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Simple Summary: This paper proposes a deep learning-based skin cancer classification network
(DSCC_Net) that is based on a convolutional neural network (CNN) and implemented on three
publicly available benchmark datasets (ISIC 2020, HAM10000, and DermIS). The proposed DSCC_Net
obtained a 99.43% AUC, along with a 94.17% accuracy, a recall of 93.76%, a precision of 94.28%,
and an Fl-score of 93.93% in categorizing the four distinct types of skin cancer diseases. The
accuracies of ResNet-152, Vgg-19, MobileNet, and Vgg-16, EfficientNet-B0, and Inception-V3 are
89.68%, 92.51%, 91.46%, 89.12%, 89.46%, and 91.82%, respectively. The results showed that the
proposed DSCC_Net model performs better as compared to baseline models, thus offering significant
support to dermatologists and health experts to diagnose skin cancer.

Abstract: Skin cancer is one of the most lethal kinds of human illness. In the present state of the
health care system, skin cancer identification is a time-consuming procedure and if it is not diagnosed
initially then it can be threatening to human life. To attain a high prospect of complete recovery, early
detection of skin cancer is crucial. In the last several years, the application of deep learning (DL)
algorithms for the detection of skin cancer has grown in popularity. Based on a DL model, this work
intended to build a multi-classification technique for diagnosing skin cancers such as melanoma
(MEL), basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanocytic nevi (MN).
In this paper, we have proposed a novel model, a deep learning-based skin cancer classification
network (DSCC_Net) that is based on a convolutional neural network (CNN), and evaluated it on
three publicly available benchmark datasets (i.e., ISIC 2020, HAM10000, and DermlIS). For the skin
cancer diagnosis, the classification performance of the proposed DSCC_Net model is compared with
six baseline deep networks, including ResNet-152, Vgg-16, Vgg-19, Inception-V3, EfficientNet-B0, and
MobileNet. In addition, we used SMOTE Tomek to handle the minority classes issue that exists in this
dataset. The proposed DSCC_Net obtained a 99.43% AUC, along with a 94.17%, accuracy, a recall of
93.76%, a precision of 94.28%, and an Fl-score of 93.93% in categorizing the four distinct types of skin
cancer diseases. The rates of accuracy for ResNet-152, Vgg-19, MobileNet, Vgg-16, EfficientNet-B0,
and Inception-V3 are 89.32%, 91.68%, 92.51%, 91.12%, 89.46% and 91.82%, respectively. The results
showed that our proposed DSCC_Net model performs better as compared to baseline models, thus
offering significant support to dermatologists and health experts to diagnose skin cancer.
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1. Introduction

The largest organ in the body is the skin, which saves the body from infection, heat, and
UV light, but the serious threat to human life is cancer. The human body may harbor various
kinds of cancer, and skin cancer is one of the deadliest and rapidly growing tumors. One
in every three cancers diagnosed is skin cancer and, according to Skin Cancer Foundation
Statistics, one in every five Americans will develop skin cancer in their lifetime [1-4]. In the
USA, there are more than 3.5 million new cases that appear every year, and that number of
cases is continuously increasing [3].

Many skin cancers begin in the upper layer of the skin. Skin cancer occurs when
skin cells divide and expand in an uncontrolled way. New skin cells usually develop
when old ones die or are damaged. When this process does not work correctly, cells grow
quickly in an unordered way. This is why these cells are known as a tumor, which is in
the form of a group of tissue [5,6]. It is caused by several factors, such as drinking alcohol,
smoking, allergies, viruses, changing environments, and ultraviolet (UV) light exposure.
Furthermore, skin cancer can also appear due to abnormal swellings on the body.

There are four different types of skin cancer: melanoma (MEL), melanocytic nevi (MN),
basal cell carcinoma (BCC), and squamous cell carcinoma (SCC). The most dangerous
category of cancer is MEL, because it spreads quickly to other organs. It arrives from the
skin cells that are called melanocytes. On the skin, melanocytes create dark pigments, and
these are mostly black and brown, while some are red, purple, and pink [7]. A melanoma
cell frequently spreads to another organ, such as the brain, liver, or lungs [8,9]. Due to
melanoma cancer, 10,000 deaths occur annually in the United States [10]. If it is identified
early, then melanoma can be treated as soon as possible. It is not more common than other
kinds of skin cancer. Melanocytic nevi (MN) happen in a pigmented mole that varies in a
variety of skin tone colors. It mostly occurs throughout childhood and the early years of
adult life, because the number of moles on one’s body increases up until the 30 to 40 years
of age. Basal cell carcinoma (BCC) is the most common type of skin cancer. These are
round cells that are created in the lower portion of the epidermis and normally grow slowly.
Approximately all BCC develops on areas of the body that have a lot of sun exposure,
including the face, neck, head, ears, back, and shoulders. Rarely, this type of skin cancer
migrates to other body areas, and forms due to the abnormal and uncontrolled growth of
cells. It may occur as a small, flesh-colored, or white tumor that may bleed. Squamous cell
carcinoma (SCC) comprises flat cells found in the upper portion of the epidermis. These
cancer cells can arise when cells grow uncontrollably. It may occur as a hard red mark
or open sore that may bleed easily. Although this type of skin cancer is not normally
dangerous, SCC can be found in numerous areas because it is usually generated by sun
exposure. Additionally, it may also develop on skin that has already been burned or
harmed by chemicals.

Skin cancer detection is a challenging process, and there are many different ways in
which doctors can find skin cancer. An experienced dermatologist uses a sequence of steps
to make a diagnosis, beginning with the naked eye detection of abnormal tumors, followed
by dermoscopy, which uses a magnifying lens to conduct an in-depth analysis of lesion pat-
terns, and the final step is biopsy [11,12]. Before the development of dermoscopic pictures,
most skilled dermatologists had a rate of success of only 60 percent in diagnosing skin can-
cer, but dermoscopic images raised success rates to between 75 percent and 84 percent [13].
Additionally, correct identification is unique and largely dependent on the skills of the
clinician [14]. The manual diagnosis of skin disorders is extremely difficult and stressful
for the patient [15]. Computer-aided detection systems support health professionals to
evaluated data garnered from dermoscopy method in situations where there is a shortage
of professional availability or diagnostic expertise [16,17].

Skin cancer is a huge problem that needs to be investigated as soon as possible. The
majority of people do not visit their dermatologist on a regular basis, which causes a fatally
delayed diagnosis. The diagnosis is a manual process that takes a lot of time and money.
However, diagnosis improved due to machine learning, and this can be useful in various
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ways. Skin cancer classification has been worked out using machine learning techniques,
such as the support vector machine (SVM) [18], the Naive Bayes (NB) classifier [19], and
decision trees (DT) [20]. Convolutional neural networks (CNN) have gained popularity in
recent years due to their ability to perform automatic feature extraction [21-24], as well as
their broad use in research [25-28]. They are used to detect cancerous cells more rapidly
and effectively.

The mortality rates are rising to alarming levels, yet if patients are detected and treated
promptly, their chances of surviving are better than 95% [29-34]. Thus, this motivates us to
develop a model for the early diagnosis of skin cancer to save human lives. In this paper,
we present a novel multi-classification model, called the deep learning-based skin cancer
classification network (DSCC_Net), based on the CNN, that identifies the four types of
skin cancer, MEL, MN, BCC, and SCC, from dermoscopic images. Most of the research
studies [29-33] have indicated great performance in binary classification, i.e., differentiating
between benign and malignant skin cancer. However, no evidence has been found that
uses the DL models for the classification of the skin cancers MEL, BCC, MN, and SCC.
Additionally, DSCC_Net iwas also compared with six baseline classifiers: Vgg-19, Vgg-16,
ResNet-152, EfficientNet-B0, Inception-V3, and MobileNet. The major contributions of this
study are presented below:

e  The novel proposed DSCC_Net model is designed to identify four different types of
skin cancer. The proposed model has the capability of extracting dominant features
from dermoscopy images that can assist in the accurate identification of the disease.

e In this study, we reduce the complexity of the model by decreasing the number of
trainable parameters to obtain a significant classifier.

e  The CNN model’s accuracy is compromised as a result of the problem of class imbal-
ance in medical datasets. We overcome this issue by using an up-sampling technique,
SMOTE Tomek, to obtain concoction samples of the image at each class to gain en-
hanced accuracy.

e  The Grad-CAM heat-map technique is utilized to illustrate the visible features of skin
cancer disease classification approaches.

e  The proposed model achieved superior results, as compared to six baseline classifiers,
Vgg-19, ResNet-152, Vgg-16, MobileNet, Inception-V3, and EfficientNet-B0, in terms of
many evaluation metrics, i.e., accuracy, area under the curve (AUC), precision, recall,
loss, and F1 score.

e  Additionally, the proposed model also produced significant results as compared to the
recent state-of-the-art classifiers.

This study is divided into the following section: Section 2 presents the literature review.
Materials and methods are discussed in Section 3. The experimental results and discussion
are presented in Section 4. This study is concluded in Section 5.

2. Literature Review

Extensive research has been conducted on the diagnosis of skin cancer to better assist
medical professionals in the process of detecting the disease at an earlier stage. Recent
research, on the other hand, has been focused on developing different artificial intelligence
algorithms to automate the diagnosis of several types of skin cancer. Table 1 presents the
summary of recent literature on skin cancer diagnosis using DL models.
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Table 1. Summary of the existing research studies for the diagnosis of skin cancer, using different
machine learning and DL models.

Ref Model Type Limitations Dataset  Accuracy
Two hvbrid The classification accuracy of the model may be
[35] y Benign vs. Melanoma. enhanced by using more advanced sampling ISBI 2016  88.02%
CNN Models ; .
techniques and data preparation.
Spiking Melanoma vs. L, . . o
[36] Veg-13 non-Melanoma. The model’s interpretability has to be improved. ISIC2019  89.57%
CNN,
AlexNet, MEL, BCC, AKIEC, NV, There is a limited selection of lightweight o
371 Vgg-16, BKL, DF, and VASC. networks and hyperparameters for evaluation. HAMI0000  92.25%
Vgg-19
ISIC
The model’s segmentation performance is fragile 2016,
[29] Deep CNN Malignant vs. Benign. to occlusions in skin pictures, and it struggles ISIC 90.42%
with low-contrast skin disease images. 2017,
ISIC 2020
CNN and MEL, BCC, AKIEC, NV, Different models and datasets call for various o
(381 ResNet-50 BKL. hyperparameter settings. HAMI0000 — 86%
[9] DenseNet-201 ~  MEL&non-MEL, 10 further enhance the model's generality, a more g1 5919 76 0g9,
clinical dataset of skin-cancer cases is required.
. . . Overall accuracy drops when there is a large gap o
[30]  MobileNet-V2 Malignant & benign. between the data domain and the target domain, ISIC 2020 98.2%
- The proposed model was trained and tested on
[40] EfficientNets MEL, BCC, AKIEC, NV, an imbalanced dataset of skin cancer, and it HAM10000 87.91%
B0-B7 BKL, DF, and VASC.
affects the model performance.
Due to the small sample size of the datasets used
[31] DCNN Benign & malignant. in this study, local optimizations may HAM10000 91.93%
have been achieved.
ResNet-152, . C
RN MELBCC Ak vy, el st st nd e
101, BKL, DF, and VASC. Y ossible skin cancers ’
DenseNet-161 P '
Classification persists, however, because the
[42] CNN MEL, BCC, AKIEC, NV, model relies on a small quantity of training data ~HAM10000  78%
BKL, DF, and VASC. L .
and the hazy borders of skin disease pictures.
Due to the lack of adversarial training on other
[43] DenseNet-121 MEL, BCC, and AKIEC. skin cancer datasets, the method’s HAM10000 85%

model remains vulnerable.

Keerthana et al. [35] classified dermoscopy images as either benign or malignant
cancers using two new hybrid CNN models, including an SVM algorithm at the output
layer. The parameters extracted by the initial CNN model and the second CNN model are
combined and passed to the SVM classifier. The accuracy of the first hybrid model with
DenseNet-201 and MobileNet was 88.02%, whereas the accuracy of the second hybrid model
with DenseNet-201 and ResNet-50 was 87.43%. Deep spiking neural networks were applied
by Qasim Gilani et al. [36] to a total of 3670 melanoma images and 3323 non-melanoma
images taken from the ISIC 2019 dataset. Using the suggested spiking Vgg-13 model, they
attained an 89.57% accuracy and 90.07% F1-score, which was greater than that acquired
with Vgg-13 and AlexNet, with fewer trainable parameters. Using the HAM10000 dataset,
Kousis et al. [37] established 11 CNN architectures for several skin lesion classifications.
They also built a mobile android application, in which DenseNet-169 architecture was
applied that was relatively light, which identified the skin lesion as benign or malignant.
Finally, DenseNet-169 was the model that achieved the highest accuracy (92.25%) when
compared to other models, e.g., ResNet-50, Vgg-16, Inception-V3, etc. The second-highest
accuracy has been achieved by the DenseNet-121 model. In terms of mobile applications,
DenseNet-169 attained 91.10% accuracy. To accurately differentiate between malignant and



Cancers 2023, 15, 2179

50f 28

benign melanoma, Kaur et al. [29] suggested an automatic melanoma classifier that was
based on a deep CNN. The main goal was to suggest a lightweight and less-complicated
deep CNN than other techniques, in order to efficiently identify melanoma skin tumors.
The ISIC datasets were used to obtain dermoscopic pictures for this study that included
several cancer samples such as ISIC 2016, ISIC 2017 and ISIC 2020. In terms of the ISIC
2016, 2017 and 2020 datasets, the suggested deep CNN classifier acquired accuracy rates of
81.41 %, 88.23 %, and 90.42 %.

Alwakid et al. [38] employed the CNN model and modified ResNet-50, which was
applied to a HAM10000 dataset. This analysis used an uneven sample of skin cancer.
Initially, the image’s quality was improved using ESRGAN, then the next step taken to
tackle the problem of class imbalance was the use of augmenting data. They achieved
the result by using the CNN and ResNet-50 models, which were 86% and 85.3% accurate,
respectively. Aljohani et al. [39] used CNN to perform binary classification for the detection
of melanoma skin tumors. They used the ISIC 2019 dataset to test various CNN architectures
for this purpose. The results of the experiment showed that GoogleNet achieved the
maximum level of performance on both the training and testing data, in which they
obtained 74.91% and 76.08% accuracies. Rashid et al. [30] used MobileNet-V2 to present a
deep transfer learning network for the classification of melanoma. The MobileNet-V2 was a
deep CNN that distinguished between malignant and benign skin lesions. The performance
of the suggested DL model had been analyzed using the dataset of ISIC 2020. To solve the
class imbalance problem, different data augmentation strategies were used. Ali et al. [40]
applied EfficientNets B0-B7 models to the HAM10000 dataset of dermatoscopic images.
The dataset contained 10015 images associated with seven different types of skin cancer,
such as actinic keratosis (AKIEC), dermatofibrosarcoma (DF), non-vascular (NV), BCC,
MEL, benign keratosis (BKL) and vascular skin lesions (VASC). Among the eight models,
the EfficientNet-B4 represented the greatest Top-1 and Top-2 accuracies. In this experiment,
the EfficientNet-B4 model achieved an 87% F1 score and 87.91% Top-1 accuracy.

Shahin-Ali et al. [31] used a deep CNN model by using the HAM10000 dataset. This
data contained 6705 benign images, 1113 malignant images, and 2197 unknown images
of lesions. The proposed model attained the highest training and testing accuracies, with
93.16 % and 91.93%, respectively. Furthermore, they balanced the dataset for both classes,
which increased the accuracy of categorization. On the same dataset, they also trained
several transfer learning models, but the results were not better than their proposed model.
Le et al. [44] introduced a transfer learning model that comprised ResNet-50 without the
use of a preprocessing stage or manual selection of features. All layers of the pre-trained
ResNet-50 were used for the training in Google Colab. Global average pooling and dropout
layers were employed to reduce overfitting. The images of the dataset were divided into
seven different categories and the proposed model attained 93% accuracy. Bajwa et al. [41]
created an ensemble model through the use of ResNet-152, SE-ResNeXt-101, DenseNet-161,
and NASNet, to classify seven types of skin cancer with 93% accuracy. The ensemble
was a technique of ML that merges the results of various distinctive learners to improve
classification performance. Nugroho et al. [42] used the HAM10000 dataset to create a
custom CNN for skin cancer identification. They used a scaled image with a resolution of
90 x 120 pixels. They achieved an 80% accuracy for training and 78% accuracy for testing.

Bassi et al. [45] used a DL technique that included transfer learning and fine-tuning.
They resized the dataset images with the resolution of 224 x 224 and used a fine-tuned
Vgg-16 model. They attained an accuracy of 82.8 %. Moldovan et al. [43] used a technique
that was based on DL and transfer learning, in which they applied the HAM10000 dataset.
The classification model was created in Python, utilizing the PyTorch library and a two-step
process for classifying images of skin cancer. The first step’s prediction model was 85.0%
accurate, and the second step’s prediction model was 75.0% accurate. Using dermoscopic
images, Cevik et al. [46] employed the VGGNET model that contained a powerful CNN
model to identify seven various kinds of disease. Images that were 600 x 450 pixels in size
were analyzed and resized to 400 x 300 pixels. Sklearn, Tensorflow and Keras machine



Cancers 2023, 15, 2179

6 of 28

learning packages all were used in this Python-coded application. They obtained a score
of 85.62 percent accuracy. Hasan et al. [47] developed the CNN-based detecting system
that used feature extraction techniques to extract features from dermoscopic pictures.
During the testing phase, they obtained an accuracy of detection of 89.5 %. However, the
detection accuracy was insufficient and needed to be improved. Furthermore, there was
overfitting between the testing and training stages, which was a flaw in that study. Saba
et al. [31] suggested a deep CNN that used three phases to detect skin lesions: first, the
color modification was used to improve contrast; second, a CNN approach was applied to
extract the borders of the lesion; third, transfer learning was applied to remove the deep
features. While the strategy produced good results for some datasets, the outcomes varied
depending on the dataset.

Using the dataset of ISIC 2018, Majtner et al. [48] created an ensemble of GoogleNet
and Vgg-16 models. The authors performed the data augmentation and normalized its color
to build the ensemble approaches they offered. The accuracy of the suggested method was
80.1%. Alquran et al. [33] introduced an image-processing-based approach for detecting,
extracting, and classifying tumors from dermoscopy pictures, which aided in the diagnosis
of benign and melanoma skin cancer significantly. The SVM classifier’s results showed an
accuracy of 92.1%. Lopez et al. [49] described a deep-learning-based strategy to handle
the problem of identifying a dermoscopic image that included a skin tumor as malignant
and benign, with a focus on the difficulty of skin cancer classification, especially initial
melanoma detection. The proposed solution employed the transfer learning approach that
was based on the VGGNet CNN architecture. The proposed method obtained an accuracy
level of 81.3% in the ISIC dataset, according to encouraging testing results. A linear classifier
was built by Kawahara et al. [50] using a dataset of 1300 pictures and features collected
by CNN to detect skin cancer. The method does not need skin lesion segmentation or
preprocessing. They conducted classifications of five and ten classes, and their respective
accuracy rates were 85.8% and 81.9%. Codella et al. [51] employed sparse coding, SVM,
and deep learning to obtain an accuracy of 93.1% when evaluating recorded photos from
the ISIC. These images were represented by bkl, mel, and nv. Krishnaraj et al. [52] designed
machine learning [53-56] classifiers that identified binary classes of cervical cancer, such
as adenosquamous carcinoma and SCC. They collected the dataset at the University of
California, Irvine (UCI) repository, and the Borderline-SMOTE approach was employed
to balance the unbalanced data. They obtained 98% accuracy through this dataset. Imran
etal. [57] proposed a model that was based on deep CNN by using different layers and filter
sizes. They used three different publicly available datasets: ISIC-2017, ISIC-2018, and ISIC-
2019. In the ISIC-2017 dataset, they employed 2750 images that consisted of three labels:
MEL, BKL, and NV. The ISIC-2018 dataset contains seven labels, in which 10,015 images
were used, whereas the ISIC-2019 dataset implemented eight labels that contain a total
number of 25,331 images. The accuracy rate of the ISIC-2017 dataset was 93.47%, while
88.75% and 89.58% accuracies were achieved by ISIC-2018 and ISIC-2019, respectively.

According to the above literature, it is extremely clear that a need still exists for a
model with the ability detect the four different types of skin cancer with greater accuracy
than current modalities. Although [29-31,39,47,49] performed a binary class classification
of skin cancer, many other researchers were not able to handle multiclass classification
with more successful outcomes. For multiclass skin cancer detection, the previous methods
proposed in [40-48] were also unsuccessful at attaining a greater accuracy. Automated skin
cancer classification in dermoscopic images is a challenging task due to high intraclass
variance and interclass visual similarity. Furthermore, the presence of external and inherent
artifacts and contrast between the affected and normal skin make it extremely difficult
for the multiclassification of skin cancers. The proposed method overcomes the existing
challenges, and effectively classifies the lesion into the four primary classes of skin cancer,
MEL, SCC, BCC, and MN, with high efficiency.
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3. Materials and Methods

This section presents the experimental procedure used to analyze the performance of
the proposed model, as well as six well-known deep CNN models, which include Vgg-19,
ResNet-152, Vgg-16, MobileNet, Inception-V3, and EfficientNet-BO0.

3.1. Proposed Study Flow for the Diagnosis of Skin Cancer

When skin cells are exposed to UV radiation, their DNA is altered, which disrupts
the skin cell’s normal growth and results in skin cancer. To find skin cancer, researchers
frequently use dermoscopic images. DL algorithms are applied to enhance the accuracy of
the detection of skin cancers, such as MEL, BCC, MN, and SCC. Furthermore, if skin cancer
is diagnosed in its initial phase, health professionals have a better opportunity to prevent the
disease’s growth and start treatment on time. The medical field has changed significantly
as a direct result of the application of artificial intelligence and image processing. At
this time, image processing is employed for analysis in almost every area of the medical
field [58-60]. The community of researchers plays a significant role in the development
of intelligent automated systems for accurate and speedy evaluations, and contributes to
daily improvements of these systems [61-63].

For this study, we developed an automated system for the identification of skin cancers,
called DSCC_Net. This system was trained and tested on images of four main categories
of skin cancer: SCC, BCC, MN, and MEL. The input image’s size is fixed to a resolution
of 150 x 150 pixels. In addition, the dataset was used according to the data normalization
technique, in order to stop the model from being overfit. We also applied a technique called
the synthetic minority oversampling technique (SMOTE) Tomek, in order to tackle the issue
of an unequal distribution of datasets and to balance the number of samples within each
class [64]. The skin cancer dataset is separated into three distinct categories that included
training, testing, and validation sets. Furthermore, Figure 1 shows the work flow of the
proposed DSCC_Net for skin cancer. In comparison to [65-67], the training parameter’s
size is smaller. The experimental procedure was carried out for a maximum of 30 epochs.
After completion of all the epochs, the proposed DSCC_Net achieved the expected level of
accuracy throughout training and validation. The performance of the suggested method
(DSCC_Net) was analyzed and was differentiated from that of six pre-trained classifiers:
accuracy, loss, precision, recall, AUC, and Fl-score. The Grad-CAM heat-map approach has
been employed to illustrate the visible aspects of skin cancer that underline the qualities
that affect its categorization. These characteristics have been used to highlight the aspects
that lead to the diagnosis of skin cancer.
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Figure 1. Workflow of the proposed DSCC_Net model.
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3.2. Dataset Description

On the internet, there are many freely accessible datasets of dermoscopy images. Be-
cause skin cancer is so common all around the world, this research focused on dermoscopy
and photographic images of the disease. Images of four classes of skin cancer are shown
in Figure 2. The proposed DSCC_Net was trained and tested on three datasets that were
derived from three different resources. The ISIC-2020 Archive [68] is the world’s largest
collection of dermoscopic images of skin lesions that are available to the general public.
The images contained in this dataset were derived from a variety of different sources,
because multiple institutes contributed patient data of various ages. There are 33,126 der-
moscopic images, 579 images of malignant skin lesions, and 32,542 images of benign skin
lesions. These pictures were taken from more than 2000 patients. We used 579 images of
the melanoma class, and histopathology verified the diagnoses for all these images. The
remaining images are all part of a benign class that was not considered for this research.
Secondly, the HAM10000 database [69] includes 10,015 images that were produced by the
International Skin Image Collaboration in 2018. Based on this information, this dataset
consists of seven different data classes that identify the skin lesions. This database was
developed by two different groups: Queensland University in Australia, and the ViDIR
Group at the University of Vienna in Austria. In this dataset, we used 510 basal cell class
images, 1107 melanoma class images, and 2007 melanocytic nevi class images. These
dermoscopic images were taken from different populations, and the rest of the images were
not considered in this study. Thirdly, dermis.net [70] is the most comprehensive online
dermatology information source. It offers detailed images, differential diagnoses, and
additional information on nearly all skin conditions.

Figure 2. Original image samples of skin cancer extracted from three datasets.



Cancers 2023, 15,2179

9 of 28

3.3. Using SMOTE Tomek to Balance Dataset

To resolve the issue of an unequal distribution of classes throughout the dataset, we
applied the up-sampling method. In this method, we obtain fusion samples for each class
by using the up-sampling algorithm SMOTE Tomek [64], as shown in Figure 3. This method
is first applied to the class of observations belonging to minority classes. SMOTE is one
of the most common and well-known oversampling methods used by data scientists to
generate artificial minority points in the minority class examples. The aim was to combine
SMOTE and Tomek techniques to improve the efficiency of dealing with the unbalanced
class. Synthetic points are generated by SMOTE through the implementation of the KNN
algorithm. The distribution of samples before the implementation of up-sampling is shown
in Table 2.

Figure 3. SMOTE Tomek generates samples of images to solve the class imbalance issue.

Table 2. Image samples of skin cancer are distributed before up-sampling.

No. of Classes Class Name No. of Images
0 BCC 510
1 MEL 1686
2 MN 2007
3 SCC 97

3.4. Proposed Model
This section contains a complete description of the proposed DSCC_Net model.

3.4.1. Structure of the Proposed DSCC_Net

The CNN structure is designed after the human brain’s biological anatomy, and
is especially beneficial for applications of computer vision, such as object recognition,
image segmentation, and face detection. According to the concept of translation or space
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invariance, a CNN can identify the same feature in multiple images regardless of where
it occurs in the images [71-73]. In this study, we developed a robust DSCC_Net based on
the CNN model to accurately classify skin cancer diseases. The DSCC_Net model consists
of 5 convolutional blocks, and also includes a Rectified Linear Unit (ReLU) activation
function, 1 dropout layer, 2 dense layers, and a softmax classification layer, as illustrated
in Figure 4. Table 3 provides an overview of the dataset after the up-sampling technique,
while a detailed explanation of the suggested DSCC_Net model for the categorization of
skin cancer with the succeeding layers is presented in Table 4.
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Figure 4. Architecture of proposed DSCC_Net used to classify skin cancer diseases.

Table 3. Image samples of the Skin Cancer dataset are distributed after up-sampling.

No. of Classes Class Name No. of Images
0 BCC 2035
1 MEL 1952
2 MN 2007
3 SCC 2018

Table 4. The total number of parameters utilized in the proposed DSCC_Net model.

Layer Type Output Shape Parameters
Input Layer (None, 150, 150, 3) 0
Block01 (None, 150, 150, 8) 224
Block02 (None, 75,75, 16) 1168
Block03 (None, 37,37, 32) 4640
Block04 (None, 18, 18, 64) 18,496
Block05 (None, 9,9, 128) 73,856
Dropout_1 (None, 4, 4, 128) 0
Flatten (None, 2048) 0
Dense_1 (None, 512) 1,049,088
ReLu (None, 512) 0
Dense_2 (None, 4) 2052
Output: SoftMax (None, 4) 0
Total Parameters: 1,149,524

Trainable Parameters: 1,149,524
Non-Trainable Parameters: 0
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3.4.2. Convolutional Blocks of CNN Model

The convolutional block is the fundamental building component of the presented
work, and each convolutional block contains a convolutional 2D, a ReLU, and a pooling
2D with a max value. The initializer for the kernel layer LecunUniformV?2 is created to
assign layer kernel weights. The gradient-vanishing issue is solved by using the activation
function of ReLU, which also simplifies the process for the network to understand and
carry out its tasks in a timely way.

RGB channels are contained in the input image. Our model’s initial layer is known as
the convolutional layer. This layer initiates the process by applying filters, also known as
the kernel. The kernel’s size is dependent on two values, as illustrated in Equation (1).

Filter Size(FS) = fu X [ 1

where f;, denotes the width of the filter and f, denotes the height of the filter. In our study,
we set the size of the filter to 3, so Equation (1) becomes FS = 3 x 3. Feature identifiers are
another name for these filters, and enable us to understand low-level visual aspects, such
as edges and curves [74].

3.4.3. Flattened Layer

This layer is located among the convolution and dense layers. Tensor data types are
used as inputs for the convolution layers, whereas dense layers demand a one-dimensional
layout. So, the flattened layer was applied to translate the two-dimensional image repre-
sentation into a one-dimensional input, which is presented in Figure 5.

Flatten Layer

Input 15
X
R 25
W'g ‘ 11 Dense Block
l 35
38 1
15§ 25 11
49
35 38 | 49 o o O
10] 6 | 24 o Output Layer
6
Conv2D
24

Figure 5. The fundamental structure of the flattened layer.

3.4.4. Dropout Layer

Our model utilized this layer with a dropout value of 0.2. This value was implemented
in order to prevent the overfitting of our proposed DSCC_Net model [74]. The purpose
of this layer was to switch units on and off to decrease the model’s training time and the
complexity of the model. Consequently, the model learns the relevant features.

3.4.5. Dense Block of Proposed DSCC_Net

In this research, we apply 2 dense blocks that consist of an activation function, which
is explained in the following sections.

ReLU Function

Activation functions, which are mathematical processes, determine whether or not
neural output should be passed on to the next layer. In general, they enable and disable the
network nodes. Many activation functions are used in DL classifiers, but we applied ReLU
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due to its uncomplicated and time-saving computation. The activation of ReLU works
by replacing all negative outcomes with zero. This activation function was used on the
outputs of the convolutional layer.

Dense Layer

The dense layer accepts a single matrix as input and generates output according to
its characteristics. In these layers, images are identified and given a class label. A dense
layer with 4 neurons and a SoftMax activation function is responsible for generating the
model’s final output, which classifies the image into one of the four skin cancer disease
classes: MEL, BCC, SCC, and MN. SoftMax is applied after a few layers; this is a probability-
based activation function in which the total amount of classes represents the number of
neurons [69]. The total number of parameters is 1,149,524, which is split into two groups:
1,149,524 trainable parameters, and zero non-trainable parameters.

3.5. Model Evaluations

A confusion matrix was employed to check the performance of the model. Before
training the model, the dataset was separated into training and test sets. The model was
then evaluated using the test set. We applied a variety of metrics to evaluate the model’s
performance. The following evaluation metrics (see Equations (2)—(5)) are widely employed
to measure the effectiveness of the suggested DSCC_Net for skin cancer detection:

TP+TN

A - 2
Uy = TPy FN+FP+ TN @)
TP
precision — TP
recision TP T P (3)
TP

Precision x Recall
F1 = score =2 x Precision + Recall ©®)

4. Results and Discussion

We compare DSCC_Net to the most recently developed deep networks in the following
section. The comparisons between the suggested DSCC_Net and six baseline deep networks
are discussed in this section.

4.1. Experimental Setup

Keras was used to implement a total of seven models: six baseline models and the
DSCC Net model. In addition, the programming of the approaches that are not directly con-
nected to convolutional networks was achieved in Python. The experiment was achieved
by using a computer running the Windows 10 operating system, equipped with an 11 GB
NVIDIA GPU and 32 GB of RAM.

4.2. Accuracy Compared with Other Models

Using the same dataset and SMOTE Tomek, we compared our suggested and recent
deep neural networks i.e., Vgg-19, ResNet-152, EfficientNet-B0, Vgg-16, Inception-V3, and
MobileNet. We also compared the proposed DSCC_Net before applying the SMOTE Tomek.
The system with SMOTE Tomek provides remarkable results for the proposed model. The
obtained accuracies for the proposed DSCC_Net model with SMOTE Tomek, DSCC_Net
without SMOTE Tomek, Vgg-16, ResNet-152, Vgg-19, MobileNet, EfficientNet-B0, and
Inception-V3 were 94.17%, 83.20%, 91.12%, 89.32%, 91.68%, 92.51%, 89.46%, and 91.82%,
respectively, as illustrated in Table 5. The significant improvement attained by the proposed
DSCC_Net model, applying the SMOTE Tomek, is illustrated in Figure 6.
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Table 5. Performance of the DSCC_Net model compared with baseline algorithms.

Classifiers Accuracy Precision Recall  F1-Score AUC
Vgg-16 91.12%  92.09%  90.43% 91.13% 99.02%
Vgg-19 91.68% 92.23% 90.57% 91.71% 98.14%
MobileNet 92.51% 92.95% 91.40% 92.17% 98.75%
ResNet-152 89.32%  90.73%  88.21% 89.27% 98.74%
EfficientNet-B0 89.46% 90.21% 88.21% 89.31% 98.43%
Inception-V3 91.82% 92.28% 91.12% 91.76% 99.06%
Proposed Model (With SMOTE Tomek)  94.17%  94.28%  93.76% 93.93% 99.43%
Proposed Model (Without o o o o o
SMOTE Tomek) 83.20% 85.01% 80.62% 58.09% 96.65%
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Figure 6. Remarkable accuracy improvement with or without SMOTE Tomek in the proposed model
compared to other baseline deep networks; (a) Vgg-16, (b) Vgg-19, (c) EfficientNet-B0, (d) ResNet-152,
(e) Inception-V3, (f) MobileNet, (g) Proposed Model with SMOTE Tomek, and (h) Proposed Model
without SMOTE Tomek.
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4.3. AUC Comparison with Other Models

As discussed earlier in this research, our suggested model is a deep CNN-based
DSCC_Net model containing multiple units that are particularly efficient in recognizing
various skin cancer classifications. We compared DSCC_Net with five baseline deep
networks to validate our proposed DSCC_Net model. Six baseline models, ResNet-152,
Vgg-19, EfficientNet-B0, Vgg-16, MobileNet and Inception-V3, achieved the AUC values of
98.74%, 98.91%, 98.43%, 99.02%, 98.75% and 99.06% respectively. Figure 7 depicts that the
proposed DSCC_Net with SMOTE Tomek and DSCC_Net without SMOTE Tomek achieved
respective 99.43% and 96.65% AUC values when using the datasets. On the basis of the
previous analysis, we conclud that the suggested model’s AUC results remain superior to
those of other models.
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Figure 7. Results of the proposed DSCC_Net model with and without up-sampling; (a) Vgg-16,
(b) Vgg-19, (c) EfficientNet-B0, (d) ResNet-152, (e) Inception-V3, (f) MobileNet, (g) Proposed Model
with SMOTE Tomek, and (h) Proposed Model without SMOTE Tomek.
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4.4. Compared with Other Models Using Precision

We examined our suggested and existing networks, such as ResNet-152, Vgg-19, Vgg-
16, MobileNet, EfficientNet-B0, and Inception-V3, on the same dataset and balanced it
using SMOTE Tomek. The system with SMOTE Tomek generated remarkable results for the
proposed DSCC_Net. The proposed DSCC_Net with and without SMOTE Tomek attained
precision values of 94.28% and 85.01%, but ResNet-152, Vgg-16, EfficientNet-B0, Vgg-19,
Inception-V3, and MobileNet achieved precision values of 90.73%, 92.09%, 90.12%, 92.23%,
92.28%, and 92.95%, respectively. As a result of this analysis, we found that the suggested
DSCC_Net s precision performance with SMOTE Tomek is superior and more consistent
compared to recent models, as illustrated in Figure 8.
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Figure 8. Precision results of the proposed model, DSCC_Net, and other baseline models; (a) Vgg-16,
(b) Vgg-19, (c) EfficientNet-B0, (d) ResNet-152, (e) Inception-V3, (f) MobileNet, (g) Proposed Model
with SMOTE Tomek, and (h) Proposed Model without SMOTE Tomek.
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4.5. Compared of DSCC_Net against Other Models Using Recall

The model’s ability to identify positive samples was evaluated based on the recall
metric. High recall values indicate that more positive samples were identified. The pro-
posed DSCC_Net model was compared to other baseline deep networks using a recall
curve, as illustrated in Figure 9. The proposed DSCC_Net with and without SMOTE
Tomek, ResNet-152, EfficientNet-B0, Vgg-19, Inception-V3, Vgg-16, and MobileNet attained
the recall values of 93.76%, 80.62%, 88.21%, 88.21%, 90.57%, 91.12%, 90.43% and 91.40%,
respectively. As a result of the above explanation, the proposed method shows remarkable

recall performance.
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Figure 9. The recall analysis measures the proportion of true positive results correctly identified by a
predictive model out of all actual positives; (a) Vgg-16, (b) Vgg-19, (c) EfficientNet-BO0, (d) ResNet-152,
(e) Inception-V3, (f) MobileNet, (g) Proposed Model with SMOTE Tomek, and (h) Proposed Model

without SMOTE Tomek.
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4.6. F1-Score Comparison with Recent Deep Model
The proposed DSCC_Net model with SMOTE Tomek and DSCC_Net without SMOTE

Tomek achieved the F1-score values of 93.93% and 58.09%, respectively. Additionally, the
six baseline models, ResNet-152, EfficientNet-B0, Vgg-19, Inception-V3, MobileNet and
Vgg-16, attained the F1-score values of 89.27%, 89.31%, 91.71%, 91.76%, 92.17%, and 91.13%,
respectively, as illustrated in Figure 10. The suggested DSCC_Net model attained the
highest Fl1-score value with SMOTE Tomek shown in Figure 10.
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Figure 10. The value of the F1-score between the proposed model and six baseline models; (a) Vgg-16,
(b) Vgg-19, (c) EfficientNet-B0, (d) ResNet-152, (e) Inception-V3, (f) MobileNet, (g) Proposed Model
with SMOTE Tomek, and (h) Proposed Model without SMOTE Tomek.
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4.7. Comparison of Proposed Model with Other Models Using Loss

Loss functions are responsible for calculating the numerical difference between the
predicted and actual values. In this study, a categorical cross-entropy method was utilized
to calculate the loss. When the model was trained using up-sampled photos, however, the
results were more remarkable. The proposed DSCC_Net model with and without SMOTE
Tomek attained the loss values of 0.1677% and 0.4332%, whereas ResNet-152, EfficientNet-
B0, Vgg-19, MobileNet, Vgg-16, and Inception-V3 achieved the loss values of 0.2613%,
0.2896%, 0.2353%, 0.2525%, 0.2279 and 0.2189, respectively. Figure 11 shows the major
enhancement in the loss value of the suggested DSCC_Net model with SMOTE Tomek.
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Figure 11. Loss value of the proposed DSCC_Net model and other baseline models; (a) Vgg-16,
(b) Vgg-19, (c) EfficientNet-B0, (d) ResNet-152, (e) Inception-V3, (f) MobileNet, (g) Proposed Model
with SMOTE Tomek, and (h) Proposed Model without SMOTE Tomek.
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4.8. ROC Compared with Recent Model

SMOTE Tomek, can be visible in Figure 12.
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Figure 12. ROC curve comparing the performance of baseline models with the proposed DSCC_Net
model; (a) Vgg-16, (b) Vgg-19, (¢) EfficientNet-B0, (d) ResNet-152, (e) Inception-V3, (f) MobileNet,
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4.9. AU(ROC) Extension for Multi-Class Comparison against Recent Models

Figure 13 shows a comparison between the proposed DSCC_Net model and six base-
line deep models using the ROC curve’s extension. After balancing the dataset by using
the SMOTE Tomek technique, the suggested technique improved significantly as compared
to the six models, which can be seen in Figure 13. The significant impact of the suggested
DSCC_Net model was observed in terms of the AUC for both classes with and without
SMOTE Tomek. The impacted classes include class 0 (BCC), class 1 (MEL), class 2 (MN),
and class 3 (SCC). These enhancements in AUC provide evidence that the feature selection
used by the DSCC_Net is accurate, and the SMOTE Tomek approach is also very useful.
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Figure 13. AU(ROC) curve evaluation with extension for the proposed model and other models;
(a) Vgg-16, (b) Vgg-19, (c) EfficientNet-B0, (d) ResNet-152, (e) Inception-V3, (f) MobileNet, (g) Pro-
posed Model with SMOTE Tomek, and (h) Proposed Model without SMOTE Tomek.
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4.10. Comparison of DSCC_Net with Six Models Using a Confusion Matrix

To validate our suggested DSCC_Net model with a confusion matrix, we compared
it with six models. The use of SMOTE Tomek results in significant improvements for the
DSCC_Net model, as presented in Figure 14.
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Figure 14. Using a confusion matrix to compare the proposed DSCC_Net with other deep net-
works; (a) Vgg-16, (b) Vgg-19, (c) EfficientNet-B0, (d) ResNet-152, (e) Inception-V3, (f) MobileNet,
(g) Proposed Model with SMOTE Tomek, and (h) Proposed Model without SMOTE Tomek.

The proposed method accurately classifies 176 images out of 190 total images in
BCC cases, whereas it misclassifies 10 images as MN, 3 as MEL, and 1 as SCC. In MN
classification, 138 MN images were correctly identified out of 164 total images, while
13 were misidentified as BCC, 9 as MEL images, and 4 as SCC images, as illustrated in
Figure 14. The suggested method accurately identified 178 MEL images out of 179, whereas
it misclassified one image as BCC. The DSCC_Net model correctly identified 187 SCC
images out of 188 total images, while it misidentified one image as MN. In addition,
we employed the Grad-CAM heatmap approach to visually represent the output of our
suggested model. The objective of the heatmap is to show the relevant area of the skin that
the model focuses on. Figure 15 illustrates the heatmap of the DSCC_Net model.
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Figure 15. Grad-CAM evaluation of the proposed DSCC_Net model for skin cancer diseases.

4.11. Comparison of the Proposed Model with State-Of-The-Art

In this section, we compare our proposed DSCC_Net model with previous modern
studies [70-76]. Additionally, the proposed model is directly compared with the results
reported in these [70-76] studies. Table 6 presents a comprehensive analysis of the proposed
DSCC_Net model in terms of many performance evaluation metrics, such as accuracy, recall,
F1-score, and precision, in comparison with the recent state-of-the-art studies.

Table 6. Comparison of the DSCC_Net model with recent state-of-the-art studies.

Ref Year Model Datasets Accuracy Recall Precision F1-Score
[70] 2023 CNN ISIC-2017 92.00%  91.90% 91.65% 91.99%
[71] 2023 Vgg-13 ISIC-2019, Derm-IS 89.57%  90.70% 89.66% 89.65%
[72] 2023 Deep Belief Network HAM-10000 93.00%  92.91% 92.45% 92.65%
[73] 2021 ConvNet ISIC-2018, Derm-IS 86.90%  86.14% 87.47% -
[74] 2022 2D superpixels + RCNN HAM-10000 85.50%  83.40% 84.50% 85.30%
[75] 2021 ResNeXt101 ISIC-2019 88.50%  87.40% 88.10% 88.30%
[76] 2022 SCDNet ISIC-2019 9291%  92.18% 92.19% 92.18%
Ours - DSCC_Net with SMOTE Tomek 151€-2020, Derm-IS, 9417%  9428%  9376%  93.93%

HAM-10000

4.12. Discussions

The identification and categorization of a wide range of skin cancers may be accom-
plished with the use of dermoscopy photographs [32-35]. Our method offers a full view of
a particular site, which enables us to identify the disease, as well as interior areas that have
been infected with it. Dermoscopy is the most reliable [41] and time-effective [52-59] ap-
proach for determining if a lesion is a BCC, MEL, SCC, or MN. A computerized diagnostic
approach is required to identify BCC, MEL, SCC, and MN, since the number of confirmed
cases of deadly skin cancer is continually growing [62]. Dermoscopy images might be able
to automatically differentiate between those who have MEL and those who have other
types of skin cancer, by using methods from the field of DL [64-72]. As a direct result of
this, we developed a DSCC_Net model that is based on DL and is capable of accurately
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diagnosing a wide variety of skin diseases. These diseases include BCC, MEL, SCC, and
MN, and the model enables dermatologists to begin treatment for their patients at an
earlier stage. The three publicly available benchmark datasets (i.e., ISIC 2020, HAM10000,
and DermlIS) were used to evaluate the performance of the proposed DSCC_Net model.
The results of the proposed model were compared with six baseline models: ResNet-152,
Vgg-16, Vgg-19, Inception-V3, EfficientNet-B0, and MobileNet. The obtained image from
datasets is imbalanced as discussed in Table 2. The imbalanced class of the images affected
the performance of the model at the time of training [77-82]. To overcome these issues, we
used the SMOTE Tomek technique to increase the numbers of images in the minority class
of the datasets [49]. According to Figure 6, our proposed DSCC_Net model has received
sufficient training on the four subtypes of skin cancer (BCC, MEL, SCC, and MN), and it can
correctly identify occurrences of infection with these subtypes. Compared to the other six
baseline skin cancer classifiers, our DSCC_Net model performs much better in classifying
skin cancers, as discussed in Table 5. The DSCC_Net model using the SMOTE Tomek tech-
nique obtained an accuracy of 94.17%, regarding the categorization of dermoscopy pictures
of BCC, MEL, SCC, and MN. Additionally, the DSCC_Net model used without SMOTE
Tomek technique achieved an accuracy of 83.20%. On the other hand, the Vgg-16 model
attained an accuracy of 91.12%. Similarly, the Vgg-19 and MobileNet models achieved an
accuracy of 91.68% and 95.51%, respectively. The ResNet-152 model’s performance was
poor in skin cancer classification as compared to all baseline models. Furthermore, we
also provide the GRAD-CAM evaluation of the proposed DSCC_Net model for skin cancer
disease classification as shown in Figure 15.

Table 6 presents the classification performance of the proposed DSCC_Net model with
SOTA classifiers. Zhou et al. [70] proposed a DL model that achieved a classification accu-
racy of 0.92. Qasim et al. [71] designed a novel model, Vgg-13, for skin cancer identification.
They achieved an accuracy of skin cancer detection of 89.57%. A ConvINet net model that
focuses on the binary categorization of skin diseases was provided by Mijwil et al. [73].
This model was based on Inception-V3. By using this model, benign and malignant forms
of skin cancer are distinguished. The multiclassification of skin lesions was performed by
Afza et al. [74], by using 2D superpixels with ResNet-50, and they reached an accuracy of
85.50%. In addition, Khan et al. [75] attained a precision of 88.50% when performing the
multiclassification of skin cancer. When compared to other approaches that are considered
to be SOTA, the DSCC_Net model obtained an impressive accuracy of 94.71%.

5. Conclusions

In this study, the proposed DSCC_Net model, used for identifying the four forms
of skin cancer (BCC, MEL, SCC, and MN), was developed and evaluated. Today, these
skin cancer diseases are rapidly spreading and affect communities globally. Many deaths
have occurred because of improper and slow testing procedures, limited facilities, and the
lack of diagnosis of skin cancer at an early stage. Due to a large number of cases, a rapid
and effective testing procedure is necessary. We proposed a DSCC_Net model to identify
the four types of skin cancer diseases. Each convolutional block of the modified structure
was generated using multiple layers and was applied in order to classify early-stage skin
cancers. The SMOTE Tomek algorithm was used to generate samples that were used to
solve dataset imbalance problems and to maintain a balance in the number of samples for
each class. Grad-CAM displays a heat map of class activation to illustrate the operation of
the CNN layer. Our proposed DSCC_Net model achieved 94.17% accuracy, 93.76% recall,
93.93% F1-score, 94.28% precision, and 99.42% AUC. So, it is concluded that DSCC_Net
model can play a significant role as a supporting hand for the medical professional. The
limitation of the study is that our proposed DSCC_Net model is suitable for only fair-
skinned individuals. Individuals with dark skin were not considered in this study. The
reason is that the publicly available datasets used in this work contain skin cancer images
of fair-toned skin. In the future, we will combine blockchain and federated learning with a
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deep attention module to obtain more favorable results in classifying skin cancer, as well as
skin infections.

Author Contributions: Conceptualization, M.T., A.N. and H.M.; methodology, M.T., A.N. and H.M;
validation, R.A.N,, J.T,, S.-W.L. and H.M.; formal analysis, A.N. and S.-W.L.; investigation, A.N. and
R.A.N.; resources, A.N., ].T. and H.M; data curation, R.A.N.; writing—original draft preparation,
AN., HM; writing—review and editing, A.N., HM. and R.A.N; visualization, J.T., H.M; supervision,
H.M., RAN. and S.-W.L.; funding acquisition, S.-W.L. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by a national research foundation (NRF) grant funded by the
Ministry of Science and ICT (MSIT), South Korea through the Development Research Program
(NRF2021R1I1A2059735 and NRF2022R1G1A1010226).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

World Health Organization Radiation: Ultraviolet (UV) Radiation and Skin Cancer | How Common Is Skin Cancer. Avail-
able online: https:/ /www.who.int/news-room/q-a-detail /radiation-ultraviolet-(uv)-radiation-and-skin-cancer# (accessed on
2 March 2023).

Piccialli, F; Di Somma, V.; Giampaolo, F.; Cuomo, S.; Fortino, G. A survey on deep learning in medicine: Why, how and when?
Inf. Fusion 2021, 66, 111-137. [CrossRef]

Navid, R.; Ashourian, M.; Karimifard, M.; Estrela, V.V.; Loschi, H.]J.; Nascimento, D.D.; Franga, R.P.; Vishnevski, M. Computer-
aided diagnosis of skin cancer: A review. Curr. Med. Imaging 2020, 16, 781-793.

Ahmad, N.; Farooq, M.S,; Khelifi, A.; Abid, A. Malignant melanoma classification using deep learning: Datasets, performance
measurements, challenges and opportunities. IEEE Access 2020, 8, 110575-110597.

O’Gullivan, D.E.; Brenner, D.R.; Demers, P.A.; Villeneuve, PJ.; Friedenreich, C.M.; King, W.D. Indoor tanning and skin cancer in
Canada: A meta-analysis and attributable burden estimation. Cancer Epidemiol. 2019, 59, 1-7. [CrossRef] [PubMed]
Walters-Davies, R. Skin cancer: Types, diagnosis and prevention. Evaluation 2020, 14, 34.

Hodis, E. The Somatic Genetics of Human Melanoma. Ph.D. Thesis, Harvard University, Cambridge, MA, USA, 2018.

Nathan, N.; Hubbard, M.; Nordmann, T.; Sperduto, PW.; Clark, H.B.; Hunt, M. A. Effect of gamma knife radiosurgery and
programmed cell death 1 receptor antagonists on metastatic melanoma. Cureus 2017, 9, €1943.

Ahmad, N.; Anees, T.; Naqvi, R.A.; Loh, W.-K. A comprehensive analysis of recent deep and federated-learning-based method-
ologies for brain tumor diagnosis. J. Pers. Med. 2022, 12, 275.

Rogers, HW.; Weinstock, M.A.S.; Feldman, R.; Coldiron, B.M. Incidence estimate of non-melanoma skin cancer (keratinocyte
carcinomas) in the US population 2012. JAMA Dermatol. 2015, 151, 1081-1086. [CrossRef] [PubMed]

Bomm, L.; Benez, M.D.V.; Maceira, ]. M.P; Succi, I.C.B.; Scotelaro, M.D.E.G. Biopsy guided by dermoscopy in cutaneous pigmented
lesion-case report. An. Bras. Dermatol. 2013, 88, 125-127. [CrossRef] [PubMed]

Kato, J.; Horimoto, K.; Sato, S.; Minowa, T.; Uhara, H. Dermoscopy of melanoma and non-melanoma skin cancers. Front. Med.
2019, 6, 180. [CrossRef]

Haenssle, H.A.; Fink, C.; Schneiderbauer, R.; Toberer, F.; Buhl, T.; Blum, A.; Kalloo, A.; Hadj, H.A.B.; Thomas, L.; Enk, A.; et al.
Reader study level-I and level-II Groups, Man against machine: Diagnostic performance of a deep learning convolutional neural
network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann. Oncol. 2018, 29, 1836-1842. [CrossRef]
Ibrahim, H.; El-Taieb, M.; Ahmed, A.; Hamada, R.; Nada, E. Dermoscopy versus skin biopsy in diagnosis of suspicious skin
lesions. Al-Azhar Assiut Med. J. 2017, 15, 203. [CrossRef]

Duggani, K.; Nath, M.K. A technical review report on deep learning approach for skin cancer detection and segmentation. Data
Anal. Manag. Proc. ICDAM 2021, 54, 87-99.

Carli, P; Quercioli, E.; Sestini, S.; Stante, M.; Ricci, L.; Brunasso, G.; DeGiorgi, V. Patternanalysis, notsimplifiedalgorithms, isthe
most reliable method for teaching dermoscopy for melanoma diagnosis to residents in dermatology. Br. |. Dermatol. 2003, 148,
981-984. [CrossRef] [PubMed]

Carrera, C.; Marchetti, M.A.; Dusza, S.W.; Argenziano, G.; Braun, R.P,; Halpern, A.C.; Jaimes, N.; Kittler, H.].; Malvehy, J.; Menzies,
S.W.; et al. Validity and reliability of dermoscopic criteria used to differentiate nevi from melanoma: A web-based international
dermoscopy society study. JAMA Dermatol. 2016, 152, 798-806. [CrossRef] [PubMed]

Celebi, M.E; Kingravi, H.A.; Uddin, B.; Iyatomi, H.; Aslandogan, Y.A.; Stoecker, W.V.; Moss, R.H. A methodological approach to
the classification of dermoscopy images. Comput. Med. Imaging Graph. 2007, 31, 362-373. [CrossRef]


https://www.who.int/news-room/q-a-detail/radiation-ultraviolet-(uv)-radiation-and-skin-cancer#
http://doi.org/10.1016/j.inffus.2020.09.006
http://doi.org/10.1016/j.canep.2019.01.004
http://www.ncbi.nlm.nih.gov/pubmed/30639817
http://doi.org/10.1001/jamadermatol.2015.1187
http://www.ncbi.nlm.nih.gov/pubmed/25928283
http://doi.org/10.1590/S0365-05962013000100020
http://www.ncbi.nlm.nih.gov/pubmed/23539018
http://doi.org/10.3389/fmed.2019.00180
http://doi.org/10.1093/annonc/mdy166
http://doi.org/10.4103/AZMJ.AZMJ_67_17
http://doi.org/10.1046/j.1365-2133.2003.05023.x
http://www.ncbi.nlm.nih.gov/pubmed/12786829
http://doi.org/10.1001/jamadermatol.2016.0624
http://www.ncbi.nlm.nih.gov/pubmed/27074267
http://doi.org/10.1016/j.compmedimag.2007.01.003

Cancers 2023, 15,2179 26 of 28

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

Maglogiannis, I.; Doukas, C.N. Overview of advanced computer vision systems for skin lesions characterization. IEEE Trans. Inf.
Technol. Biomed. 2009, 13, 721-733. [CrossRef]

Celebi, M.E.; Iyatomi, H.; Stoecker, W.V.; Moss, R.H.; Rabinovitz, H.S.; Argenziano, G.; Soyer, H.P. Automatic detection of
blue-white veil and related structures in dermoscopy images. Comput. Med. Imaging Graph. 2008, 32, 670-677. [CrossRef]
[PubMed]

Hassaan, M.; Anees, T.; Din, M.; Ahmad, N. CDC_Net: Multi-classification convolutional neural network model for detection
of COVID-19, pneumothorax, pneumonia, lung Cancer, and tuberculosis using chest X-rays. Multimed. Tools Appl. 2022, 82,
13855-13880.

Lu, S.; Lu, Z.; Zhang, Y.D. Pathological brain detection based on AlexNet and transfer learning. J. Comput. Sci. 2019, 30, 41-47.
[CrossRef]

Ahmad, N.; Anees, T.; Ahmed, K.T.; Naqvi, R.A.; Ahmad, S.; Whangbo, T. Deep learned vectors’ formation using auto-correlation,
scaling, and derivations with CNN for complex and huge image retrieval. Complex Intell. Syst. 2022, 4, 1-23.

Sajjad, M.; Khan, S.; Muhammad, K.; Wu, W.; Ullah, A ; Baik, S.W. Multi-grade brain tumor classification using deep CNN with
extensive data augmentation. J. Comput. Sci. 2019, 30, 174-182. [CrossRef]

Alom, M.Z.; Aspiras, T.; Taha, T.M.; Asari, V.K. Skin cancer segmentation and classification with improved deep convolutional
neural network. In Medical Imaging 2020: Imaging Informatics for Healthcare, Research, and Applications; International Society for
Optics and Photonics: Bellingham, WA, USA, 2020; Volume 11318, p. 1131814.

Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, HM.; Thrun, S. Dermatologist-level classification of skin cancer
with deep neural networks. Nature 2017, 542, 115-118. [CrossRef]

Polat, K.; Koc, K.O. Detection of skin diseases from dermoscopy image using the combination of convolutional neural network
and one-versus-all. J. Artif. Intell. Syst. 2020, 2, 80-97. [CrossRef]

Ratul, M.A.R.; Mozaffari, M.-H.; Lee, W.S.; Parimbelli, E. Skin lesions classification using deep learning based on dilated
convolution. BioRxiv 2020, 860700. [CrossRef]

Ranpreet, K.; GholamHosseini, H.; Sinha, R.; Lindén, M. Melanoma classification using a novel deep convolutional neural
network with dermoscopic images. Sensors 2022, 22, 1134.

Javed, R; Ishfaq, M.; Ali, G.; Saeed, M.R.; Hussain, M.; Alkhalifah, T.; Alturise, F.; Samand, N. Skin cancer disease detection using
transfer learning technique. Appl. Sci. 2022, 12, 5714.

Shahin, A.; Miah, S.; Haque, ].; Rahman, M.; Islam, K. An enhanced technique of skin cancer classification using deep convolutional
neural network with transfer learning models. Mach. Learn. Appl. 2021, 5, 100036.

Tanzila, S.; Khan, M.A.; Rehman, A.; Marie-Sainte, S.L. Region extraction and classification of skin cancer: A heterogeneous
framework of deep CNN features fusion and reduction. J. Med. Syst. 2019, 43, 289.

Hiam, A.; Qasmieh, I.A.; Alqudah, A.M.; Alhammouri, S.; Alawneh, E.; Abughazaleh, A.; Hasayen, F. The melanoma skin
cancer detection and classification using support vector machine. In Proceedings of the 2017 IEEE Jordan Conference on Applied
Electrical Engineering and Computing Technologies (AEECT), Amman, Jordania, 11-13 October 2017; pp. 1-5.

Hardik, N.; Singh, S.P. Deep learning solutions for skin cancer detection and diagnosis. Mach. Learn. Health Care Perspect. Mach.
Learn. Healthc. 2020, 13, 159-182.

Duggani, K.; Venugopal, V.; Nath, M.K.; Mishra, M. Hybrid convolutional neural networks with SVM classifier for classification
of skin cancer. Biomed. Eng. Adv. 2023, 5, 100069.

Gilani, Q.; Syed, S.T.; Umair, M.; Marques, O. Skin Cancer Classification Using Deep Spiking Neural Network. J. Digit. Imaging
2023, 1-11.

Ioannis, K.; Perikos, I.; Hatzilygeroudis, I.; Virvou, M. Deep learning methods for accurate skin cancer recognition and mobile
application. Electronics 2022, 11, 1294.

Ghadah, A.; Gouda, W.; Humayun, M.; Sama, N.U. Melanoma Detection Using Deep Learning-Based Classifications. Healthcare
2022, 10, 2481.

Khalil, A.; Turki, T. Automatic Classification of Melanoma Skin Cancer with Deep Convolutional Neural Networks. Al 2022, 3,
512-525.

Karar, A.; Shaikh, Z.A.; Khan, A.A.; Laghari, A.A. Multiclass skin cancer classification using EfficientNets—A first step towards
preventing skin cancer. Neurosci. Inform. 2022, 2, 100034. [CrossRef]

Naseer, B.M.; Muta, K.; Malik, M.I; Siddiqui, S.A.; Braun, S.A.; Homey, B.; Dengel, A.; Ahmed, S. Computer-aided diagnosis of
skin diseases using deep neural networks. Appl. Sci. 2020, 10, 2488.

Adi, N.A.; Slamet, L.S. Skins cancer identification system of HAMI0000 skin cancer dataset using convolutional neural network.
AIP Conf. Proc. 2019, 2202, 020039.

Moldovan, D. Transfer learning based method for two-step skin cancer images classification. In Proceedings of the 2019 E-Health
and Bioengineering Conference (EHB), Iasi, Romania, 21-23 November 2019; pp. 1-4.

Le Duyen, N.T,; Hieu, X.L.; Lua, T.N.; Hoan, T.N. Transfer learning with class-weighted and focal loss function for automatic skin
cancer classification. arXiv 2020, arXiv:2009.05977.

Saksham, B.; Gomekar, A. Deep learning diagnosis of pigmented skin lesions. In Proceedings of the 2019 10th International
Conference on Computing, Communication and Networking Technologies ICCCNT), Kanpur, India, 6-8 July 2019; pp. 1-6.


http://doi.org/10.1109/TITB.2009.2017529
http://doi.org/10.1016/j.compmedimag.2008.08.003
http://www.ncbi.nlm.nih.gov/pubmed/18804955
http://doi.org/10.1016/j.jocs.2018.11.008
http://doi.org/10.1016/j.jocs.2018.12.003
http://doi.org/10.1038/nature21056
http://doi.org/10.33969/AIS.2020.21006
http://doi.org/10.1101/860700
http://doi.org/10.1016/j.neuri.2021.100034

Cancers 2023, 15,2179 27 of 28

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.
71.

Emrah, C.; Zengin, K. Classification of skin lesions in dermatoscopic images with deep convolution network. Avrupa Bilim Ve
Teknol. Derg. 2019, 6, 309-318.

Hasan, M.; Barman, S.D.; Islam, S.; Reza, A.W. Skin cancer detection using convolutional neural network. In Proceedings of the
2019 5th International Conference on Computing and Artificial Intelligence, Bali, Indonesia, 19-22 April 2019; pp. 254-258.
Tomas, M.; Baji¢, B.; Yildirim, S.; Hardeberg, J.Y.; Lindblad, J.; Sladoje, N. Ensemble of convolutional neural networks for
dermoscopic images classification. arXiv 2018, arXiv:1808.05071.

Lopez; Romero, A.; Giro-i-Nieto, X.; Burdick, J.; Marques, O. Skin lesion classification from dermoscopic images using deep
learning techniques. In Proceedings of the 2017 13th IASTED International Conference on Biomedical Engineering (BioMed),
Innsbruck, Austria, 20-21 February 2017; pp. 49-54.

Jeremy, K.; BenTaieb, A.; Hamarneh, G. Deep features to classify skin lesions. In Proceedings of the 2016 IEEE 13th International
Symposium on Biomedical Imaging (ISBI), Prague, Czech Republic, 13-16 April 2016; pp. 1397-1400.

Noel, C.; Cai, J.; Abedini, M.; Garnavi, R.; Halpern, A.; Smith, J.R. Deep learning, sparse coding, and SVM for melanoma
recognition in dermoscopy images. In Proceedings of the Machine Learning in Medical Imaging: 6th International Workshop,
MLMI 2015, Held in Conjunction with MICCAI 2015, Munich, Germany, 5 October 2015; pp. 118-126.

Chadaga, K.; Prabhu, S.; Sampathila, N.; Chadaga, R.; Sengupta, S. Predicting cervical cancer biopsy results using demographic
and epidemiological parameters: A custom stacked ensemble machine learning approach. Cogent Eng. 2022, 9, 2143040. [CrossRef]
Sampathila, N.; Chadaga, K.; Goswami, N.; Chadaga, R.P; Pandya, M.; Prabhu, S.; Bairy, M.G.; Katta, S.S.; Bhat, D.; Upadya, S.P.
Customized Deep Learning Classifier for Detection of Acute Lymphoblastic Leukemia Using Blood Smear Images. Healthcare
2022, 10, 1812. [CrossRef] [PubMed]

Krishnadas, P; Chadaga, K.; Sampathila, N.; Rao, S.; Prabhu, S. Classification of Malaria Using Object Detection Models.
Informatics 2022, 9, 76. [CrossRef]

Acharya, V.; Dhiman, G.; Prakasha, K.; Bahadur, P.; Choraria, A.; Prabhu, S.; Chadaga, K.; Viriyasitavat, W.; Kautish, S. Al-assisted
tuberculosis detection and classification from chest X-rays using a deep learning normalization-free network model. Comput.
Intell. Neurosci. 2022, 2022, 2399428. [CrossRef]

Khanna, V.V; Chadaga, K.; Sampathila, N.; Prabhu, S.; Bhandage, V.; Hegde, G.K. A Distinctive Explainable Machine Learning
Framework for Detection of Polycystic Ovary Syndrome. Appl. Syst. Innov. 2023, 6, 32. [CrossRef]

Imran, I.; Younus, M.; Walayat, K.; Kakar, M.U.; Ma, J. Automated multi-class classification of skin lesions through deep
convolutional neural network with dermoscopic images. Comput. Med. Imaging Graph. 2021, 88, 101843.

WHO. Gastrointestinal Cancer. 2020. Available online: https://www.who.int/news-room/fact-sheets/detail /cancer (accessed
on 2 March 2023).

Yogapriya, J.; Venkatesan Chandran, M.G.; Sumithra, P.; Anitha, P.; Jenopaul, C.; Dhas, S.G. Gastrointestinal tract disease
classification from wireless endoscopy images using pretrained deep learning model. Comput. Math. Methods Med. 2021, 2021,
5940433. [CrossRef] [PubMed]

Laith, A.; Fadhel, M.A.; Al-Shamma, O.; Zhang, J.; Santamaria, J.; Duan, Y.; Oleiwi, S.R. Towards a better understanding of
transfer learning for medical imaging: A case study. Appl. Sci. 2020, 10, 4523.

Yixuan, Y.; Li, B.; Meng, M.Q.-H. Bleeding frame and region detection in the wireless capsule endoscopy video. IEEE |. Biomed.
Health Inform. 2015, 20, 624-630.

Naveen, S.; Zverev, V.I; Keller, H,; Pane, S.; Egolf, PW.; Nelson, B.J.; Tishin, A.M. Magnetically guided capsule endoscopy. Med.
Phys. 2017, 44, e91-e111.

Benjamin, J.S.; Ferdinand, J.R.; Clatworthy, M.R. Using single-cell technologies to map the human immune system—Implications
for nephrology. Nat. Rev. Nephrol. 2020, 16, 112-128.

Hui, H.; Wang, W.-Y.; Mao, B.-H. Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning. In
Proceedings of the Advances in Intelligent Computing: International Conference on Intelligent Computing, ICIC 2005, Hefei,
China, 23-26 August 2005; pp. 878-887.

Vasileios, C.; Tsiligiri, A.; Hadjileontiadis, L.J.; Liatsos, C.N.; Mavrogiannis, C.C.; Sergiadis, G.D. Ulcer detection in wireless
capsule endoscopy images using bidimensional nonlinear analysis. In Proceedings of the XII Mediterranean Conference on
Medical and Biological Engineering and Computing 2010, Chalkidiki, Greece, 27-30 May 2010; pp. 236—239.

Ayidzoe, A.; Mighty; Yu, Y.; Mensah, PK; Cai, J.; Adu, K.; Tang, Y. Gabor capsule network with preprocessing blocks for the
recognition of complex images. Mach. Vis. Appl. 2021, 32, 91. [CrossRef]

Mohapatra, S.; Nayak, J.; Mishra, M.; Pati, G.K.; Naik, B.; Swarnkar, T. Wavelet transform and deep convolutional neural
network-based smart healthcare system for gastrointestinal disease detection. Interdiscip. Sci. Comput. Life Sci. 2021, 13, 212-228.
[CrossRef] [PubMed]

The ISIC 2020 Challenge Dataset. Available online: https://challenge2020.isic-archive.com/ (accessed on 2 March 2023).
Philipp, T.; Rosendahl, C.; Kittler, H. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common
pigmented skin lesions. Sci. Data 2018, 5, 180161.

Dermtology Information System. Available online: http://www.dermis.net (accessed on 2 March 2023).

Sen, W.; Xing, Y.; Zhang, L.; Gao, H.; Zhang, H. Deep convolutional neural network for ulcer recognition in wireless capsule
endoscopy: Experimental feasibility and optimization. Comput. Math. Methods Med. 2019, 2019, 7546215.


http://doi.org/10.1080/23311916.2022.2143040
http://doi.org/10.3390/healthcare10101812
http://www.ncbi.nlm.nih.gov/pubmed/36292259
http://doi.org/10.3390/informatics9040076
http://doi.org/10.1155/2022/2399428
http://doi.org/10.3390/asi6020032
https://www.who.int/news-room/fact-sheets/detail/cancer
http://doi.org/10.1155/2021/5940433
http://www.ncbi.nlm.nih.gov/pubmed/34545292
http://doi.org/10.1007/s00138-021-01221-6
http://doi.org/10.1007/s12539-021-00417-8
http://www.ncbi.nlm.nih.gov/pubmed/33566337
https://challenge2020.isic-archive.com/
http://www.dermis.net

Cancers 2023, 15,2179 28 of 28

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

Nature. Olympus. The Endocapsule 10 System. Olympus Homepage. 2021. Available online: https://www.olympus-europa.
com/medical/en/Products--and--Solutions /Products /Product/ENDOCAPSULE-10-System.html (accessed on 2 March 2023).
Fushuan, W.; David, A K. A genetic algorithm based method for bidding strategy coordination in energy and spinning reserve
markets. Artif. Intell. Eng. 2001, 15, 71-79.

Hassaan, M.; Farooq, M.S.; Khelifi, A.; Abid, A.; Qureshi, ].N.; Hussain, M. A comparison of transfer learning performance versus
health experts in disease diagnosis from medical imaging. IEEE Access 2020, 8, 139367-139386.

Ling, W.; Wang, X.; Fu, J.; Zhen, L. A Novel Probability Binary Particle Swarm Optimization Algorithm and its Application.
J. Softw. 2008, 3, 28-35.

Yufei, Z.; Koyuncu, C.; Lu, C.; Grobholz, R.; Katz, I.; Madabhushi, A.; Janowczyk, A. Multi-site cross-organ calibrated deep
learning (MuSCID): Automated diagnosis of non-melanoma skin cancer. Med. Image Anal. 2023, 84, 102702.

Alam, T.M.; Shaukat, K.; Khan, W.A.; Hameed, I.A.; Almuqren, L.A.; Raza, M.A.; Aslam, M.; Luo, S. An Efficient Deep
Learning-Based Skin Cancer Classifier for an Imbalanced Dataset. Diagnostics 2022, 12, 2115. [CrossRef] [PubMed]

Manash, E.B.K.; Suhasini, A.; Satyala, N. Intelligent skin cancer diagnosis using adaptive k-means segmentation and deep
learning models. Concurr. Comput. Pract. Exp. 2023, 35, €7546.

Mijwil, M.M. Skin cancer disease images classification using deep learning solutions. Multimed. Tools Appl. 2021, 80, 26255-26271.
[CrossRef]

Farhat, A.; Sharif, M.; Mittal, M.; Khan, M.A.; Hemanth, D.]. A hierarchical three-step superpixels and deep learning framework
for skin lesion classification. Methods 2022, 202, 88-102.

Khan, A.M.; Akram, T.; Zhang, Y.-D.; Sharif, M. Attributes based skin lesion detection and recognition: A mask RCNN and
transfer learning-based deep learning framework. Pattern Recognit. Lett. 2021, 143, 58-66. [CrossRef]

Naeem, A.; Anees, T.; Fiza, M.; Naqvi, R.A.; Lee, S.-W. SCDNet: A Deep Learning-Based Framework for the Multiclassification of
Skin Cancer Using Dermoscopy Images. Sensors 2022, 22, 5652. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://www.olympus-europa.com/medical/en/Products--and--Solutions/Products/Product/ENDOCAPSULE-10-System.html
https://www.olympus-europa.com/medical/en/Products--and--Solutions/Products/Product/ENDOCAPSULE-10-System.html
http://doi.org/10.3390/diagnostics12092115
http://www.ncbi.nlm.nih.gov/pubmed/36140516
http://doi.org/10.1007/s11042-021-10952-7
http://doi.org/10.1016/j.patrec.2020.12.015
http://doi.org/10.3390/s22155652

	Introduction 
	Literature Review 
	Materials and Methods 
	Proposed Study Flow for the Diagnosis of Skin Cancer 
	Dataset Description 
	Using SMOTE Tomek to Balance Dataset 
	Proposed Model 
	Structure of the Proposed DSCC_Net 
	Convolutional Blocks of CNN Model 
	Flattened Layer 
	Dropout Layer 
	Dense Block of Proposed DSCC_Net 

	Model Evaluations 

	Results and Discussion 
	Experimental Setup 
	Accuracy Compared with Other Models 
	AUC Comparison with Other Models 
	Compared with Other Models Using Precision 
	Compared of DSCC_Net against Other Models Using Recall 
	F1-Score Comparison with Recent Deep Model 
	Comparison of Proposed Model with Other Models Using Loss 
	ROC Compared with Recent Model 
	AU(ROC) Extension for Multi-Class Comparison against Recent Models 
	Comparison of DSCC_Net with Six Models Using a Confusion Matrix 
	Comparison of the Proposed Model with State-Of-The-Art 
	Discussions 

	Conclusions 
	References

