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Simple Summary: Despite the variety of drugs used to treat multiple myeloma and the ever-
lengthening survival times, a recurring problem is that many current drugs affect healthy cells,
causing side effects, additional illnesses, and drug intolerances. In theory, antibody-drug conjugates
targeting deliberately chosen antigens can deliver drugs directly to cancer cells with minimal damage
to healthy cells. As such, the conjugates targeting the B cell maturation antigen, which is restrictively
expressed on malignant plasma cells, are an active area of research. Several of them are currently in
clinical trials to test their safety and efficacy, both alone and in combination with other therapies. The
findings will provide better treatment options for multiple myeloma patients.

Abstract: Multiple myeloma (MM) is an incurable cancer of the plasma cells. In the last twenty
years, treatment strategies have evolved toward targeting MM cells—from the shotgun chemotherapy
approach to the slightly more targeted approach of disrupting important MM molecular pathways
to the immunotherapy approach that specifically targets MM cells based on protein expression.
Antibody-drug conjugates (ADCs) are introduced as immunotherapeutic drugs which utilize an
antibody to deliver cytotoxic agents to cancer cells distinctively. Recent investigations of ADCs
for MM treatment focus on targeting B cell maturation antigen (BCMA), which regulates B cell
proliferation, survival, maturation, and differentiation into plasma cells (PCs). Given its selective
expression in malignant PCs, BCMA is one of the most promising targets in MM immunotherapy.
Compared to other BCMA-targeting immunotherapies, ADCs have several benefits, such as lower
price, shorter production period, fewer infusions, less dependence on the patient’s immune system,
and they are less likely to over-activate the immune system. In clinical trials, anti-BCMA ADCs have
shown safety and remarkable response rates in patients with relapsed and refractory MM. Here, we
review the properties and clinical applications of anti-BCMA ADC therapies and discuss the potential
mechanisms of resistance and ways to overcome them.

Keywords: B cell maturation antigen; multiple myeloma; antibody-drug conjugates; Anti-BCMA
ADC; drug resistance

1. Introduction

Multiple myeloma (MM) is a hematological malignancy that ranks as the second
most frequent, representing 1% of all cancers [1,2]. MM is characterized by neoplastic
plasma cell proliferation, which leads to the accumulation of monoclonal plasma cells in
the bone marrow and the excess production of M protein, ultimately resulting in end-organ
damage [3]. Before the 21st century, the mainstay of MM treatment was chemotherapy [4].
However, in recent decades, several therapeutic agents, including proteasome inhibitors
(PIs, e.g., bortezomib), immunomodulatory drugs (IMiDs, e.g., thalidomide, lenalidomide,
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and pomalidomide), and histone deacetylase inhibitors (HDACis, e.g., panobinostat), have
been developed to treat MM. These drugs prolonged the overall survival (OS) of MM
patients [5–9], but MM remains an incurable disease because of the eventual emergence of
drug resistance, causing many MM patients to relapse [10]. Patients with newly diagnosed
MM have a 5-year OS rate of 76.1% [11], but those who are refractory to PIs and IMiDs
have a dismal median OS of 13 months [12].

PIs and IMiDs perturb pathways that are important for MM cell survival, but they
also affect a broad range of other cells. Therefore, immunotherapy strategies have been de-
veloped to target highly expressed MM antigens, such as signaling lymphocytic activation
molecule F7 (SLAMF7) and CD38 [13–17]. Despite promising early clinical results using the
corresponding monoclonal antibodies (mAbs, e.g., elotuzumab and daratumumab) [16,18–24],
these therapies lead to non-specific toxicities since these antigens are found in other normal
tissues [25]. For example, daratumumab rapidly reduces the number of CD38+ natural
killer (NK) cells, which impairs MM cell killing [26,27]. A better alternative would be to
target an antigen that is specifically expressed in MM cells and is key to MM cell survival.

2. B Cell Maturation Antigen (BCMA)

B cell maturation antigen (BCMA) was first identified in 1992 on the short arm of
chromosome 16 at 16p13.1 in malignant human T-cell lymphoma [28]. It is a type III
transmembrane glycoprotein with 6 conserved cysteines in its extracellular domain. It
belongs to the tumor necrosis factor receptor (TNFR) superfamily as TNRSF17 and is
primarily present in a perinuclear structure that overlaps the Golgi apparatus, but functional
BCMA is also found on the cell surface [28–31].

BCMA functions in conjunction with two related TNFR superfamily members, B-cell
activation factor receptor (BAFF-R) and transmembrane activator and calcium modulator
and cyclophilin ligand interactor (TACI). Their collaboration regulates various aspects of B
cell activities, such as proliferation, survival, maturation, and differentiation into plasma
cells (PCs) [29,30,32]. Upon binding its cognate ligands, BAFF and APRIL, BCMA can
activate the NF-kB, Elk-1, p38, or JNK pathways to transduce signals for corresponding
functions [31,33–35]. Conversely, a soluble form of BCMA (sBCMA), generated by γ-
secretase (GS), neutralizes APRIL as a decoy and hinders the activation of subsequent
BCMA pathways [36]. The sBCMA level has been suggested as a biomarker since it is
significantly higher in MM patients compared to healthy individuals, and higher levels
are associated with poor prognosis [37,38], MM progression, and poor response to BCMA-
targeted therapy [38,39].

Since its discovery, various studies have demonstrated that BCMA is a promising
immunotherapeutic target for multiple myeloma. BCMA expression is restrictively found
on the surface of plasmablasts and differentiated PCs, with no expression on CD34+
hematopoietic stem cells, naive B cells, memory B cells, and other normal tissue cells [40].
Furthermore, it has a high expression on the surface of the MM cell and is necessary for
the survival of long-lived bone marrow plasma cells [41,42]. Both BCMA mRNA and
protein have higher expression in malignant PCs than normal PCs, as validated by multiple
gene expression profiling [40,43,44] and immunohistochemistry studies [40]. Moreover,
Carpenter et al. [40] found BCMA cDNA in several hematologic tissues, including blood
leukocytes, bone marrow, spleen, lymph node, and tonsil, but no BCMA cDNA in other
normal human tissues except for the testis, trachea, and some gastrointestinal organs, where
low levels of BCMA cDNA were detected, likely from plasma cells present in lamina propria
and Peyer’s patches. These findings indicate BCMA is a desirable therapeutic target.

3. BCMA-Targeted Immunotherapy in MM

Because of the high BCMA expression in malignant PCs, the development of novel
therapies targeting BCMA is rapidly progressing. There are three major types of BCMA-
targeted therapy currently under pre-clinical and clinical development: bispecific T cell
engagers (BiTE), chimeric antigen receptor T cells (CAR-T), and antibody-drug conjugates
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(ADC). A BiTE employs antibodies with 2 arms to bind both MM cells and CD3 receptors on
T cells, which activates T-cells and encourages cancer cell lysing [45]. Its small size makes it
highly efficacious in bringing two cells into contact, but it has a short half-life that requires
continuous infusions [46]. The effectiveness of the treatment is dependent on the patient’s T
cell function, which works best when the patient has limited prior treatments and a minimal
disease burden. CAR-T is the adoptive transfer of T cells genetically modified to recognize
tumor-associated antigens [47]. The first anti-BCMA CAR-T was synthesized in 2013 [40],
and in the phase 1 clinical trial, it caused remission of MM [39]. Currently, two anti-BCMA
CAR-T therapies have been approved by the FDA for patients with R/R MM. However,
preparing CAR-T cells takes several weeks, during which patients may need bridging
therapies to control their malignancy. The high cost also limits the application of CAR-T
therapy. In addition, both BiTE and CAR-T cells are associated with T cell activation, which
may induce overactive immune responses, including cytokine release syndrome (CRS)
and hemophagocytic lymphohistiocytosis/macrophage activation syndrome (HLH/MAS).
Neurotoxicity is another common serious adverse event induced by this therapy [48].

Even though the development of BCMA-targeted therapies is unprecedented, a com-
mon issue with these therapies is the occurrence of hypogammaglobulinemia which may
result in a high risk of infection [49]. This side effect arises from the “on-target, off-tumor”
effect of targeting BCMA, as the normal plasma cells expressing BCMA are also eliminated
by the treatments. Hypogammaglobulinemia and associated infections have been reported
and investigated in multiple anti-BCMA CAR-T and BiTE studies [49–53], indicating a low
occurrence rate but a profound and lasting impact. To manage this issue, immunoglobulin
replacement therapy is utilized.

4. Anti-BCMA ADC

An antibody-drug conjugate (ADC) solves many of the above problems. An ADC
comprises three components: a monoclonal antibody against a target, a cytotoxic agent
(payload), and a stable linker connecting the two [54–56]. Since only a small amount of
injected antibodies localize to tumor cells, most payloads are highly potent, with cyto-
toxicity in the picomolar range, often targeting tubulin or causing DNA damage [56–58].
The linker covalently binds the payload to the antibody and is critical to ADC efficacy,
pharmacokinetics, pharmacodynamics, and therapeutic index. A stable linker ensures the
release of the cytotoxic drug to target tissue and minimizes toxic effects. On the other hand,
an overly strong linker impedes the delivery of the drug. Both cleavable and non-cleavable
linkers, which rely on the physiological environment and degradation in endosomes and
lysosomes, respectively, have been developed [59,60].

In MM treatment, BCMA is considered one of the most promising targets of ADCs.
Following binding to BCMA, the ADC is internalized by endocytosis. The drug is released
by cleavage or degradation in endosomes or lysosomes and then causes DNA damage,
inhibits transcription, or disrupts microtubules, which leads to apoptosis (Figure 1). The
development of anti-BCMA ADCs is an active area of research, and several anti-BCMA
ADCs are in various stages of clinical trials (Table 1).

Table 1. Summary of current clinical trials of anti-BCMA ADC.

Drug Clinical Trial
Prior Lines of

Therapy
(Median)

N Results Most Common AEs Ref.

Belamaf
DREAMM-1

(NCT02064387),
phase I

≥2 73

Dose expansion part
(n = 25): ORR 60%,
CR 3%, 43% VGPR,

9% PR, mPFS 12
months, mDoR 14.3

months

Nausea, fatigue,
thrombocytopenia,
anemia, vision blur,

chills, dry eye,
aspartate

aminotransferase
increase, pyrexia

[61,62]
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Table 1. Cont.

Drug Clinical Trial
Prior Lines of

Therapy
(Median)

N Results Most Common AEs Ref.

Belamaf (2.5 vs.
3.4 mg/kg)

DREAMM-2
(NCT03525678),

phase II
≥3 197

ORR 31% vs. 35%,
≥VGPR 19% vs. 24%,

mDoR NR vs. 6.2
months, mPFS NR vs.

8.4 months

Keratopathy,
thrombocytopenia,

anemia, neutropenia
[63–65]

Belamaf vs. Pd
DREAMM-3

(NCT04162210),
phase III

≥2 325

ORR 41% vs. 36%,
≥VGPR 25% vs. 8%,

mPFS 11.2 months vs.
7 months, does not
meet the primary

endpoint of PFS, mOS
21.2 months vs.

21.1 months

[66,67]

Belamaf + Pd
ALGONQUIN
(NCT03715478),

phase I/II
1–5 (3) 60

ORR 88.9%, ≥VGPR
74.1%, mPFS
24.2 months

Keratopathy, blurred
vision, fatigue,
neutropenia,

thrombocytopenia,
fever, diarrhea,

constipation, dry eye

[68]

Belamaf +
pembrolizumab

DREAMM-4
(NCT03848845),

phasen I/II
3–13 (5) 34

ORR 47%, CR 12%,
VGPR 18%, PR 18%,
mDoR 8.0 months,
mPFS 3.4 months

Keratopathy, blurred
vision,

thrombocytopenia
[69,70]

Belamaf-containing
combinations (e.g.,

Belamaf +
nirogacestat)

DREAMM-5
(NCT04126200),

phase I/II
3–10 (4.5) 10 ORR 60%, VGPR 20%,

PR 40% Ocular events [71,72]

Belamaf + Len + Dex
vs. Belamaf +

Bortezomib + Dex

DREAMM-6
(NCT03544281),

phase I/II
1–11 (3) 45 ORR 78%, ≥VGPR

50%

Keratopathy, blurred
vision, dry eye,

thrombocytopenia
[73]

Belamaf + Bortezomib
+ Dex vs.

Daratumumab +
Bortezomib + Dex

DREAMM-7
(NCT04246047),

phase III

575
(estimated)

Belamaf + Pd vs.
Bortezomib + Pd

DREAMM-8
(NCT04484623),

phase III

300
(estimated)

Belamaf + VRd vs.
VRd

DREAMM-9
(NCT04091126),

phase I

144
(estimated)

MEDI2228 NCT03489525,
phase I 2–11 82

ORR 61%, VGPR
24.4%, PR 36.6%, DoR

not reached

Photophobia,
thrombocytopenia,

rash, increased
gamma-

glutamyltransferase,
dry eye, pleural

effusion

[74]

AMG 224 NCT02561962,
phase I 2–11(7) 42

ORR 23%, CR 5%,
VGPR 5%, PR 13%,
mDoR 14.7 months

Thrombocytopenia,
fatigue, nausea,

aspartate
aminotransderase
increase, anemia

[75]

HDP-101 NCT04879043,
phase I/II 5–16 (11) 4 [76]

CC-99712 NCT04036461,
phase I

160
(estimated)

Pd: pomalidomide and dexamethasone; Len: lenalidomide; Dex: lexamethasone; VRd: bortezomib, lenalidomide,
and dexamethasone; AE: Adverse event; ORR: overall response rate; CR: complete response; VGPR: very good
partial response; PR: partial response; mDoR: median duration of response; NR: not reached; mPFS: median
progression-free survival; mOS: median overall survival.
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4.1. Belantamab Mafodotin

Belamaf (J6M0-mc–MMAF, belantamab mafodotin, GSK2857916) is the most well-
studied ADC in myeloma. Its antibody component is an afucosylated IgG1 directed to
BCMA (Kd of ~0.5 nM) [43]. Once it binds BCMA on the MM cell membrane, the entire
ADC is internalized and digested in the lysosome, which breaks the non-cleavable maleimi-
docaproyl (MC) linker and releases the drug monomethyl auristatin F (MMAF). MMAF
blocks tubulin polymerization and induces G2-M growth arrest, thus causing caspase
3/7-dependent apoptosis [43]. MMAF is a synthetic analog of dolastatin, a common drug
component in ADCs. Its non-cell-permeable nature reduces the toxicity to healthy cells.

The benefits of Belamaf are not limited to its ability to induce apoptosis directly. The
NF-kB signaling pathway essential for MM cell growth and survival is blocked by Belamaf
as its specifically engineered anti-BCMA antibody competes with APRIL and BAFF for
binding to BCMA [43]. It is worth noting that blocking BAFF and APRIL can impair the
function of immune cells, such as T cells and NK cells, and potentially lead to an increased
susceptibility to infections and other diseases [77]. It was also noted that the afucosylation
of its Fc domain substantially enhances the binding affinity to the FcγR (FcγRIIIa) present
in effector cells, such as NK cells, monocytes, and macrophages. Consequently, the killing
of MM cells is further improved by elevated antibody-dependent cell-mediated cytotoxicity
(ADCC) and antibody-dependent cellular phagocytosis (ADCP).

The multicenter DREAMM-1 phase I (NCT02064387) was the first in-human trial
of Belamaf. This dose-escalation trial was conducted in 38 MM patients who were re-
lapsed/refractory to daratumumab, PI, and/or IMiDs [61]. The drug was given by intra-
venous infusions once every 3 weeks, starting at 0.03 mg/kg and increasing to 3.4 mg/kg.
No dose-limiting toxic events were observed; thus, no maximum tolerated dose was es-
tablished. The overall clinical benefit rate was 25%. The most common side effects were
nausea (97%), fatigue (47%), thrombocytopenia (45%), anemia (42%), vision blur (29%),
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chills (24), dry eye (24%), aspartate aminotransferase increase (21%), and pyrexia (21%).
Five patients (14%) were considered to have experienced severe adverse events (SAEs) due
to the treatment. Two patients had infusion-related reactions. The other three patients had
intracranial hemorrhage, lung infection and pyrexia, or pericardial effusion. According to
these results, the dose-expansion trial of DREAMM-1 treated 35 advanced R/R MM patients
with 3.4 mg/kg Belamaf once every 3 weeks. The median time to the first response was
1.4 months. The results were promising, with an overall response rate of 60% (21 patients),
3% stringent complete response (sCR), 6% complete response (CR), 43% very good partial
response (VGPR), and 9% partial response (PR). Most adverse events were grade 1–2,
with 31 (89%) of 35 patients having corneal events in the ophthalmological examination,
which were characterized by superficial punctate keratitis (77%) associated with epithelial
(microcystic) edema (63%), stromal edema (14%), or opacities (23%). Grade 3/4 adverse
events were mainly thrombocytopenia (35%) and anemia (14%). Treatment-related serious
adverse events occurred in more than 2 patients. The update in 2019 reported a median
progression-free survival (mPFS) of 12 months and a median duration of response of
14.3 months [62]. From both phases 1 and 2, a total of 12 treatment-related serious adverse
effects and no treatment-related deaths were reported. In this trial, the corneal events
appeared frequently, and the frequency increased in the higher Belamaf dose setting. This
was attributed to the off-target damage by MMAF to corneal epithelial cells, which was
noted in the animal study [78]. The visual symptoms were mild and manageable but
caused many dose adjustments and even treatment discontinuations. Nonetheless, these
safety and efficacy results supported the approval of Belamaf as a Breakthrough Therapy
by the FDA and as a priority medicine (PRIME) by the European Medicines Agency (EMA)
in 2017.

Because of the association between Belamaf dosage and ocular events, DREAMM-2
(NCT03525678) was carried out as an open-label, randomized, phase II, two-arm study
comparing the safety and efficacy of two different dosages of Belamaf [63]. The trial
recruited heavily pre-treated R/R MM patients who were refractory to IMiDs and PIs.
Additional recruitment requirements emphasized being refractory and/or intolerant to
anti-CD38 mAb. 196 MM patients were included and randomized to receive 2.5 mg/kg
(n = 97) or 3.4 mg/kg (n = 99) Belamaf via intravenous infusion once every 3 weeks. The
most recent report found a 31% overall response rate (ORR) in the 2.5 mg/kg cohort and
35% ORR in the 3.4 mg/kg cohort [64]. The duration of response (DoR) was either not
reached or was 6.2 months in the 2.5 mg/kg and 3.4 mg/kg groups, respectively. The
estimation of 1-year OS was 53%. The most common grade 3/4 adverse events in the safety
population were keratopathy (29% vs. 24%), thrombocytopenia (21% vs. 32%), anemia (20%
vs. 27%), and neutropenia (11% vs. 16%). Each cohort reported one death that might be
associated with the treatment. The one in the 2.5 mg/kg cohort was caused by sepsis, and
the other in the 3.4 mg/kg cohort was due to haemophagocytic lymphohistiocytosis. The
follow-up was extended after 13 months to examine safety and efficacy in the longer term.
Until this extended follow-up, 10% of patients were still receiving Belamaf at 2.5 mg/kg.
The estimated mDoR, OS, and PFS were 11.0 months, 13.7 months, and 2.8 months. The
clinical activity was sustained without new adverse events [65]. This trial also examined
the mitigation strategies for Belamaf-related ocular events in an ocular substudy, which
includes the use of corticosteroid eye drops and preservative-free artificial tears and the
application of a cooling eye mask before infusion in addition to treatment adjustments [78].
It was found that the best strategies were to use artificial tears. Because of the clinically
meaningful anti-myeloma activity and manageable safety profile of Belamaf from the first
report, it was approved by the FDA in 2020 as a monotherapy treatment for R/R MM
patients who have received 4 prior therapies including anti-CD38 mAb, PI, and IMiDs.

The phase III, open-label, randomized, two-arm study DREAMM-3 (NCT04162210)
was conducted to compare the effect of single-agent Belamaf vs. pomalidomide (Pom) plus
low-dose dexamethasone (Dex). Recruited patients had R/R MM and were treated with
more than 2 prior lines of therapy [66]. The study randomized 325 patients in a 2:1 ratio to
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receive either 2.5 mg/kg of Belamaf once every three weeks or Pom daily with Dex weekly.
The primary analysis was released in November 2022, and its primary endpoint of PFS was
not met [67]. At the time of the analysis, the median OS was 21.2 months and 21.1 months,
and the mPFS was 11.2 months and 7 months for the Belamaf group and Pom + Dex group,
respectively. The Belamaf cohort had an ORR of 41%, while the Pom + Dex cohort had an
ORR of 36%. Belamaf showed a better response rate than Pom + Dex (25% VGPR vs. 8%
VGPR). DoR rates at 12 months were 76.8% and 48.4%. It was mentioned that the overall
rates of grade 3 adverse events of keratopathy were comparable with previously published
data, but no statistics of AEs were reported in this update. No new treatment-related safety
issue was identified. Based on the outcome of the DREAMM-3, GSK initiated the process
for withdrawal of the US marketing authorization for Belamaf on November 2022, but
would continue trial programs for the drug.

The potential of combining Belamaf with standard and novel treatments to treat R/R
MM is being intensively investigated in various phase I, II, or III clinical trials. The phase
I/II study, ALGONQUIN (NCT03715478), explored the safety and efficacy of Belamaf in
combination with Pom and Dex (Pd) in R/R MM patients pre-treated with lenalidomide
and a PI [68]. The initial dose-escalation study identified the maximum tolerated dose as
2.5 mg/kg Belamaf combined with a standard dose of Pd. Although all dosing cohorts
showed deep and durable responses, the 2.5 mg/kg Belamaf combination treatment ap-
peared to have the best efficacy with 89.8% ORR, 77% at least VGPR, and 90% at 6 months
PFS. In DREAMM-4 (NCT03848845), Belamaf was combined with pembrolizumab (anti-
PD-L1) [69], and the primary analysis demonstrated a favorable ORR compared with only
Belamaf in heavily pre-treated R/R MM patients [70]. DREAMM-5 (NCT04126200) contains
multiple substudies to evaluate different Belamaf-containing combinations, including the
T-cell activating checkpoint mAbs GSK3359609 and the GS inhibitor nirogacestat which
increases BCMA level on the myeloma cell surface [71]. Preliminary dose exploration
and cohort expansion results from the low-dose Belamaf + nirogacestat substudy showed
encouraging clinical activity, with 38% ORR (9/24) and 17% (4/24) VGPR in both phases
combined [72]. The safety profile of this combination treatment was reported to be manage-
able in heavily pre-treated R/R MM. DREAMM-6 (NCT03544281) assessed the combination
of Belamaf with lenalidomide (Len) plus Dex (arm A) or bortezomib plus Dex (arm B) [73].
At interim follow-up, the ORR was 78%, with 50% VGPR and a clinical benefit rate of 83%.

Currently, the efficacy and safety of the Belamaf combination regimen are being com-
pared to the approved standard-of-care therapy for R/R MM patients. In particular, Belamaf
combined with bortezomib plus Dex will be compared to daratumumab alone (DREAMM-
7, NCT04246047), and Belamaf combined with Pd will be compared to bortezomib with Pd
(DREAMM-8, NCT04484623). Additionally, in transplant-ineligible newly diagnosed MM
patients, DREAMM-9 (NCT04091126) will compare the efficacy and safety of Belamaf in
combination with bortezomib, lenalidomide, and dexamethasone (VRd) versus VRd alone.
The results from these clinical trials will determine the benefit of adding Belamaf to the
standard of care.

4.2. MEDI2228

MEDI2228 includes a fully humanized BCMA antibody conjugated to pyrrolobenzo-
diazepine (PBD) via a protease-cleavable linker. In pre-clinical models, this ADC targets
bulk MM cells as well as patient MM progenitor cells that are CD19 + CD138- and kills
cells by inducing multiple DNA damage response genes via phosphorylating ATM/ATR
kinases, checkpoint kinases 1/2 (CHK1/2), and H2AX regardless of p53 status [79]. Unlike
Belamaf, MEDI2228 preferentially binds to membrane-bound BCMA over sBCMA [80],
which makes it more efficient than Belamaf and means its cytotoxicity is minimally affected
by sBCMA levels.

The first-in-human phase I trial of MEDI2228 (NCT03489525) was conducted in 82 R/R
MM patients who had progressed after treatment with three standard-of-care MM drugs,
PIs, IMiDs, and mAbs [74]. MEDI2228 was infused intravenously at incrementally in-
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creasing doses (0.0125, 0.25, 0.05, 0.1, and 0.2 mg/kg) once every 3 weeks. The maximum
tolerated dose was 0.14 mg/kg due to dose-limiting toxicities. Several adverse events
were observed in the 0.14 mg/kg cohort, with photophobia being the most common (54%),
followed by thrombocytopenia (32%), rash (30%), elevated gamma-glutamyl-transferase
(24%), dry eye (20%), and pleural effusion (20%). Notably, there were no cases of keratopa-
thy or visual acuity loss. All dosage levels were demonstrated to be effective in this study.
Nonetheless, the most favorable response was from the 0.14 mg/kg cohort, which had the
highest ORR (61%), and no median DOR was reached. It is worth mentioning that in this
cohort, 90% of the patients received prior daratumumab treatment. Therefore, MEDI2228
demonstrated impressive single-agent clinical activity in heavily pre-treated MM patients
that had received previous immunotherapy.

In vitro and in vivo studies suggest that MEDI2228 has a synergistic effect with borte-
zomib and DNA damage response checkpoint inhibitors [81]. Furthermore, as MEDI2228
upregulates expression of CD38 and NKG2D ligands on the MM cell surface, it increases
NK cell immune activity and restores daratumumab-induced ADCC, supporting the com-
bination of CD38- and BCMA-targeted immunotherapies [82].

4.3. AMG 224

AMG 224 is composed of an anti-BCMA antibody, the non-cleavable linker 4-(N-
maleimidomethyl) cyclohexane-1-carboxylate (MCC), and the cytotoxic agent DM1. DM1,
a derivative of the ansamycin antibiotic maytansine, is a tubulin development inhibitor that
prevents tumor growth [83]. The clinical activity of AMG 224 was tested in a phase I clinical
trial (NCT02561962) with R/R MM patients who had heavy pretreatments, including IMiDs
and PI [75]. Twenty-nine patients received AMG 224 in dose escalation (30–250 mg), and
11 patients received AMG 224 in dose expansion (3 mg/kg). The overall ORR was 23%,
containing 2 stringent CR, 2 VGPR, and 5 PR. The median DoR in the dose escalation
phase was 14.7 months. Similar to Belamaf, the most common grade ≥3 adverse event
was thrombocytopenia (40%), but it occurred more often than in the Belamaf phase I trial
(9%). Treatment-emergent ocular adverse events were seen in 30% of patients with no
dose reduction due to these events, contrasting to 46% of patients who had Belamaf dose
reduction because of these. This clinical trial provided proof of the safety and benefits of
AMG 224 in R/R MM patients.

4.4. HDP-101

HDP-101 is another anti-BCMA ADC, but its cytotoxic agent, amanitin, is a new
class of payload that impedes the transcription process by inhibiting RNA polymerase
II. This reduces cell proliferation and causes cell apoptosis at very low concentrations. In
in vitro MM cell models, the picomolar range of HDP-101 was cytotoxic to BCMA+ cells
but not BCMA− cells [84]. In mouse xenograft models, tumor reduction and complete
remission were observed depending on the HDP-101 dose. The safety of HDP-101 was
further evaluated in nonhuman primates, where only a transient, mild to moderate increase
in liver enzymes and lactate dehydrogenase was observed, indicating good tolerability and
therapeutic index. Another recent study showed that it suppressed tumor burden in cell
lines with a 17p deletion, which remains an adverse prognostic factor of MM [85].

A phase I/II clinical trial of HDP-101 (NCT04879043) is currently enrolling patients
with progressed MM [76]. Preliminary safety data from 4 patients were presented at the
American Society of Hematology (ASH) 2022 meeting, and they found no keratopathy or
decrease in visual acuity. No free payload was found in pharmacokinetic samples, and
the first 2 dose cohorts showed good tolerability to HDP-101. Higher dose cohorts will be
evaluated after the enrollment of new patients.

4.5. CC-99712

CC-99712 is an anti-BCMA ADC granted orphan drug designation by the FDA in
2021. Its payload is a non-cleavable maytansinoid. To date, no pre-clinical study has been
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published concerning this ADC. A phase I clinical trial (NCT04036461) is currently ongoing
in R/R MM patients, but no results have been posted.

5. Mechanisms of Resistance to anti-BCMA ADC and Strategies to Overcome

The development of treatment resistance is a continual problem faced by myeloma
patients and indicates poor prognosis [86]. Due to the recent inclusion of anti-BCMA ADCs
in the treatment of MM, the mechanisms underlying intrinsic and acquired resistance to
these drugs are still poorly understood [87]. However, several mechanisms have been
proposed based on the pathways that ADCs rely upon (Figure 2) [88].
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Figure 2. General resistance mechanism of anti-BCMA ADC in treating multiple myeloma. Created
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First, an ADC must attach to a myeloma cell by binding BCMA. Therefore, the loss
or downregulation of BCMA on myeloma cells is predicted to cause resistance. As MM
is a heterogeneous disease with a diversity of subclones, it is possible that BCMAlow or
BCMA– cells would gain growth advantages during anti-BCMA ADC therapy. This is
evident during BCMA-specific CAR-T therapy, in which the loss of cell-surface BCMA
from myeloma cells was observed [89]. In addition, the high sBCMA levels in many MM
patients would decrease the efficacy of anti-BCMA ADCs since the sBCMA sequesters the
anti-BCMA antibody and prevents targeting to MM cells.
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The loss of BCMA can be circumvented by incorporating new formats of antibodies
into ADCs. A biparatopic or bispecific antibody could improve targeting by enhancing
recognition of the same or two separate antigens. In relation to sBCMA, MEDI2228 shows
strong binding to membrane BCMA, with levels up to 720 ng/mL of sBCMA having little
impact on the IC50 of MEDI2228 [80]. Moreover, small-molecule GS inhibitors (GSis) can
increase surface BCMA levels by reducing the cleavage of BCMA from the membrane, sub-
sequently improving MM cell recognition by anti-BCMA ADCs. In fact, GSis improve the
efficacy of anti-BCMA CAR-T therapy in vivo [90]. Accordingly, a clinical trial combining
GSis with concurrent anti-BCMA CAR-T therapy has been initiated (NCT03502577), which
could inform on their ability to enhance anti-BCMA ADC therapy.

After binding BCMA, the ADC is transported into the cell by clathrin-mediated
(CME), caveolin-mediated, or clathrin-caveolin-independent endocytosis. For ADCs with
cleavable linkers, cleavage might occur in the endosome. If not, the endosome fuses with a
lysosome [91], which catalyzes complete ADC degradation and payload release [88,92]. If
any of these processes are impaired, the payload will not be released and cannot perform
its cytotoxic function. In fact, in cells resistant to the ADC T-DM1, an altered pH within the
lysosomes prevents the degradation of T-DM1 [93]. Switching out the linker to one that is
protease-cleavable solves this issue in at least 2 cell models of T-DM1 resistance [94].

Even if the payload is released, it must stay within the cell to perform its function. As
we’ve learned from other MM drugs, the ATP binding cassette (ABC) transporters reduce
the effectiveness of small molecule chemotherapeutic agents by actively eliminating the
agent from the cytoplasm [95]. It is likely that the conjugated cytotoxins are substrates of
ABC transporters, and this could result in resistance. This can be solved by changing the
payload to one with a low affinity to efflux pumps. For example, vadastuximab talirine,
an anti-CD33 ADC, uses pyrrolobenzodiazepines (PBD) as the cytotoxic agent instead
of its original payload, gemtuzumab ozogamicin (GO), because PBD is a poor substrate
for drug efflux pumps. In an in vitro study, PBD demonstrated anti-leukemia activity in
multidrug-resistant acute myeloid leukemia (AML) models, including those resistant to
GO [96]. Another strategy is to reduce the hydrophobicity of the cytotoxic compound
because hydrophobic compounds are good substrates for multidrug resistance protein
(MDR) transporter. In a study with antibody-maytansinoid conjugates, a hydrophilic
metabolite of maytansinoid was produced using a hydrophilic linker and was more potent
in killing MDR-expressing cells than other metabolites from nonpolar linkers [97].

If an ADC succeeds in binding an MM cell, releasing its payload, and avoiding active
efflux, the cell might still survive the drug by activating survival pathways. In MM,
drug resistance is often linked to activated DNA repair pathways [98,99]. One of the
DNA repair pathways, the homologous recombination pathway (HR), recruits a protein
called RAD51 [100]. This protein plays a key role in the repair of DNA lesions, including
interstrand cross-links, stalled/damaged replication forks, and double-strand breaks. Cells
with increased RAD51 levels evade radiation- or chemotherapy-induced DNA damage
and acquire resistance leading to poor patient survival [101]. In the case of ADC treatment,
the upregulation of RAD51 and increase in HR were observed in the clinical trial with
MEDI2228 in MM. The addition of DNA damage repair checkpoint inhibitors, such as
AZD0156 (ATMi), AZD6738 (ATRi), and AZD1775 (WEE1i), synergized with MEDI2228 to
enhance cytotoxicity [102].

Finally, ADC resistance could occur from mutations in the targets of the cytotoxic
drugs. However, no mutations have been found in tubulin, topoisomerase I, or RNA
polymerase II in any ADC-resistant models [87].

6. Conclusions

BCMA-based immunotherapy has shown potential as a therapy for MM. In multiple
clinical trials, anti-BCMA ADCs have proven safe and effective, even in heavily pre-treated
R/R MM patients. Nonetheless, there is still much to be learned about the optimal use of
these agents, including patient selection, dosing strategies, and combination treatments.
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Moving forward, we anticipate continued development and refinement of anti-BCMA
ADCs using next-generation antibodies and drugs. Although we are just at the very
beginning of recognizing anti-BCMA ADC resistance in myeloma, the theoretical resistance
mechanisms based on ADC structure and function have provided directions for therapeutic
intervention.
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