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Simple Summary: Hodgkin lymphoma is the most common malignancy of the lymphatic system,
usually affecting young people and with favorable response to treatment. Tailored treatment is
important in this patient population to achieve good therapy response while not exposing them to
higher treatment related toxicity. These patients undergone PET/CT studies at baseline for staging
as part of their workup. PET/CT is an hybrid modality including morphological and molecular
images and most of the Hodgkin lymphomas are radiotracer avid. Radiomics is a new field analyzing
features within the images itself which are not visible to the naked eye. Our hypothesis was that some
radiomics features in the PET or CT modality when combined with clinical variables (laboratory, type
of tumor, etc.) may help in prediction of how patients would respond to therapy, risk of relapse and
if they might need to have additional therapies.

Abstract: Purpose: The aim of the study is to evaluate the prognostic value of a joint evaluation of PET
and CT radiomics combined with standard clinical parameters in patients with HL. Methods: Overall,
88 patients (42 female and 46 male) with a median age of 43.3 (range 21–85 years) were included.
Textural analysis of the PET/CT images was performed using freely available software (LIFE X).
65 radiomic features (RF) were evaluated. Univariate and multivariate models were used to determine
the value of clinical characteristics and FDG PET/CT radiomics in outcome prediction. In addition,
a binary logistic regression model was used to determine potential predictors for radiotherapy
treatment and odds ratios (OR), with 95% confidence intervals (CI) reported. Features relevant to
survival outcomes were assessed using Cox proportional hazards to calculate hazard ratios with
95% CI. Results: albumin (p = 0.034) + ALP (p = 0.028) + CT radiomic feature GLRLM GLNU mean
(p = 0.012) (Area under the curve (AUC): 95% CI (86.9; 100.0)—Brier score: 3.9, 95% CI (0.1; 7.8)
remained significant independent predictors for PFS outcome. PET-SHAPE Sphericity (p = 0.033); CT
grey-level zone length matrix with high gray-level zone emphasis (GLZLM SZHGE mean (p = 0.028));
PARAMS XSpatial Resampling (p = 0.0091) as well as hemoglobin results (p = 0.016) remained as
independent factors in the final model for a binary outcome as predictors of the need for radiotherapy
(AUC = 0.79). Conclusion: We evaluated the value of baseline clinical parameters as well as combined
PET and CT radiomics in HL patients for survival and the prediction of the need for radiotherapy
treatment. We found that different combinations of all three factors/features were independently
predictive of the here evaluated endpoints.
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1. Introduction

Hodgkin lymphoma (HL) is one of the most common malignancies involving the
lymphatic system. The 5-year survival rate for all people with Hodgkin lymphoma is high,
with an overall rate of around 87% [1].

Given the bimodal peak incidence with high rates of presentation at a young age,
an individualized, risk-adapted therapy is desirable to maintain high cure rates while
minimizing treatment-related toxicity [2,3].

Correct identification of predictive biomarkers that correlate with poor therapy re-
sponse and an overall poor prognosis is essential for a personalized therapy approach,
which is crucial to select patients that would benefit from an initial more aggressive therapy
while avoiding overtreatment in patients with a high likelihood of a good prognosis [4–7].

Molecular imaging with clinical standard positron emission tomography (PET)/
computed tomography (CT) using the radiopharmaceutical 18F-fluoro-deoxy-glucose (FDG)
is the main imaging procedure for baseline staging of lymphoma, interim response assess-
ment, and evaluation of residual disease in many jurisdictions worldwide [8].

Standardized uptake value (SUV) obtained from FDG PET/CT scans is the most
widely used parameter for lesion depiction and characterization, and it provides a reliable
assessment of tumor activity, tumor aggressiveness, and response to treatment [9].

However, SUV is not reflective of the underlying spatial distribution of tracer activity
within a tumor itself, which can be particularly heterogeneous in lymphoma [10]. The
unequal distribution of tracer activity within a tumor on FDG PET/CT is a manifestation
of this ‘intra-tumor heterogeneity’, which can be measured by analyzing the variation in
the spatial arrangements of voxel intensities [11].

In recent years, there has been increasing interest in radiomics, the science of extracting
and analyzing quantitative and mineable features from standard-of-care biomedical images
to create texture analysis of cross-sectional images (CT, MRI, and PET), which may provide
detailed information of the underlying pathophysiology. Radiomics features of a tumor
may provide additional information regarding tumoral biology and behavior [12–16].

Numerous studies have investigated intra-tumor heterogeneity on PET/CT in patients
with brain, head, neck, thyroid, lung, breast, esophagus, pancreas, colon, and cervix
neoplasms, as well as in patients with sarcomas and lymphomas [17–21].

Current clinical lymphoma biomarkers incorporate cellular and molecular data to
classify specific disease subtypes and predict clinical behavior [22].

The association between intra-tumor image-based heterogeneity and biological het-
erogeneity has been shown to correlate with clinical outcomes such as treatment response
and survival in a variety of tumor types, including lymphoma. This suggests that radiomic
biomarkers can be developed and cross-referenced with established clinical cellular and
molecular biomarkers to better predict outcomes and influence evidence-based clinical
decision-making in patients with lymphoma [22–30].

This study aims to evaluate the prognostic value of joint PET and CT radiomics
combined with standard clinical parameters in patients with HL. We hypothesize that some
radiomic features within the baseline PET/CT may predict survival outcomes.

2. Materials and Methods
2.1. Study Cohort

In this institutional review board-approved retrospective study, 88 patients diagnosed
and treated in a tertiary referral center with HL from September 2012 to June 2016 were
evaluated. Given the retrospective nature of the analysis, consent was waived.

All patients had complete clinical records, including pathology reports from either
nodal or extra-nodal biopsies, descriptions of sites of involvement, presence of bulky
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disease, Ann Arbor Stage, and B symptoms. Furthermore, all standard of care bloodwork,
systemic treatment planned and received, as well as the provision of radiotherapy treatment
along with response assessment for each line of therapy, were recorded. Follow-up times
and progression-free survival were also registered.

Bulky disease was defined as more than 10 cm in any diameter.
Complete metabolic response (CMR) was defined as a disease at the end of therapy

PET/CT below the Deauville score criteria of 4 [31–37].

2.2. Imaging Acquisition
18F FDG PET/CT was performed in these patients as a component of baseline staging.

Images were obtained according to our institutional protocol, as follows: [23]. PET was
performed on a Siemens mCT40 PET/CT scanner (Siemens Healthcare). Patients were
positioned supine with their arms outside the region of interest. Images were obtained from
the top of the skull to the upper thighs. Iodinated oral contrast material was administered
for bowel opacification; no intravenous iodinated contrast material was used. Patients were
asked to avoid exercise for 24 h and fast for 6 h before the examination. Patients received
an IV injection of 5 MBq/kg (a range of 250–550 MBq) of FDG.

Overall, 5–9 bed positions were obtained, depending on patient height, with an
acquisition time of 2–3 min per bed position. CT parameters were: 120 kV; 3.0 mm slice
width; 2.0 mm collimation; 0.8 sec rotation time; 8.4 mm feed/rotation. A PET emission scan
using time of flight with scatter correction was obtained, covering the identical transverse
field of view. The PET parameters were as follows: image size: 2.6 pixels; slice: 3.27; and a
5-mm full width at half maximum (FWHM) Gaussian filter type.

2.3. Textural Analysis

Textural analysis of the PET/CT images was performed using the freely available
software LIFE X (lifexsoft.org version 6.0 May 2020) via the quantitation of various ra-
diomic features based on the spatial arrangement and variation of pixel intensities within
a defined volume of interest [38]. The radiomic features were extracted from the seg-
mented volumes in accordance with the image biomarker standardization initiative (IBSI)
guidelines. Primary contour on FDG-avid nodal and extra-nodal lesions was performed
semi-automatically by the software (with minor manual correction when needed) using
a thresholding method to define each volume of interest (VOI) by two radiologists with
>5 years of experience (YE and CO) and supervised by a senior radiologist with >10 years
of experience (PVH).

PET volumes of interest (VOI) were defined based on (a) background thresholds,
(b) peak thresholds, (c) thresholds at 40%, and (d) thresholds at 70% of the SUVmax PET
VOI [26].

Individual lesions were measured, with a maximum of two per organ when multiple
as per RECIST guidelines [39,40] and then labeled as nodal or extra-nodal involvement for
each specific site (Figure 1). Lesions smaller than 64 voxels were excluded since they did
not fulfill the minimum size criteria for feature extraction by the radiomics software.
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Figure 1. PET contouring using LifeX software of an 18-year-old male patient with Stage I Hodgkin 
Lymphoma. 
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Figure 1. PET contouring using LifeX software of an 18-year-old male patient with Stage I
Hodgkin Lymphoma.

Since a thresholding method is not available for the CT component, the contours for
the CT-derived volume of interest were performed manually, slice-by-slice, to cover the
entire tumor volume as previously described in the literature.

Sixty-five radiomic features (RF) were obtained by the software, including conven-
tional metrics features reporting the mean, median, maximum, and minimum values of the
voxel intensities on the image; size and shape histogram-based features such as volume,
compacity, and sphericity, including their asymmetry (skewness), flatness (kurtosis), uni-
formity, and randomness; and textural features (such as GLCM (Gray-Level Co-occurrence
Matrix), GLRLM (Grey-Level Run Length Matrix), NGLDM (Neighborhood Grey-Level
Different Matrix), GLZLM (Grey-Level Zone Length Matrix).

2.4. Statistical Analysis

In this study, two main outcomes were considered. First, Progression Free Survival
(PFS) is defined from the date of diagnosis to the date of first progression (or relapse) or
date of death or last follow-up. Events are progression or death. A second endpoint named
radiotherapy outcome is defined as the evaluation of whether radiomics at baseline PET
can predict the need for radiotherapy after the completion of chemotherapy. The latter
endpoint is a binary outcome, where those who received radiation are assigned a value
of 1, while those who did not receive radiation are assigned a value of 0.

The characteristics of patients were presented as means and standard deviations for
continuous variables and as frequencies and percentages for categorical variables. Univari-
ate and multivariate models were used to determine the role of baseline demographics,
clinical and laboratory characteristics, and FDG PET/CT radiomics in predicting the out-
come of patients with lymphoma. A binary logistic regression model was used to determine
potential risk factors for radiotherapy outcomes and the odds ratios (OR) and 95% confi-
dence intervals (CI) were reported. The Cox proportional hazards regression, on the other
hand, was used to determine PFS outcome factors and to calculate hazard ratios (HR) with
95% CI. The initial selection of informative variables for creating the best prediction models
was accomplished through univariate analysis and repeated 10-fold cross-validation. Cross-
validation was applied to all classes of baseline demographics, clinical, and FDG PET/CT
radiomics variables to compensate for the lack of a validating cohort and to decrease the
possibility of over-fitting the final model. In both logistic and Cox models, variables with
a p-value of less than 0.10 in the univariate analysis were considered for inclusion in the
multivariate analysis, and variables with a p-value of less than 0.05 were retained in the final
model considering the backward elimination method. Pearson correlation is calculated to
check the correlation between clinical, PET, and CT radiomic factors. In addition, predictors
with high variance inflation factors are excluded from the models to avoid multicollinearity
caused by correlated predictors. The average Brier score and the area under the receiver
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operating characteristic curve (AUC), which indicates the predictive accuracy of a model,
were used to determine if the CT and PET variables would improve predictive accuracy
over the demographic and clinical risk factors. All statistical analysis was performed in R
(version 3.6.3, R Foundation for Statistical Computing, https://www.R-project.org/ May
2021).

3. Results
3.1. Study Population

Overall, 88 patients, 42 women (48%) and 46 men (52%), with a median age of 43.3
(range 21–85 years), were included.

Initial curative treatment was intended for all the patients. Combined doxorubicin
+ bleomycin + vinblastine + dacarbazine (ABVD) was the initial therapy of choice in 91%
(n = 79) of patients, with 62% (n = 54/88) receiving 6 cycles and 94% of them (n = 82/88)
completing therapy as initially planned at tumor boards. Of those, 84% (n = 72/88)
achieved CMR.

Overall, 48% (n = 43/88) underwent additional radiotherapy for residual FDG-avid
disease or due to initial bulky, disease achieving a complete metabolic response in 95%
(n = 41/43).

At a median follow-up of 33.9 months (range 6–65), response to treatment was com-
plete response (CR) in 88% of patients (n = 76), progressive disease (PD) in 8% of patients
(n = 7), partial response (PR) in 2% of patients (n = 2), stable disease (SD) in 1% of patients
(n = 1) and not evaluated in 2% of patients (n = 2) because of loss of follow-up. There were
10 adverse events during the follow-up period (defined as death, progression based on
follow-up CT or PET/CT, or relapse), corresponding to 11.4%.

A summary of the patient population demographics, clinical information, and labora-
tory results is presented in Tables 1 and 2, respectively.

Table 1. Summary of patient population characteristics.

Population Age Years (Range)

88 patients 43.3 (21–85)

Distribution n (%)

Female 42 (48)
Male 46 (52)

Pathology n (%)

Classical Hodgkin’s lymphoma 16 (18)
Mixed cellularity classical Hodgkin lymphoma 5 (6)

Nodular lymphocyte predominant Hodgkin lymphoma 11 (12)
Nodular sclerosis classical Hodgkin lymphoma 56 (64)

Disease location n (%)

Nodal disease 87 (98)
Extranodal disease 56 (63)
Bulky presentation 5 (5)

Overall stage n (%)

Stage IA 5 (6)
Stage IIA 34 (39)
Stage IIB 8 (9)

Stage IIIA 14 (16)
Stage IIIB 4 (5)
Stage IVA 10 (11)
Stage IVB 13 (15)

https://www.R-project.org/
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Table 1. Cont.

Population Age Years (Range)

Presence of B-symptoms 25 (28)

Chemotherapy regimen n (%)

ABVE-PC 2 (2)
CT−A−AVD 1(1)
CT−A+AVD 4 (5)
LY−ABVD 79 (91)

OEPA/COPDAC 1 (1)
Missing info 1

Number of chemotherapy cycles n (%)

1 1 (1)
2 8 (9)
3 1 (1)
4 19 (22)
5 1 (1)
6 54 (62)
7 3 (3)

Missing 1

Completed chemotherapy as planned n (%)

No 4 (5)
Yes 83 (95)

Missing 1

Response to chemotherapy n (%)

Complete response (CR) 72 (84)
Not evaluated (NE) 1 (1)

Progressive disease (PD) 5 (6)
Partial Response (PR) 7 (8)

Stable disease (SD) 1 (1)
Missing 2

Radiotherapy treatment n (%)

Yes 42 (47)
No 46 (53)

Radiotherapy dose Gy (range)

Mean 2869.6 (482.5)
Median 3000 (2000, 4000)

Response assessment after radiotherapy n (%)

CR 41 (95)
PD 1 (2)
PR 0
ST 0

3.2. Univariate Analysis

The statistically significant results of the univariable Cox regression analysis for CT,
PET, and clinical parameters when considering either nodal-only involvement or all sites
of disease involvement, as well as correlation with PFS and predictors of radiotherapy,
are summarized in Tables 3–5, respectively. Of note, only one CT parameter (the GLZLM
SZHGE mean) was found to be significant for the prediction of the need for radiotherapy
in both categories (nodal vs. all sites), whereas several yet similar parameters (shape and
GLRLM) were found to be significant for the prediction of the PFS endpoint. The results
for PET showed similar trends: shape, GLRLM, and GLZLM features were found to be
significant in all evaluation categories. Interestingly, a rather ‘standard’ feature such as
TLG was found to be predictive as well. A summary of bivariate correlation coefficients is
presented in Table 6.
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Table 2. Summary of Laboratory Parameters.

Parameter Median (Range) SD Normal Range Results n (%)

Hemoglobin (g/L) 126 (79, 161) 16.8 120–160 Normal 42 (48)
140–180 Abnormal 45 (52)

Missing 11
WBC (×109/L) 8.8 (1, 35.2) 5 4.0–11 Normal 54 (62)

Abnormal 33 (38)
Missing 11

Neutrophils (×109/L) 6.8 (1.3, 31.8) 4.7 2.0–7.5 Normal 50 (57)
Abnormal 37 (43)

Missing 1
Lymphocytes 1.3 (0.2, 3.3) 0.6 1.5–4.0 Normal 41 (47)

Abnormal 46 (53)
Missing 1

Eosinophils 0.1 (0, 1.4) 0.2 0.04–0.4 Normal 62 (71)
Abnormal 25 (29)

Missing 11
ESR 33 (1, 115) 27.4 0–20 Normal 20 (27)

Abnormal 55 (73)
Missing 17

LDH 249 (133, 1542) 174 100–750 Normal 34 (40)
Abnormal 52 (60)

Missing 17
ALP 90 (45, 376) 56.6 40–150 Normal 75 (86)

Abnormal 12 (14)
Missing 1

ALT 17 (5, 147) 20.5 7–40 Normal 74 (85)
Abnormal 13 (15)

Missing 1
AST 18 (10, 252) 27.2 5–34 Normal 77 (92)

Abnormal 7(8)
Missing 4

Albumin 41 (26, 58) 5.3 32–53 Normal 53 (73)
Abnormal 20 (27)

Missing 15
Bilirubin 7 (1, 11) 11.7 0–22 Normal 76 (100)

Abnormal 0
Missing 12

Creatinine 69 (40, 123) 12.7 61–105 Normal 83 (95)
Abnormal 4 (5)

Missing 1
Calcium 2.4 (2.1, 2.7) 0.1 2.20–2.62 Normal 76 (93)

Abnormal 6 (7)
Missing 6

ESR: Erythrocyte sedimentation rate. LDH: Lactate dehydrogenase. ALP: Alkaline phosphatase.

Table 3. Univariate analysis (UVA) summary of statistically significant variables for CT parameters
when correlated with PFS and radiotherapy prediction.

Parameter HR 95% CI p Value

CT parameters for NODAL involvement in PFS

SHAPE Volume mL 1.99 1.22–3.26 0.0061
SHAPE Volume vx mean 1.97 1.16–3.34 0.012

GLRLM GLNU mean 2.06 1.25–3.4 0.0045
GLRLM RLNU mean 1.84 1.08–3.13 0.025
GLZLM GLNU mean 1.65 1.0–2.73 0.048
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Table 3. Cont.

Parameter HR 95% CI p Value

CT parameters for NODAL involvement to radiotherapy outcome

GLZLM SZHGE mean 1.84 1.07–3.15 0.026

CT parameters for ALL SITES involvement to PFS

SHAPE Volume mL mean 1.96 1.19–3.22 0.008
SHAPE Volume vx mean 1.97 1.17–3.33 0.011

GLRLM GLNU mean 1.99 1.24–3.19 0.0043
GLRLM RLNU mean 1.88 1.09–3.25 0.023
GLZLM GLNU mean 1.77 1.01–3.09 0.046

CT parameters for ALL SITES involvement to radiotherapy outcomes

GLZLM SZHGE mean 1.67 1.01–2.76 0.047

Table 4. Univariate analysis (UVA) summary of statistically significant variables for PET parameters
when correlated with PFS and radiotherapy prediction.

Parameter HR 95% CI p Value

PET volume 100% threshold for NODAL and PFS

CONVENTIONAL TLG mean 1.89 1.15–3.12 0.013
SHAPE Volume mL mean 2.1 1.24–3.54 0.0055

GLRLM LRE mean 1.77 1.04–3.01 0.035
GLZLM LZE mean 1.66 1.15–2.4 0.0072

PET volume 100% threshold ALL SITES and PFS

CONVENTIONAL TLGm mean 1.79 1.09–2.95 0.022
SHAPE Volume mean 1.96 1.16–3.32 0.012

GLZLM LZE mean 1.65 1.14–2.39 0.0085

NO predictors of radiotherapy outcome using PET volume 100% threshold were found

PET volume 70% threshold for NODAL and PFS

CONVENTIONAL TLG mean 1.94 1.15–3.27 0.013
SHAPE Volume mL mean 2.16 1.29–3.64 0.0037

GLRLM GLNU mean 2.1 1.08–4.09 0.028
GLZLM LZE mean 1.53 1.08–2.17 0.016

PET volume 70% threshold for NODAL and radiotherapy outcome

HISTO Entropy log10 mean 0.6 0.36–0.99 0.047

PET volume 70% threshold ALL SITES and PFS

CONVENTIONAL TLG mean 1.84 1.09–3.09 0.022
SHAPE Volume mL mean 2.02 1.2–3.42 0.0086

GLRLM GLNU mean 2.02 1.06–3.87 0.033
GLZLM LZE mean 1.53 1.08–2.17 0.018

PET volume 70% threshold ALL SITES and radiotherapy outcomes

HISTO Entropy log10 mean 0.6 0.36–1.0 0.049

PET volume 40% threshold NODAL and PFS

CONVENTIONAL TLG mean 1.53 1.03–2.28 0.036
SHAPE Volume mean 1.9 1.23–2.92 0.0037
GLRLM GLNU mean 2.27 1.3–3.96 0.0039
GLRLM RLNU mean 2.59 1.44–4.66 0.0015

PET volume 40% threshold ALL SITES and PFS

CONVENTIONAL TLG mean 1.51 1.0–2.27 0.048
SHAPE Volume mean 1.87 1.2–2.91 0.006
GLRLM GLNU mean 1.79 1.09–2.95 0.022
GLRLM RLNU mean 1.71 1.09–2.68 0.019

GLZLM LZE mean 2.22 1.1–4.49 0.025

NO predictors of radiotherapy outcome using PET volume 40% threshold were found



Cancers 2023, 15, 2056 9 of 16

Table 5. Univariate analysis (UVA) summary of statistically significant variables for Clinical parame-
ters when correlated with PFS and radiotherapy prediction.

Parameter HR 95% CI p Value

Effect of clinical variables on PFS

Gender 2.15 0.56–8.3 0.27
Pathology subtype 7 × 10−8 0.00 0.84

Bulk disease 1.25 1.08–1.46 0.0035
Advanced stages (III + IV) 2.85 0.74–11.0 0.025
Presence of B symptoms 0.24 0.07–0.84 0.002

Chemotherapy completed as
planned 0.11 0.02–0.54 <0.001

Abnormal Hemoglobin
value 0.96 0.93–0.99 0.01

Abnormal neutrophils 1.06 0.96–1.17 0.025
Abnormal ALP 1.01 1–1.01 0.035

Abnormal Albumin 0.75 0.66–0.85 0.0023

Effect of clinical variables in radiotherapy outcome

Advanced stages (III + IV) 0.05 0.02–0.14 <0.001
Presence of B symptoms 4.51 1.58–12.83 0.0048
Abnormal Hemoglobin 0.23 0.09–0.56 0.0012
Abnormal Lymphocytes 3.25 1.35–7.82 0.0086

Abnormal ESR 3.6 1.15–11.29 0.028
Abnormal ALP 0.18 0.04–0.85 0.031

Table 6. Bivariate correlation coefficients between variables. (p-value < 0.001 for all the below listed
bivariate correlations).

Variable 1 Variable 2 Correlation Coefficients p-Value

GLZLM_LZHGE_mean_pne GLZLM_LZLGE_mean_pne 1 3.50 × 10−261

GLZLM_LZHGE_mean_pne GLZLM_LZE_mean_pne 1 2.10 × 10−223

GLZLM_LZE_mean_pne GLZLM_LZLGE_mean_pne 1 1.30 × 10−219

SHAPE_Volume__mL_mean_pne SHAPE_Volume_VX_mean_pne 1 7.60 × 10−166

SHAPE_Volume_vx_mean_cne GLRLM_RLNU_mean_cne 0.99 1.30 × 10−70

GLRLM_GLNU_mean_cne SHAPE_Volume_vx_mean_cne 0.98 3.70 × 10−60

GLRLM_GLNU_mean_cne GLRLM_RLNU_mean_cne 0.94 2.30 × 10−43

GLZLM_GLNU_mean_cne GLRLM_RLNU_mean_cne 0.94 1.40 × 10−36

CONVENTIONAL_TLG_mean_pne SHAPE_Volume__mL_mean_pne 0.91 6.10 × 10−35

CONVENTIONAL_TLG_mean_pne SHAPE_Volume_VX_mean_pne 0.91 6.80 × 10−35

GLZLM_GLNU_mean_cne SHAPE_Volume_vx_mean_cne 0.89 6.30 × 10−28

GLZLM_GLNU_mean_cne GLRLM_GLNU_mean_cne 0.85 7.00 × 10−24

GLRLM_RLNU_mean_pne GLRLM_GLNU_mean_pne 0.85 1.00 × 10−23

GLRLM_GLNU_mean_pne SHAPE_Volume_VX_mean_pne 0.87 1.30 × 10−23

GLRLM_GLNU_mean_pne SHAPE_Volume__mL_mean_pne 0.87 1.60 × 10−23

GLZLM_LZE_mean_pne SHAPE_Volume__mL_mean_pne 0.83 2.30 × 10−20

GLZLM_LZE_mean_pne SHAPE_Volume_VX_mean_pne 0.83 2.50 × 10−20

GLZLM_LZHGE_mean_pne SHAPE_Volume__mL_mean_pne 0.83 2.60 × 10−20

GLZLM_LZLGE_mean_pne SHAPE_Volume__mL_mean_pne 0.83 2.60 × 10−20

GLZLM_LZHGE_mean_pne SHAPE_Volume_VX_mean_pne 0.83 2.90 × 10−20

GLZLM_LZLGE_mean_pne SHAPE_Volume_VX_mean_pne 0.83 2.90 × 10−20

SHAPE_Volume__mL_mean_cne SHAPE_Volume_VX_mean_pne 0.91 5.20 × 10−19

SHAPE_Volume__mL_mean_cne SHAPE_Volume__mL_mean_pne 0.91 5.40 × 10−19

GLRLM_GLNU_mean_pne CONVENTIONAL_TLG_mean_pne 0.76 6.40 × 10−17

The complete UVA results for all the clinical variables are included as Supplemental
Tables S1 and S2.

3.3. Multivariate Analysis (MVA) Parameters as Predictors of PFS

Multivariable Cox regression analysis was performed based on significant parameters
(p < 0.1) from univariate analysis (UVA). MVA was performed in a backward manner with
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a stay criterion of p < 0.05. The parameters with the lowest p-value (clinical as well as
imaging parameters) were used for model building for the PFS model, including Albumin
(p = 0.034); ALP (p = 0.028), and CT grayscale parameter grey level run length matrix
non-uniformity for a run (GLRLM GLNU mean (HR = 2.52, 95% CI (1.22, 5.18) p = 0.012)).
Significant parameters and Forrest plots are presented in Tables 7 and 8 and Figures 2 and 3,
respectively. Graph plot are presented in Figures 4 and 5.

Table 7. MVA model for PFS outcome.

Parameter HR (95% CI) p Value

Abnormal Albumin 10.38 1.19–90.24 0.034

Abnormal ALP 21.89 1.39–345.3 0.028

GLRLM GLNU mean CT parameter 2.52 1.22–5.18 0.012

Table 8. MVA models for radiotherapy outcome.

Parameter HR (95% CI) p Value

Abnormal Hemoglobin 0.26 0.09–0.78 0.016

XS partial resampling PET parameter 2.1 1.2–3.68 0.0091

SHAPE Sphericity only for 3D RO mean 1.9 1.05–3.42 0.033

GLZLM SZHGE mean 2 1.08–3.73 0.028
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3.4. MVA Parameters Predictors of Need for Radiotherapy

For the prediction of the need for radiotherapy, a few parameters were significant in
the UVA, including advanced stages (Stages III and IV combined). This parameter was
however excluded from the MVA given that it was already predefined by the images and
could potentially introduce bias. Therefore, first-order PET parameter SHAPE Sphericity
(OR = 1.9, 95% CI (1.05, 3.42) p = 0.033); CT parameter grey level zone length matrix high
gray-level zone emphasis (GLZLM SZHGE mean (OR = 2, 95% CI (1.08, 3.73), p = 0.028));
PARAMS XSpatial Resampling (OR = 2.1, 95% CI (1.2, 3.68), p = 0.0091); as well as abnormal
hemoglobin results (OR + 0.26 (0.09, 0.78), p = 0.016) remain as independent features in the
final model for the binary outcome as predictors of radiotherapy (AUC = 0.79).
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4. Discussion

In our study, we evaluated the utility of combined PET/CT radiomic features as well
as clinical parameters for outcome prediction in patients with Hodgkin’s lymphoma.

So far, only a few radiomics studies have been performed in HL populations address-
ing outcome prediction, and even fewer have considered clinical parameters as well as
combined PET and CT features for outcome prediction. We found that CT as well as
PET radiomics combined with clinical parameters might be able to help predict outcome
endpoints such as PFS as well as the need for additional radiotherapy.

We found several radiomics parameters from baseline FDG PET/CT to be predictors
of survival rate and predictors of the need for radiotherapy in the univariable analysis.
However, when multivariable models were designed, considering the parameter with
the lowest p-value for the model building, no PET-related parameter was found to be an
independent predictor for PFS. This is concordant with a few earlier studies that evalu-
ated a similar question, including first-order parameters such as SUVmax. For example,
Frood et al. [27] recently published a meta-analysis of baseline PET/CT imaging parame-
ters as a predictor of treatment outcome in Hodgkin and diffuse large B-cell lymphomas
(DLBCL). In the meta-analysis, 10 studies assessing SUVmax as a predictor of response are
included, however, none of the studies evaluated radiomics features. The largest study, by
Akharti et al. [35], demonstrated that SUVmax could not be applied to predict either PFS or
OS in 267 patients. Interestingly, in our study, a CT second-order parameter was a predictor
of survival when combined with clinical parameters such as an abnormal albumin level
and an elevated ALP.

Driessen, J. et al. [25] recently presented a radiomics analysis in a larger cohort of
patients with relapsed HL. They found that a combination of radiomics and clinical features
results in a strong prediction model for 3-year time to progression. The model uses robust
PET features that address inter-lesional heterogeneity in the distance, metabolic volume,
and SUV but did not include any second or higher-order radiomic features, as compared to
our study. In addition, this investigation did not include a radiomics evaluation of the CT
component of the PET/CT.

A recent study by Zhou and co-workers evaluated if the radiomic features of base-
line FDG PET could predict the prognosis of Hodgkin lymphoma [36]. They found
that long-zone high gray-level emphasis and Dmax were independently correlated with
2-year progression-free survival, although this study did not evaluate complementary
CT-radiomics and did not integrate any clinical information into their AUC analysis. Fur-
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thermore, they evaluated a smaller number of patients, which were further divided into a
training and validation data set, which likely decreased statistical robustness.

Another study has taken a somewhat different approach, evaluating 45 patients receiv-
ing R-CHOP (Rituximab+ Cyclophosphamide + Doxorubicin + Vincristine + Prednisone)
chemotherapy for DLBCL evaluating the ability to predict therapy response [37]. Here, the
authors concluded that SUVmax and gray-level co-occurrence matrix dissimilarity were
independent predictors of lesions with an incomplete response.

Milgrom, S.A. et al. [29] analyzed a cohort of 251 mediastinal HL patents using another
freely available software (IBEX). They found that the first-order parameters MTV and TLG
are associated with disease progression in HL. None of the second-order parameters were
predictors of progression in their cohort either.

Lue et al. [24] investigated 11 first-order and, 39 higher-order features in 42 patients
with HL to predict PFS and OS. With 21 events in the cohort (12 relapses, 9 deaths), it was
demonstrated that SUV, kurtosis, stage, and intensity non-uniformity (INU) derived from
the grey-level run length matrix (GLRLM) were independent predictors of PFS, and only
disease stage and INU derived from the GLRLM were independent predictors of OS.

Overall, compared to the relatively sparse, directly comparable literature, in our
study, none of the PET-derived radiomic features were found to be independent features
in the MVA for the PFS outcome. Since several PET-radiomic features were found to be
significant in the UVA if we had evaluated only PET radiomic features, it might be that
those parameters would have been significant in the MVA, and therefore, we would have
more comparable results to other studies. However, in our investigation, PET radiomics
parameters were ‘outperformed’ by the CT-radiomic features (which consequently ended
up in the MVA) and were therefore not directly compared to the available studies. We feel
that, since PET/CT is a hybrid imaging modality in clinical routine, both components (the
PET and the CT) should be evaluated in a complementary fashion, and as demonstrated,
there appears to be value in CT-derived textural features as well.

However, in our cohort, a PET first-order parameter, SHAPE Sphericity, and the
CT second-order features, GLZLM SZHGE mean and PARAMS XSpatial Resampling,
were independent predictors for the need for radiotherapy when combined with lower
hemoglobin result at baseline lab work (AUC = 0.79) which again underlines the values
for combined radiomic evaluation of PET and CT. It has to be pointed out that the clinical
decision to apply additional radiotherapy is often multifactorial and that not only one
clinical scenario indicates the need for radiotherapy in HL patients. In our institution, this
decision is made mostly following the H10 trial [41], considering whether radiotherapy or a
combined modality will be more beneficial for the early stages of disease in a personalized
approach that is decided in most of the cases at multidisciplinary rounds by consensus.
Individual factors such as the size of the radiation field and the organs included or in the
vicinity, gender, age, and the risk of toxicity are all weighted factors in that decision.

Based on our analysis, the integration of combined CT and PET radiomics features
might be of further guidance/help in deciding which patients might benefit from additional
radiotherapy for the improvement of their disease outcome. Further studies have been
addressing the same dilemma, including that of Picardi et al., who evaluated the correla-
tion of histologically proven residual disease at the end of chemotherapy using PET/CT,
showing a Deauville score of 4 foci after completion of the first line of chemotherapy [42].

Similar to other studies cited above, only first-order and morphologic PET radiomic
features were found to be significant and, thus, not necessarily intrinsically related to voxel
characteristics. For CT, however, two second-order features were found to be of value (i.e.,
GLZLM SZHGE). As for the comparative literature, no other studies evaluated predictors
for the need for radiotherapy besides the bulkiness of the tumor, and therefore this finding
may open a window for further analysis in larger cohorts.

Several other new studies have evaluated different aspects of radiomics, i.e., in MRI or
PET, but those studies concentrated on the technical aspects of the analysis itself rather than
the ability of radiomics for prediction. In addition, PET/CT radiomics has been thoroughly
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evaluated in non-Hodgkin lymphoma and in the context of prediction for bone marrow
involvement, but as this was done for follicular lymphoma, these studies are not specifically
relevant for HL patients [43–46].

Concerning the integration of clinical parameters, it has been shown in the literature
that ALP is not necessarily a predictive clinical parameter on its own. While that is
certainly valid from a dedicated clinical perspective, in our cohort it has been found to
have predictive value in conjunction with the here evaluated imaging features. Thus, the
integration of combined PET and CT radiomic features may elevate the value of specific
clinical parameters when evaluated in conjunction.

5. Limitations

This study has several limitations. First, this is a retrospective analysis of data acquired
in a single tertiary oncology center, so transferability to secondary centers might be limited.
Second, the patient population is relatively small. Third, the cohort includes different types
of HL; this non-uniformity may limit the translation of the results to patient’s clinical out-
comes. Fourth, few adverse events were observed, as expected for this type of malignancy
and population.

No cross-validation cohort analysis was performed, and although validation analysis
cannot overcome the absence of a validation cohort, it can describe the variability in the
findings and indicate the expected performance of the model in a distinct dataset.

Further prospective analysis to confirm our concepts and findings would be valuable.

6. Conclusions

We evaluated the value of baseline clinical parameters as well as combined PET and
CT radiomics in HL patients for survival and prediction of the need for radiotherapy.
We found that different combinations of all three factors/features were independently
predictive of PFS outcome and radiotherapy outcome, as outlined above.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers15072056/s1, Table S1. Effect on PFS; Table S2. Effect on
Radiotherapy outcome.
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