecular Identifiers; WGS: Whole-Genome Sequencing.

4. Emerging Methods for Liquid Biopsy Biomarker Discovery

Emerging methods for biomarker discovery in liquid biopsy have the potential to
revolutionize the ability to diagnose and monitor diseases non-invasively and to identify
novel therapeutic targets. In this section, we describe some of the emerging methods for
biomarker discovery in lung cancer liquid biopsy, including long-read sequencing, DNA
methylation, single-cell sequencing and fragmentomics analysis.

4.1. Long-Read Sequencing

Current NGS platforms implemented in diagnostic settings (mainly developed by
Illumina, San Diego, CA, USA) produce as many as 6 billion highly accurate (greater
than 99.9%) “short reads” (150–400 nucleotides) per run [122]. Accuracy, parallelization
and relatively low cost of short-read sequencing have made this method the preferred
option for the detection of SNVs (single nucleotide variants) and small insertion–deletion
mutations (indels) in liquid biopsies. The large number of generated reads allows for
an improvement of the signal-to-noise ratio with regard to the detection of mutations in
liquid biopsies. However, the clinical performance of short-read NGS is limited in the
detection of any cancer-related feature associated with large fragments and/or duplicated
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regions of the genome. Newer long-read-based technologies such as Oxford Nanopore
Technologies (ONT) (Oxford, UK) and PacBio (San Diego, CA, USA) have an advantage
in detecting these features and avoiding amplification bias [123]. The most recent ONT
devices use adaptors to attach phi29 DNA polymerase motor proteins to the ends of nucleic
acid fragments, which feed the strands through A-hemolysin and MspA pores. Bases
are detected as they pass through the pores and change the flow of an electric current,
which is output as sequencing data in real-time [124,125]. In PacBio Single Molecule Real-
Time (SMRT) sequencing, each free DNA strand is circularized with adapters. A DNA
polymerase replicates the strand with labeled nucleotides, releasing fluorescent signals that
are read as a sequence in real-time [126,127]. Long-read sequencing enables the analysis of
structural properties and the fragmentation patterns of cfDNA (including fragment size,
nucleosome footprinting and methylation patterns), which can give information about
their tissues of origin. This is known as “fragmentomics” [128,128–130], which we discuss
further below. Long-read sequencing technologies (PacBio, ONT) were recently compared
for real-time detection of long cfDNA in plasma. PacBio SMRT sequencing generated data
with higher percentages of long cfDNA compared with nanopore sequencing. Yet a higher
number of long cfDNA fragments eligible for the tissue-of-origin analysis could be obtained
from ONT sequencing due to its much higher throughput [131]. Newer methods aim to
obtain long-range information through alternative methods, such as linked-read sequencing
(LR-seq). LR-seq is a cost-effective library preparation technology that maintains the long-
range structure of the original genomic material in the generated short reads, making it
an advantageous option that can be integrated into existing clinical lab protocols without
additional specialized equipment [122,123,131–133].

4.2. DNA Methylation Markers

Profiling of DNA methylation (DNAm), the epigenetic mechanism by which a methyl
group is transferred to a cytosine making a 5-methylcytosine, has proven to be highly
informative in the detection and prediction of several disorders [134]. CpG dinucleotides (a
cytosine followed by a guanine) are the most frequent cytosines where DNAm occurs, and
methylation signatures observed in diseased tumor tissue show significant overlap in liquid
biopsy samples (most often using ctDNA) [135–137]. On average, tumors show global
hypomethylation when compared to healthy tissue, but loci-specific CpG island hyperme-
thylation, along with enrichment in repressive histone marks, such as H3K27me3 [138,139].

Analysis of plasma ctDNA has been successful in detecting the aberrant hypermethyla-
tion of promoters in genes associated with the development of lung cancer, in single genes,
and in gene signatures, detectable even at early cancer stages [140,141]. A recent study in-
volving 2800 participants compared the accuracy and limit of detection of different ctDNA
analysis techniques for early cancer detection and found that whole-genome methylation
analysis strongly outperformed WGS and targeted sequencing [142]. Sputum samples have
proven to be highly effective in detecting lung cancer progression early [143,144], specifi-
cally in active and former smokers. While relatively few studies have investigated DNAm
changes occurring in lung cancer using urine, saliva and pleural effusion, they have still
demonstrated the utility of using these liquid biopsy samples for early detection, as well as
their success in separating lung cancer subtypes [145]. The majority of DNAm studies use
bulk tissue; however, the methylomes of individual cell types differ, as demonstrated by
cell-specific gene expression profiles [146]. Single-cell lung methylome profiling is still in
its infancy [147].

DNAm profiling can be performed using sequencing-based or array-based methods.
Whole genome bisulfite sequencing (WGBS), in which unmethylated cytosines are con-
verted to uracil, remains the gold standard for DNAm detection. However, the method
performs best for shorter-length fragments, is prone to errors due to bisulfite treatment and
remains expensive [148]. Methylated DNA immunoprecipitation (MeDIP), which employs
antibody ligation to methylated CpGs, works well for detecting genome-wide methylation
enrichment and performs well for limited sample material [149]. Illumina’s Infinium Hu-
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manMethylation450 BeadChip array assessing 450,000 CpG sites and its successive Human
MethylationEPIC BeadChip at 850,000 CpG sites currently are the most cost-effective and
widely used.

4.3. Single-Cell Sequencing

Single-cell analysis has emerged as a powerful tool in liquid biopsy research, par-
ticularly for sequencing CTCs and cancer-associated immune cells [150–154]. Capturing
and profiling a tumor cell in the act of metastasizing is a good strategy to understand the
current molecular status of cancer [32]. There are several techniques for single-cell analysis
in liquid biopsy, including single-cell RNA sequencing, single-cell DNA sequencing, single-
cell proteomics, single-cell secretomes and single-cell metabolomics [151]. These methods
can be used to identify heterogeneous subpopulations of cells, track their behavior and
evolution and identify novel biomarkers [150,155].

Single-cell DNA sequencing can be used to detect genomic features, such as single
nucleotide variants, copy number variation and microsatellite instability within CTCs.
Single-cell RNA sequencing, which requires reverse transcription to cDNA, provides
additional information on gene expression signatures. Following cell isolation, library
construction is performed. During this process, whole-genome or whole-transcriptome am-
plification (WGA/WTA) is necessary to generate sufficient genetic material for sequencing,
which requires numerous quality control measurements [151]. Some current WGA/WTA
methods include multiple displacement amplification (MDA), multiple annealing and
looping-based amplification cycles (MALBAC), emulsion whole-genome amplification
(eWGA) and Laser-induced Isolation of Microstructure On transferrable-chip and sequenc-
ing (LIMO-seq) [156]. MALBAC offers higher uniformity of genomic amplification than
MDA by utilizing quasilinear rather than nonlinear amplification. MALBAC has been
successfully used for sequencing CTCs derived from NSCLC patients [157,158]. LIMO-seq
involves using a microfluidic chip and a laser pulse to isolate CTCs, followed by MDA [159].
eWGA entails separating DNA fragments into droplets where separate MDA reactions
occur [160]. A group has recently compared WGA and WTA methods for CTC single-cell
sequencing and found that methods using MDA had higher amplification efficiency than
others [161].

Following library construction, molecules are often labeled with a UMI. Libraries
may then be pooled together (multiplexed) during sequencing, which necessitates demulti-
plexing based on barcodes and UMIs if present [162]. Multiplex PCR with predetermined
gene panels has been used to profile CTC transcriptomes from lung cancer patients at the
single-cell level, which revealed expression patterns correlated with prognosis [163,164].
While the low concentration of starting material in CTCs can pose a challenge to accurate
sequencing, developments in WGA and WTA as well as the use of targeted panels have
made it possible to capture the genetic diversity of metastatic tumor cells.

4.4. Fragmentomics

Fragmentomics in liquid biopsy has emerged as a promising approach for the detection
and monitoring of cancer [165–169]. It involves analyzing the fragmentation patterns of
cfDNA using NGS technologies (such as WES or WGS) without performing the DNA
sonication step or using long-read sequencing [129,170,171]. Different computational and
experimental approaches have been applied to study fragmentomics at varying resolutions
and scales [169–171]. Various aspects of fragmentation can be taken advantage of, for
example, length analysis and variant analysis. In cancer, it has been observed that ctDNA
has a shorter median length and greater variability in size compared to cfDNA from healthy
control subjects [171–173]. These findings suggest that fragmentomics analysis could be a
useful tool for cancer diagnosis and monitoring, as the presence of ctDNA with abnormal
size profiles may indicate the presence of cancer. Fragment length analysis of cell-free
DNA can also be a useful tool for the detection of cancer-specific mutations. In a study
of melanoma patients, the BRAF V600E mutation was found to occur more commonly at
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shorter fragment lengths (132–145 bp) than the wild-type allele (165 bp) [174]. In lung
cancer patients, size-selecting for shorter cell-free DNA fragment lengths substantially
increased the detection of the EGFR T790M mutant allele [174]. A study using WGS to
analyze 344 plasma samples from 200 cancer patients showed that size-selected cfDNA
identified clinically actionable mutations and copy number alterations that are otherwise
not detected [175]. Additionally, the analysis of ctDNA fragments can be used to detect
minimal residual disease (MRD) [176]. The combined analysis of both sequence variant and
size fragmentation was reported to improve the stratification of patients into risk groups
(low and high risk) for MRD in later-stage lung cancers (Stage II-IIIA) for guiding treatment
decisions [177]. Fragmentomics data have also been used to detect early-stage lung cancer
and to classify early-stage cancer patients [178–180].

5. Bioinformatics Pipelines for Analyzing Liquid Biopsy NGS Data

The process of generating and analyzing sequencing data using NGS technology
involves three stages: primary, secondary and tertiary analysis [181,182]. The primary
analysis involves the initial processing of raw data generated by the sequencing instrument,
including base calling and quality control checks. The secondary analysis is focused on the
pre-processed data, and it involves aligning the data to a reference genome and identifying
genetic variants, such as single nucleotide polymorphisms (SNPs) or structural variations.
In the tertiary analysis, the biological significance of the variants is interpreted and analyzed
in the context of other available data sources [182].

5.1. Sequence Data Processing

During the primary analysis, the sequencing instrument generates a raw binary file
containing the nucleotide bases identified during the sequencing run. For Illumina se-
quencers, the primary output is a BCL (Base Call) file, which contains the raw signal
intensities for each base call of each read generated during the run. BCL files are then con-
verted into a text-based (ASCII) FASTQ format file using tools such as BCLConvert [183].
The FASTQ file is the standard format for sequence data and is used for downstream
analysis [184]. Several quality control metrics are evaluated to assess the quality of the
sequencing run and the data generated [182,185–187]. The most common metrics include
yield (the total number of reads generated in a run), quality scores (a measure of the con-
fidence in the base call accuracy for each position in the sequence read) and error rates
(calculated as the mismatches occurring during read alignment to the phiX spike-in).

In the secondary analysis, the pre-processed data generated during the primary anal-
ysis is aligned to a reference genome or assembled de novo [182,188,189]. This process
can be computationally expensive and time-consuming due to the need to realign the
150-nucleotide-long reads to their original position in the human genome, which spans
around 3 billion nucleotides. To address this challenge, various algorithms have been
developed to effectively map the reads back to the human genome, such as BWA [190],
Bowtie2 [191] and others. While these aligners can be used for both DNA and RNA data,
the latter may require specific settings or have specializations depending on the type of
data being aligned. For example, RNA-Seq data can be aligned using algorithms, such
as Bowtie and BWA, but splice events result in specific requirements for transcriptome
alignments, such as accounting for splice junctions and allowing for accurate mapping
of reads to the appropriate isoform, which requires using tools such as TopHat2 [192],
HISAT2 [193,194], HISAT-3N [195] or STAR [196]. The input for the secondary analysis
generally involves FASTQ files generated during the primary analysis. The output file
generated during the alignment process is a Binary Alignment Map (BAM) or a Sequence
Alignment Map (SAM) file [197]. BAM files are currently the standard because their storage
footprint is considerably reduced compared to SAM files.
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5.2. Sequence Data Interpretation
5.2.1. Biological Interpretation of the Sequencing Data

During the tertiary analysis stage, the processed data is annotated and interpreted,
and several processes, such as variant calling, annotation and functional interpretation,
take place to provide insights into the biological significance of the genetic variants iden-
tified [181,182]. Variant calling is the step where genetic variants, such as SNPs, indels
and copy number variations (CNVs), are identified using tools such as GATK (Genome
Analysis Toolkit), VarScan and SAMtools (Table 2) [198–200]. During the annotation pro-
cess, publicly available databases, such as dbSNP, Ensembl, RefSeq, ClinVar, COSMIC
and UCSC, are utilized to retrieve information regarding pathogenicity or significance
from the identified genetic variants [201–206]. Tools, such as ANNOVAR, SnpEff and
VEP (Variant Effect Predictor), are commonly used to position the genetic variants in a
gene/transcript/genomic position context [207–209]. The functional interpretation step
includes examining the functional relationships between genes and their involvement in
biological pathways. Tools, such as IPA (Ingenuity Pathway Analysis), GSEA (Gene Set
Enrichment Analysis), KEGG (Kyoto Encyclopedia of Genes and Genomes), Cytoscape,
DAVID (Database for Annotation, Visualization and Integrated Discovery) and Enrichr are
used to perform these tasks [210–215].

Table 2. Tools for computational analysis of NGS data.

Tool Description Resource References

Variant calling

GATK
Genome Analysis Toolkit has multiple applications, e.g., variant
discovery, genotyping and mutation detection, quality control,
coverage analysis and error correction.

https://gatk.broadinstitute.
org/hc/en-us (accessed on 1
March 2023)

[198]

VarScan

Detects and characterizes variants, e.g., SNPs, indels and somatic
mutations in tumor-normal pairs. Identifies low-frequency variants
using Bayesian algorithms and statistical models for sensitivity and
specificity.

https:
//varscan.sourceforge.net/
(accessed on 1 March 2023)

[199]

Vardict

Detects SNVs, indels and CNVs from tumors and tumor-normal
pairs. Uses a combination of local realignment, base quality score
recalibration and variant calling algorithms to identify variants.
Handles data with high variability, e.g., low-coverage or high
tumor heterogeneity.

https://github.com/
AstraZeneca-NGS/VarDict
(accessed on 1 March 2023)

[216]

Samtools

Analyzes alignment files in multiple formats, e.g., BAM, SAM and
CRAM. Performs file conversion, sorting, indexing, filtering and
merging. Quality control, coverage analysis and variant calling for
reference genomes and alignment algorithms.

https://www.htslib.org/
(accessed on 1 March 2023) [200]

Strelka2

Heuristic approach to detect SNVs, indels and structural variants.
Employs a combination of probabilistic and machine learning
methods to detect somatic mutations while minimizing false
positives. Uses local assembly-based variant calling to improve
variant detection sensitivity in regions with low read coverage or
high levels of noise.

https://github.com/
Illumina/strelka (accessed on
1 March 2023)

[217]

ANNOVAR

Enables genetic variants annotation in various genome builds, e.g.,
RefSeq, dbNSFP and gnomAD. Allows filtering and prioritization
of variants based on the functional impact, population frequency,
etc.

https://annovar.
openbioinformatics.org/en/
latest/ (accessed on 1 March
2023)

[207]

Variant annotation

SnpEff
Annotation and functional analysis of genetic variants. Predict the
effects of genetic variants on genes, transcripts and regulatory
regions and classify variants based on their impact.

http:
//pcingola.github.io/SnpEff/
(accessed on 1 March 2023)

[208]

https://gatk.broadinstitute.org/hc/en-us
https://gatk.broadinstitute.org/hc/en-us
https://varscan.sourceforge.net/
https://varscan.sourceforge.net/
https://github.com/AstraZeneca-NGS/VarDict
https://github.com/AstraZeneca-NGS/VarDict
https://www.htslib.org/
https://github.com/Illumina/strelka
https://github.com/Illumina/strelka
https://annovar.openbioinformatics.org/en/latest/
https://annovar.openbioinformatics.org/en/latest/
https://annovar.openbioinformatics.org/en/latest/
http://pcingola.github.io/SnpEff/
http://pcingola.github.io/SnpEff/
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Table 2. Cont.

Tool Description Resource References

VEP Variant Effect Predictor performs analysis, annotation and
prioritization of genomic variants in coding and non-coding regions

https:
//useast.ensembl.org/info/
docs/tools/vep/index.html
(accessed on 1 March 2023)

[209]

Functional interpretation

GSEA
Gene Set Enrichment Analysis identifies enriched biological
pathways, functions and processes based on the expression profiles
of genes in a sample or dataset.

https://www.gsea-msigdb.
org/gsea/index.jsp (accessed
on 1 March 2023)

[210]

KEGG

Kyoto Encyclopedia of Genes and Genomes is a data and
knowledge base of biological systems, e.g., metabolic pathways,
regulatory networks and genetic information. A comprehensive set
of reference genomes, gene annotations and pathway maps.

https:
//www.genome.jp/kegg/
(accessed on 1 March 2023)

[211]

Cytoscape
Open-source software for the visualization, analysis and
interpretation of complex biological networks. Utilizes various data
types, e.g., genetic, genomic, proteomic and metabolomic.

https://cytoscape.org/
(accessed on 1 March 2023) [212]

DAVID
Resource for functional annotation and analysis of biological data.
A comprehensive set of functional annotation tools, including gene
ontology/pathway analysis and functional annotation clustering.

https://david.ncifcrf.gov/
(accessed on 1 March 2023) [213]

Enrichr

Web-based analysis tool. Provides visualization summaries of
collective functions of gene lists. Integrates public databases and
annotations for identification and annotation of biological
pathways, functions and processes associated with a set of genes or
proteins.

https:
//maayanlab.cloud/Enrichr/
(accessed on 1 March 2023)

[214]

GeneMania

Identifies and analyzes functional gene networks. Uses
combinations of functional genomics data sources, including
protein-protein interactions, co-expression, genetic interactions and
pathways to construct gene networks related to the biological
function or disease.

http://genemania.org/
(accessed on 1 March 2023) [215,218]

IPA

Ingenuity Pathway Analysis identifies key biological pathways,
networks and functions associated with gene or protein sets. A
range of visualization and reporting features. Supports various
input and output file formats.

https://digitalinsights.
qiagen.com/products-
overview/discovery-insights-
portfolio/analysis-and-
visualization/qiagen-ipa/
(accessed on 1 March 2023)

Not
applicable

Abbreviations: BAM: Binary Alignment Map; CNVs: Copy Number Variants; CRAM: Compressed Reference-
oriented Alignment Map; indels: Insertion–deletion mutations; SAM: Sequence Alignment Map; SNPs: Single-
nucleotide polymorphisms.

5.2.2. Bioinformatic Platforms for Analyzing Long-Read Sequence Data

Bioinformatic analysis of long-read sequencing data from Oxford Nanopore Tech-
nologies (ONT) and PacBio is a rapidly evolving field, and neural nets are often inte-
grated into the newest tools. Long-read data analysis has been thoroughly reviewed
elsewhere [125,219,220], and a comprehensive searchable and filterable catalog of long-read
data analysis tools has been created (https://long-read-tools.org, accessed on 1 March
2023). Some important steps in long-read sequencing analysis include base calling, quality
control, error correction, genome alignment and detection of genetic alterations. Base call-
ing for long-read sequencing is somewhat more error-prone than for short-read sequencing,
but physical updates to the sequencers and error correction programs have improved accu-
racy. The main PacBio base calling program is called CCS [221], and the most commonly
used ONT base calling program is Guppy though others such as Flappie, Scrappie and
Taiyaki are sometimes used [222]. More specialized programs for data analysis can be
found in the long-read tools catalog linked above.

https://useast.ensembl.org/info/docs/tools/vep/index.html
https://useast.ensembl.org/info/docs/tools/vep/index.html
https://useast.ensembl.org/info/docs/tools/vep/index.html
https://www.gsea-msigdb.org/gsea/index.jsp
https://www.gsea-msigdb.org/gsea/index.jsp
https://www.genome.jp/kegg/
https://www.genome.jp/kegg/
https://cytoscape.org/
https://david.ncifcrf.gov/
https://maayanlab.cloud/Enrichr/
https://maayanlab.cloud/Enrichr/
http://genemania.org/
https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-ipa/
https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-ipa/
https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-ipa/
https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-ipa/
https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-ipa/
https://long-read-tools.org
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5.2.3. Analyzing DNA Whole-Genome Methylation Data

DNAm data numerically falls between 0 (no methylation) and 1 (complete methylation)
per CpG, with intermediate methylation signifying CpGs with differential methylation.
Methylation arrays (such as Illumina’s 450 k HumanMethylation450 updated to the 850 k
HumanMethylationEPIC) measure the intensity of methylation via two types of probes:
the original Infinium 1 (Type 1) probes, which utilize two beads per CpG to read the
methylated and unmethylated intensity (red or green fluorescence per bead depending
upon the methylation status), and the Infinium II (Type 2) probes which use one bead
per CpG emitting either a green fluorescence for methylation or red fluorescence for no
methylation. Based on the intensity of these red and green fluorescence levels, methylation
is measured by either beta values (methylated divided by methylated + unmethylated
+ 100) or MValue (log of methylated divided by unmethylated) [223]. Processing steps
involve validation of internal control probes for quality control metrics, prediction of
sample sex by sex-specific probes on the X and Y chromosomes and normalization. Many
software packages exist for DNAm analysis depending on the method of profiling, with
most written in the R Language for Statistical Programming [224,225].

The biggest caveat of DNAm profiling is the low global coverage of genome-wide
CpGs [226,227], wherein the majority of CpGs assessed are within gene bodies, CpG
Islands, CpG shores and CpG shelves, leaving intergenic regions largely unprofiled. The
accuracy of profiling methods also depends upon the CpG density of a genome [228].
Efficient and accurate DNAm results require rigorous quality control metrics during sample
collection, sample processing and sample distribution while methylation profiling, as well
as accounting for technical variation during analysis [229].

5.2.4. Analyzing Single-Cell Sequence Data

Numerous platforms and software programs have been developed for processing
single-cell sequencing data (Table 3), and a comprehensive searchable and filterable list
is available online (https://www.scrna-tools.org/table, accessed on 1 March 2023). Fre-
quently used platforms for quality control, visualization, and analysis of single-cell se-
quencing data include Seurat, Scanpy and Scater [230–232]. In most single-cell sequencing
pipelines, to accomplish pre-processing and visualization, raw data are used to generate
molecular barcodes for each cell. To remove reads from deceased and dying cells, quality
control programs use molecular barcodes to measure covariates such as count depth, genes
per barcode and mitochondrial genes per barcode, which can indicate unhealthy cells.
Normalization is an important data processing step to account for artificial differences in
expression observed due to sampling error during processing. Some normalization tools
for single cells include MAST, SCDE and Basic [32]. The most frequently used formula for
normalization is counts per million (CPM), which is the number of reads mapping to a par-
ticular feature divided by the total number of reads and multiplied by 106. Transcripts per
million (TPM) is another common normalization formula for Single-cell RNA sequencing
(scRNAseq) data, which normalizes for both read depth and gene length. Visualization of
the output is often improved by dimensionality reduction methods, such as t-distributed
stochastic neighbor embedding (t-SNE), which reduces the noise of differences between
cells and better resolves similarities, as well as Uniform Manifold Approximation and
Projection (UMAP) [233]. After these processing steps, downstream analysis is possible.
This tends to focus on clustering cells by shared traits or cell trajectory inference, which
entails mapping cell state changes over time. Clustering is often carried out using a k-
means clustering algorithm. The popular Seurat platform uses the Louvain algorithm
with K-nearest-neighbor graphs [162]. Annotation of the identified cell clusters can be
aided with databases such as The Human Cell Atlas [234], CellMarker [235] and automated
cluster annotation platforms, such as scmap, can be used [236]. Cell trajectory inference
can be carried out with Monocle, Wanderlust or Slingshot [237–239]. For differential gene
expression analysis between clusters, tools such as DESeq2 or EdgeR may be used [240,241].

https://www.scrna-tools.org/table
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Table 3. Platforms designed for bioinformatic analysis of single-cell sequencing data.

Tool Brief Description Resource References

Seurat

R-based platform for raw data processing, paired sample
analysis and visualizations. Uses machine learning and
clustering algorithms to identify biological features.
Assesses cellular heterogeneity via normalization,
dimensionality reduction and integration tools.

http://satijalab.org/
(accessed on 1 March 2023) [230,242]

Monocle

R-based scRNA-Seq analysis software. It uses algorithms
and machine learning to determine cell developmental
trajectories, identify molecular pathways and track
changes in gene expression.

http://cole-trapnell-lab.
github.io/monocle-release/
(accessed on 1 March 2023)

[237,243,244]

ChromVAR

R package for analyzing variations in chromatin
accessibility in scATAC-Seq data to identify associated
motifs or genomic annotations. It uses visualization
techniques to detect and highlight changes in gene
expression and provides users with powerful statistical
methods. It is also capable of detecting and correlating
molecular pathways.

https://greenleaflab.github.
io/chromVAR/ (accessed on 1
March 2023)

[245]

DRAGEN
Single-Cell RNA
Pipeline

Cloud-based platform to analyze scRNA-Seq data:
aligning and mapping reads, detecting features and
biomarkers and generating visualizations. It processes
multiplexed scRNA-Seq datasets from reads to a
cell-by-gene UMI count gene expression matrix. Features
splice-aware RNAseq alignment and matching to
annotated genes for transcript reads, cell-barcode and
UMI error correction and QC metrics.

http://illumina.com/
(accessed on 1 March 2023)

Not
applicable

Tapestri

Pipeline to analyze scRNA-Seq data generated by the
Tapestri platform. It Includes sequence import, data
analysis and visualization capabilities. The software
enables variant identification, including SNVs and CNVs,
at clonal and subclonal levels.

https://support.missionbio.
com/hc/en-us/categories/36
0002505454-Tapestri-Insights
(accessed on 1 March 2023)

Not
applicable

Scanorama

Integrates data from heterogenous scRNA-seq
experiments via detecting common cell types among
datasets. Identifies datasets, e.g., cells with similar
transcriptional profiles, and leverages the matches for
batch correction and integration. Can handle different
dataset sizes and sources and does not require all datasets
to share a cell population.

https://cb.csail.mit.edu/cb/
scanorama/ (accessed on 1
March 2023)

[246]

scmap v1.1.5

An R package that projects cells from a scRNA-Seq data
set onto cell types or individual cells from various
experiments. It is a widely applicable projection method,
detecting the best-matching cell type or individual cell in
the reference. It allows fast feature selection, centroid
calculation and index creation.

https://scmap.sanger.ac.uk/
scmap/ (accessed on 1 March
2023)

[236]

Scrublet v0.1

Single-Cell Remover of Doublets, acronym Scrublet, is a
framework for predicting the effect of multiplets in
analysis and also identifies problematic multiplets. It can
identify neotypic multiplets for an analyzed dataset. The
Scrublet classifier can implement arbitrary functions for
preprocessing and embedding of single-cell data.

https://github.com/
AllonKleinLab/scrublet
(accessed on 1 March 2023)

[247]

CellRanger v2.2.0

A set of analysis pipelines that can process Chromium
single-cell data to align reads, generate feature-barcode
matrices, perform clustering, amongst other tasks. It
contains five pipelines for the 3′ Single Cell Gene
Expression Solutions and similar products.

https://support.10
xgenomics.com/single-cell-
gene-expression/software
(accessed on 1 March 2023)

Not
applicable

http://satijalab.org/
http://cole-trapnell-lab.github.io/monocle-release/
http://cole-trapnell-lab.github.io/monocle-release/
https://greenleaflab.github.io/chromVAR/
https://greenleaflab.github.io/chromVAR/
http://illumina.com/
https://support.missionbio.com/hc/en-us/categories/360002505454-Tapestri-Insights
https://support.missionbio.com/hc/en-us/categories/360002505454-Tapestri-Insights
https://support.missionbio.com/hc/en-us/categories/360002505454-Tapestri-Insights
https://cb.csail.mit.edu/cb/scanorama/
https://cb.csail.mit.edu/cb/scanorama/
https://scmap.sanger.ac.uk/scmap/
https://scmap.sanger.ac.uk/scmap/
https://github.com/AllonKleinLab/scrublet
https://github.com/AllonKleinLab/scrublet
https://support.10xgenomics.com/single-cell-gene-expression/software
https://support.10xgenomics.com/single-cell-gene-expression/software
https://support.10xgenomics.com/single-cell-gene-expression/software
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Table 3. Cont.

Tool Brief Description Resource References

CITE-seq-count
v1.2

Python package that aids counting antibody tags from
CITE-Seq or cell hashing experiments.

https://github.com/Hoohm/
CITE-seq-Count (accessed on
1 March 2023)

[248]

Drop-seq tools
v2.0.0

Java tool to analyze profiling of individual cells (UMI cells
encapsulated in droplets
for oligodT sequencing). Libraries produce paired-end
reads (read 1: cell barcode and UMI; read 2: cDNA
sequence) for identity and abundance of the transcripts in
each cell.

https://github.com/
broadinstitute/Drop-seq
(accessed on 1 March 2023)

Not
applicable

deepTools v3.1.2

Galaxy-based web server for processing and visualizing
deeply sequenced data. Allows completion of
bioinformatic workflows to integrative analyses. Supports
four tasks: quality control, data processing and
normalization, data integration and visualization.

Not applicable [249]

Abbreviations: CITE-Seq: Cellular Indexing of Transcriptomes and Epitopes by Sequencing; CNV: Copy number
variant; OligodT: Oligo-deoxythymidine; QC: Quality control; scATAC-Seq: Single-cell Assay for Transposase-
Accessible Chromatin using sequencing; scRNA-Seq: Single-cell ribonucleic acid sequencing; SNV: Single nu-
cleotide variant; UMI: Unique molecular identifier.

5.2.5. Other Software for Analyzing Liquid Biopsy Samples

Some tools have been developed specifically for long-read cfDNA sequencing data
from ONT devices. A program called cfNano uses deconvolution to detect cancer-associated
signatures in ctDNA, including nucleosome footprinting, copy number alterations, methy-
lation changes and fragmentation patterns [250,251]. Another program called FrEIA uses
variations in the sequences at the ends of cfDNA fragments to improve the sensitivity
of cancer signal detection [252,253]. Nanomonsv is designed to detect somatic cancer-
associated structural variants in paired tumor and normal samples [254,255]. Nanovar is
a SV caller with the ability of detecting variants from low-depth, long-read sequencing
(homozygous SVs can be detected using 4×, while heterozygous SVs are detected at a
threshold of 8×) [256].

The development of bioinformatic tools to sequence single CTCs often includes quality
control to account for errors introduced during whole genome or whole exome amplifi-
cation. Several tools exist for different types of CTC studies [32]. Monovar is a variant
caller for single-cell data [257]. OncoNEM and SCITE are designed to use single-cell data
to trace the evolutionary trajectory of cancers [258,259]. RaceID2 and GiniClust are tools
for identifying a cell’s tissue of origin based on single-cell sequencing [260,261]. Ginkgo is
a web platform that is used to identify copy number variants in single-cell sequencing data
to construct a phylogenetic tree [262], which has been used to study the heterogeneity of
CTCs [263].

cfDNApipe is an integrated tool for WGS or bisulphite cfDNA sequencing data that
performs quality control and finds differentially methylated regions, copy number vari-
ation and alterations in fragment lengths, which facilitates tissue of origin analysis or
fragmentomic analysis [264,265].

6. Conclusions

The use of liquid biopsy and NGS technology has revolutionized the diagnosis and
management of lung cancer, providing a non-invasive alternative to traditional solid
tissue biopsies. Liquid biopsy enables the detection of cancer-specific mutations and other
biomarkers in a minimally invasive manner, allowing for serial testing and monitoring of
lung cancer progression or response to treatment.

While the use of liquid biopsy and NGS technology has brought numerous benefits to
the field of lung cancer diagnosis and management, there are also some limitations and
challenges. One of the major limitations compared to solid tissue biopsies is the signal-to-

https://github.com/Hoohm/CITE-seq-Count
https://github.com/Hoohm/CITE-seq-Count
https://github.com/broadinstitute/Drop-seq
https://github.com/broadinstitute/Drop-seq
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noise ratio. The low abundance of circulating tumor DNA/RNA, circulating tumor cells
and extracellular vesicles in biological fluids, detecting cancer-specific mutations and other
biomarkers, can be problematic, as these signals can easily be drowned out by processing
protocols, background noise and/or sequencing errors. As a result, the sensitivity and
specificity of liquid biopsy and NGS-based analysis can be affected, leading to false-positive
or false-negative results. Consequently, one of the main challenges is the need for increased
sensitivity and specificity of liquid biopsy analysis, particularly in detecting early-stage
lung cancer or minimal residual disease. This is especially important for patients who are
not eligible for surgery or who have a high risk of recurrence.

NGS technology has enabled a comprehensive and highly detailed analysis of liquid
biopsy samples, providing valuable information for cancer diagnosis, monitoring and treat-
ment selection. With its ability to analyze multiple types of genetic alterations (including
SNVs, indels and copy number/structural variations) and biomarkers simultaneously, NGS
has opened up new avenues for identifying potential therapeutic targets and developing
precision medicine strategies. Moreover, emerging sequencing technologies, such as long
reads sequencing and single-cell sequencing, are expected to expand the nature of biomark-
ers that can be detected in liquid biopsy. Long reads sequencing has the potential to detect
complex genomic rearrangements at an unprecedented level of detail, while single-cell
sequencing has the potential to provide a more comprehensive analysis of the heterogene-
ity of cancer cells in liquid biopsy, which can play a significant role in the development
of resistance to treatment. The combination of current NGS approaches and emerging
sequencing technologies is expected to further enhance the precision and efficacy of lung
cancer diagnosis and treatment.

In conclusion, the use of NGS in the analysis of liquid biopsy has revolutionized lung
cancer diagnostics and management; however, limitations and challenges remain to fully
realize its potential. Further research will improve the ability of NGS to further unlock the
biological information contained in liquid biopsies.
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