
Citation: Dong, Y.; Zhang, J.; Lam, S.;

Zhang, X.; Liu, A.; Teng, X.; Han, X.;

Cao, J.; Li, H.; Lee, F.K.; et al.

Multimodal Data Integration to

Predict Severe Acute Oral Mucositis

of Nasopharyngeal Carcinoma

Patients Following Radiation

Therapy. Cancers 2023, 15, 2032.

https://doi.org/10.3390/

cancers15072032

Academic Editors: Wei Wu and

Trever G. Bivona

Received: 23 February 2023

Revised: 21 March 2023

Accepted: 26 March 2023

Published: 29 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Article

Multimodal Data Integration to Predict Severe Acute Oral
Mucositis of Nasopharyngeal Carcinoma Patients Following
Radiation Therapy
Yanjing Dong 1 , Jiang Zhang 1 , Saikt Lam 2,3, Xinyu Zhang 1, Anran Liu 1, Xinzhi Teng 1, Xinyang Han 1 ,
Jin Cao 1, Hongxiang Li 4, Francis Karho Lee 5, Celia Waiyi Yip 5, Kwokhung Au 5, Yuanpeng Zhang 6

and Jing Cai 1,2,7,*

1 Department of Health Technology and Informatics, The Hong Kong Polytechnic University,
Hong Kong SAR, China

2 Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong SAR, China
3 Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University,

Hong Kong SAR, China
4 Department of Radiology, Fujian Medical University Union Hospital, Fujian Medical University,

Fuzhou 350000, China
5 Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
6 Department of Medical Informatics, Nantong University, Nantong 226000, China
7 The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
* Correspondence: jing.cai@polyu.edu.hk

Simple Summary: The acute oral mucositis (AOM) is a prevalent side effect of radiation therapy
for nasopharyngeal carcinoma (NPC). Severe AOM could impair the survival and quality of life
for NPC patients. Accurate method to predict the incidence of severe AOM can aid clinicians
in adjusting the treatment plan to improve the outcomes for NPC patients. We integrated multi-
modalities, multi-omics and multi-regions data with two methods, integrate the original data or
combine data after feature selection. The performance of models using each data integration method
with different modalities, types of data and VOIs were analyzed. We developed a best-performing
model with mean AUC at 0.81 ± 0.10 to predict the incidence of severe AOM for NPC patients
following radiation therapy.

Abstract: (1) Background: Acute oral mucositis is the most common side effect for nasopharyngeal
carcinoma patients receiving radiotherapy. Improper or delayed intervention to severe AOM could
degrade the quality of life or survival for NPC patients. An effective prediction method for severe
AOM is needed for the individualized management of NPC patients in the era of personalized
medicine. (2) Methods: A total of 242 biopsy-proven NPC patients were retrospectively recruited in
this study. Radiomics features were extracted from contrast-enhanced CT (CECT), contrast-enhanced
T1-weighted (cT1WI), and T2-weighted (T2WI) images in the primary tumor and tumor-related
area. Dosiomics features were extracted from 2D or 3D dose-volume histograms (DVH). Multiple
models were established with single and integrated data. The dataset was randomized into training
and test sets at a ratio of 7:3 with 10-fold cross-validation. (3) Results: The best-performing model
using Gaussian Naive Bayes (GNB) (mean validation AUC = 0.81 ± 0.10) was established with
integrated radiomics and dosiomics data. The GNB radiomics and dosiomics models yielded mean
validation AUC of 0.6 ± 0.20 and 0.69 ± 0.14, respectively. (4) Conclusions: Integrating radiomics and
dosiomics data from the primary tumor area could generate the best-performing model for severe
AOM prediction.

Keywords: multimodal data integration; radiomics; dosiomics; nasopharyngeal carcinoma;
acute mucositis
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1. Introduction

Nasopharyngeal carcinoma (NPC) is a kind of malignant epithelial head and neck
(H&N) cancer. It originates from the nasopharyngeal mucosal lining with high incidence in
Southeast Asia [1]. Over 95% of NPC cases are non-keratinizing squamous cell carcinoma
that is highly sensitive to radiation [2]. Radiotherapy with/without chemotherapy (CRT
or RT, respectively) is the primary treatment for NPC patients to achieve disease control.
Although advanced radiation strategies such as intensity-modulated RT (IMRT) are widely
applied to reduce the recurrence rate of tumor with decreased radiation-induced side
effects [3,4], radiation toxicity is still a trouble for NPC patients undergoing radiation
therapy [5,6]. The radiation damages DNA and cellular components, which could cause
mitotic cell death, apoptosis, and cytokine cascade in the human body. These cascades
of events could eventually and inevitably lead to toxicity effects [7]. Most NPC patients
suffer from dermatitis, mucositis, dysphagia, and xerostomia during and after RT/CRT.
Among these acute toxicity effects, acute oral mucositis (AOM) is the most common painful
symptomatic complication for NPC patients [8].

More than 60% of H&N patients have experienced AOM following RT-based anti-
cancer therapies. Approximately 65% of these patients have developed severe AOM
(≥grade 3) [8]. The AOM is typically characterized by atrophy, swelling, erythema, and
ulceration. It often impairs patients’ functional status and quality of life (QoL) [9]. The
soreness of AOM initially leads to open-mouth difficulty, which further causes decreased
food and water intake, loss of weight, and systematic infection. Patients who have devel-
oped severe AOM with painful experiences would receive a reduced dose of chemotherapy.
Some patients even tend to break the RT regime. Severe AOM can exacerbate the morbidity
of patients, which may finally contribute to worsen QoL and increase mortality [10]. It
therefore is necessary to analyze the critical contributors to the oral mucositis.

Previous studies have focused on analyzing one type of data, such as genetic data
and clinical variables, for predicting severe AOM. Various factors have been identified
to correlate with the incidence and severity of oral mucositis, for instance, genetic back-
ground [11,12], dose of RT [13,14], chemo-drugs [15–17], and nutritional status [18]. Among
these factors, the dose of RT is a critical factor influencing the severity of AOM. Additional
chemotherapy, especially with some AOM-associated agents, for instance, alkylating agents
and antimetabolites, could exacerbate the events. Besides, AOM patients are more likely
to have weight loss during the treatment scheme [19,20]. Saito et al. [20,21] reported that
low BMI is a risk factor for severe AOM. Andy et al. [21] indicated that patients with ad-
vanced tumors are prone to experience AOM. Moreover, a recent two-stage genome-wide
association study [12] showed that four single nucleotide polymorphisms (SNPs) might
be correlated with acute mucositis. However, they failed to validate their results in the
validation stage. Clinicogenomic variables alone are inadequate to accurately predict the
incidence, correlations, and severity of AOM for NPC patients after RT.

In addition to the genomics information, contrast-enhanced computed tomography
(CECT), magnetic resonance imaging (MRI), and dose files routinely acquire clinical data
for NPC patients with RT plans [22,23]. Radiomics and dosiomics are two quantitative
information-extraction methods to provide minable texture and dose-distribution infor-
mation for clinical prognosis prediction. Traditional experiences have demonstrated that
single or double sources of data had limited prediction power for acute AOM. Integration
of complementary data from multiple types of datasets can lead to an intricate outcome
than a simple summation of information [24]. Integration of multimodal data from mul-
tiple sources, for instance, clinical, radiomics, and dosiomics for NPC patients, has the
potential to overcome the boundaries of conventional medical analysis [25–31]. Unfor-
tunately, few studies have reported the possibilities of radiomics or dosiomics for AOM
prediction [13,32,33]. To the best of our knowledge, there are no studies in the literature
assessing whether the data fusion of multi-regions and multimodalities could enhance their
capability of severe AOM prediction.
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In this study, we aimed to analyze multimodal data, including clinical, radiomics, and
dosiomics information, to predict the incidence of severe AOM in NPC patients following
RT/CRT. The radiomics and dosiomics data were extracted from multi-regions related
to RT treatment. These data were also extracted from multimodalities of images (CECT,
contrast-enhanced T1-weighted, and T2-weighted MRI). In daily clinical practice, clinicians
could benefit from adjusting treatment plans before RT for patients with a higher possibility
of developing severe AOM to achieve personalized diagnosis and treatment.

2. Materials and Methods

Patient data. All patient data were retrospectively collected from NPC patients who
underwent CRT or RT at Hong Kong Queen Elizabeth Hospital from 2012 to 2015. Informed
consent of patients was waived due to the nature of the retrospective study. NPC patients
were recruited based on the following inclusion and exclusion criteria. The inclusion criteria
were: (1) NPC patients with pathological validation and absence of distant metastasis and
co-existing tumors of other types at diagnosis, (2) patients treated with a total RT dose of
60–70 Gy, and (3) patients with a completed set of clinical, image, and radiation dosimetry
data. The exclusion criteria were: (1) patients aged less than 18, (2) patients without original
image or clinical data; and (3) patients for whom exact standard terminology criteria for
adverse events (CTCAE) evaluation for AOM had not been recorded. Symptoms in grades
1 and 2 were defined as mild AOM, and grades 3 and 4 as severe AOM [34] All the patients
were negative of oral mucositis according to the CTCAE grading system before receiving
radiation therapy.

Clinical variables included (1) treatment information: TNM stage, treatment, past
health condition, allergy history, vision condition, hearing condition, and CTCAE evalua-
tion for AOM and (2) demographic data: age, gender, body weight, height, body mass index
(BMI), and smoking and drinking habits. All clinical variables were acquired one week
before RT commencement, except the CTCAE evaluation results, which were recorded
4–5 weeks after RT commencement. The equation for BMI is defined as follows:

Body mass index (BMI) = weight/height2 (1)

Patients were maintained in a supine position during the imaging examination. Details
of imaging acquisition are summarized in Tables A1 and A2.

Image pre-processing. In this study, the imaging pre-processing steps were based on
our previous work [28] and are in accordance with the Image Biomarker Standardisation
Initiative (IBSI) guidelines [35]. Specifically, (1) voxel size resampling: all images (CECT
and MRI) were resampled to a voxel size of 1 × 1 × 1 mm3; (2) volume of interest (VOI)
re-segmentation: CECT images were re-segmented to confine the Hounsfield unit (HU) to
(–150,180) to eliminate the non-soft tissue in the VOI; (3) image filtering: a Laplacian of
Gaussian (LoG) filter with three levels of Gaussian radius parameter was used under fine
(1 mm), medium (3 mm), and coarse (6 mm) scales; (4) quantization of gray levels: gray-
level intensities of the images were fixed to 50 bins; and (5) inhomogeneity correction of
image pixel value: N4B bias correction in the “N4 Bias Field Correction Image Filter” in
SimpleITK (v1.2.4) was implemented, in particular, to MRI images.

Radiomics and dosiomics feature extraction. Feature extraction was performed using
our in-house platform based on publicly available SimpleITK (v1.2.4) and PyRadiomics
(v2.2.0) [36,37]. All VOIs were delineated by an experienced senior clinician [38]. The gross
tumor volumes (GTVs) were contoured based on CECT with the assistance of MRI images.

Radiomics. The gross tumor volume of the NPC primary tumor (GTVnp) and the
gross tumor volume of nodal lesions (GTVn) were selected as the main VOIs for radiomics
feature extraction. Features with or without LoG filters were both involved. All these fea-
tures were extracted from CECT, contrast-enhanced T1 weighted (cT1WI), and T2 weighted
(T2WI) images (for details, please refer to Figure 1). Meaning of each VOI for different
image modalities were listed in Table 1.
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Figure 1. VOI examples for NPC patients with CECT examination. (a) Region of GTVnp (orange),
axial view. (b) Region of GTVn (blue) and PTVn_70 Gy (red), axial view. (c) Region of PTVn_60 Gy
(green), coronal view. (d) DVH curve of four VOIs.

Table 1. VOIs and image modalities.

VOIs Descriptions of VOI Imaging Modalities/Images

GTVnp Gross tumor volume of primary NPC tumor CECT, cT1WI, T2WI, DVH
GTVn Metastatic lymph nodes area CECT, DVH

PTVn_70Gy Regions of nodal planning target volume with DVH
the prescribed dose level of 70Gy

PTVn_60Gy PTVn with the prescribed dose level of 60Gy DVH

Three categories of radiomics features were extracted: shape, first-order statistics, and
texture features. The texture features can be further categorized into gray-level difference
matrix (GLDM), gray-level cooccurrence matrix (GLCM), gray-level run-length matrix
(GLRLM), gray-level size-zone matrix (GLSZM), and neighboring gray-tone difference
matrix (NGTDM) classes.
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Dosiomics. Except for GTVnp and GTVn, the region of the high-dose nodal planning
target volume (PTVn_70Gy) and region of the low-dose nodal planning target volume
(PTVn_60Gy) were also added to the dosiomics analysis (please refer to Figures 1 and A2
and Table 1 for more details).

Two-dimensional (2D) and three-dimensional (3D) dose–volume histograms (DVHs)
of each studied VOI were extracted from dose files for dosiomics feature extraction. All
dosiomics features were extracted based on Gabry et al.’s previous study [39]. Features
that reflect dose distribution, for instance, mean dose, spatial dose gradient, and spatial
dose spread were extracted accordingly. All the calculation algorithms have been listed in
a previous publication by Buettner et al. [40].

Model development and evaluation. The statistical analysis, model training, and
evaluation were conducted in Jupyter 6.4.12 and SPSS 25. The receiver operating charac-
teristic (ROC) curve and area under the ROC curve (AUC) with 10-fold validation was
performed to evaluate model performance. The CTCAE grade scale of patients in mucositis
was dichotomized between severe AOM (grade ≥ 3) and mild AOM (grade ≤ 2) as the
prediction endpoint. Patients were stratified based on CTCAE grade to training and testing
groups at a 7:3 ratio (details in Figure 2).
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Figure 2. Scheme of feature selection and modeling. Training and validation sets were separated
before data analysis. The training set of data was used for feature selection. The validation set of data
was used for model evaluation. To further manipulate the numerical and categorical data, reduce
the interactions, and solve the collinearity problems, random forest (RF) selection was applicated for
radiomics, dosiomics, and integrated data. Three linear or non-linear models were developed with
independent validation data sets with selected features. The area under the curve (AUC) was set as
the main evaluation method for the model performance.
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Single-modal models. The data sources for single-modal models were restricted to
single modality of data (radiomics, dosiomics, or clinics), single modality of imaging (CECT,
cT1WI, T2WI, and DVH), and single region of patients (GTVnp, GTVn, PTVn_60Gy, and
PTVn_70Gy). Each single data set had two steps in this stage: (1) feature selection and
model training in the training group set and (2) AUC evaluation in validation groups.

For clinical data, chi-square and Mann–Whitney U tests were employed for binary
and non-binary variables for univariate analysis. p values < 0.05 was considered to be
statistically significant. All radiomics and dosiomics data were standardized with the
MinMax scaler before selection. For radiomics and dosiomics data, we first identified
significant features between severe and mild AOM patients in the training set with Mann–
Whitney U tests. After that, random forest (RF) was used to rank the importance of the
significant features considering both feature interactions and nonlinearities. The optimal
feature number was set according to the best RF training model score. Three models,
including logistic regression (LR), Gaussian Naïve Bayes (GNB), and extreme gradient
boosting (XGBoost), were applied to evaluate the combined predictive value of these
selected features in the independent validation set. All VOIs data were analyzed separately
at the single model stage.

Multimodal data integration. Clinical data after multivariant analysis (LR) with
p value < 0.05 were selected for data integration. Dosiomics and radiomics data from
different VOIs and image modalities were integrated with two methods: (1) dosiomics and
radiomics data were combined together before feature selection and (2) the features selected
from the RF model were merged and directly combined without a further feature-selection
step (please refer to Figure 2 for more details). All the data-integration methods are listed
in Table 2.

Table 2. Data resources and integration/combination methods.

Name of Model Methods

GTVnp_RD Integration of radiomics and dosiomics GTVnp data before feature selection

GTVnp_R_CECTcT1T2 Integration of radiomics GTVnp data from CECT, cT1WI, T2WI before feature selection

GTVnp_R_CECTcT1 Integration of radiomics GTVnp data from CECT and cT1WI before feature selection

GTVnp_R_cT1T2 Integration of radiomics GTVnp data from cT1WI and T2WI before feature selection

GTVnp_R_cT1 Single radiomics data from CT1WI
GTVnp_R_CECT Single radiomics data from CECT
GTVnp_R_T2 Single radiomics data from T2WI
GTVnp_D Single dosiomics data from GTVnp
GTVn_RD Integration of radiomics and dosiomics data from GTVn before feature selection

GTVn_R Single radiomics data from GTVn
GTVn_D Single dosiomics data from GTVn
PTVn_D Integration of 60 and 70 Gy dosiomics data before feature selection
PTVn_60Gy_D Single dosiomics data from PTVn_60Gy
PTVn_70Gy_D Single dosiomics data from PTVn_70Gy
R Integration of all radiomics data before feature selection
D Integration of all dosiomics data before feature selection
C Single clinical data
C&D Combine selected clinical and dosiomics data for modeling
C&R Combine selected clinical and radiomics data for modeling
RD Integration of radiomics and dosiomics data before feature selection
C&RD Combine selected clinical and RD data for modeling
C&GTVnp RD Combine selected clinical and GTVnp RD data for modeling
R&D Combine selected radiomics and dosiomics data for modeling
C&R&D Combine selected clinical, radiomics and dosiomics data for modeling
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Shapley Additive Explanations (SHAP), an explainable artificial intelligence (AI)-
based tool, was applied for further explanation of feature importance for the model with
the best AUC result and specific features [41].

3. Results
3.1. Patient Characteristics

A total of 397 continuous patients were collected based on their final diagnosis with
pathological validation. Of these patients, with a median age of 54 (range 26–86 years),
242 were enrolled for further analysis following the inclusion and exclusion criteria (details
in Figure A1). All patients were negative for oral mucositis with CTCAE graded 0 before
radiation therapy. Univariate analysis results of demographic and clinical characteristics
for those patients are listed in Table 3.

Table 3. Demographic and clinical characteristics for all patients.

Characteristics AOM < Grade 3
(Mild AOM)

AOM ≥ Grade 3
(Severe AOM) p Value

Total Number 191 (78.9%) 51 (21.1%)
Age, mean ± SD, years 54.89 ± 12.25 50.9 ± 10.60 0.036 *
18–65 149 (61.6%) 44 (18.1%)
≥65 42 (17.4%) 7 (2.9%) 0.192
Gender
Male 135 (55.8%) 41 (16.9%)
Female 56 (23.1%) 10 (4.1%) 0.167
Treatment 0.004 *
RT alone 27 (11.2%) 0
CRT 164 (67.8%) 51 (21.1%)

0.031 *T stage
T1 15 (6.2%) 3 (0.1%)
T2 8 (3.3%) 5 (2.1%)
T3 137 (56.6%) 28 (11.6%)
T4 31 (12.8%) 15 (6.2%)
N stage 0.091
N1 28 (11.2%) 1 (0.4%)
N2 142 (58.7%) 45 (18.6%)
N3 20 (8.2%) 5 (2.1%)
Pathology
Non-keratinizing squamous cell 175 (72.3%) 48 (19.8%) 0.556
Keratinizing squamous-cell carcinoma 16 (6.6%) 3 (1.3%) 0.487
Past health condition
Past health good 92 (38.0%) 27 (11.2%)
Basic diseases/cancer 99 (40.9%) 24 (9.9%) 0.545
Allegory of History
No known drug allergies 176 (72.7%) 46 (19.0%)
Allergy history 15 (6.2%) 5 (2.1%) 0.653
Vision
Normal 189 (78.1%) 51 (21.1%)
With eye impairment 2 (0.8%) 0 0.463
Hearing
Normal 186 (76.9%) 48 (19.8%)
With hearing impairment 5 (2.1%) 3 (1.2%) 0.247
Habits
Smoking 9 (3.7%) 6 (2.5%)

0.044 *Non-smoker 182 (75.2%) 45 (18.6%)
Drinking 4 (1.7%) 1 (0.4%)
No alcohol consumption 187 (77.3%) 50 (20.7%) 0.953
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Table 3. Cont.

Characteristics AOM < Grade 3
(Mild AOM)

AOM ≥ Grade 3
(Severe AOM) p Value

Height, mean ± SD, cm 163.4 ± 8.5 165.0 ± 8.0 0.561
Body weight, mean ± SD, kg

63.1 ± 11.9 66.2 ± 14.61st week of RT 1.599
2nd week of RT 62.0 ± 11.8 64.9 ± 14.5 1.5
3rd week of RT 61.2 ± 11.4 63.9 ± 14.1 0.116
4th week of RT 60.2 ± 11.3 62.8 ± 14.0 1.418
BMI
1st week of RT
<25 131 (54.1%) 32 (13.2%)
≥25 60 (24.8%) 19 (7.9%) 0.429
2nd week of RT
<25 131 (54.1%) 51 (21.1%)
≥25 60 (24.8%) 22 (9.1%) 0.116
3rd week of RT
<25 131 (54.1%) 31 (12.8%)
≥25 55 (22.7%) 20 (8.3%) 0.153
4th week of RT
<25 142 (58.7%) 34 (14.0%)
≥25 49 (20.2%) 17 (7.0%) 0.274

* p < 0.05. All the above data are derived from biopsy-proven primary NPC patients without the existence of
distant metastasis or co-existing tumors of other type at diagnosis.

3.2. Feature Extraction and Model Development
3.2.1. Feature Extraction

In this study, a total of 1544 radiomics features, 386 features each for four modalities
of imaging, were extracted from raw and LoG-filtered images. A total of 836 dosiomics
features (210 for GTVn, 211 for GTVnp, 204 for PTVn_60Gy, and 211 for PTVn_70Gy) were
extracted from dose images.

3.2.2. Models

For the clinical data, four variables, including age, RT treatment alone, T stage, and
smoking habits, were selected after univariate analysis. The logistic regression (LR) model
was established with these variables. T stage and smoking habits had statistical significance
in the LR model with a p-value < 0.05 (details in Table 4).

Table 4. Logistic regression results for single clinical data model.

Variables p-Value 95% Confidence Interval

Lower 95% Bound Upper 95% Bound

Age (18, 65) 0.802 0.345 2.274
T 0.007 *
T 1 0.591 0.149 2.96
T 2 0.069 0.881 29.854
T 3 0.024 * 0.195 0.891
RT alone 0.998 0 .
Smoker 0.043 * 1.037 10.683

* p < 0.05.

Radiomics and dosiomics features extracted from various VOIs were put into Mann–
Whitney U tests and RF classifier step by step. RF selection results of the threshold and
feature numbers are listed in Table A3.

Nine categories of single-modal models (C, PTVn_70Gy_D, PTVn_60Gy_D, GTVn_D,
GTVnp_D, GTVn_R, GTVnp_R_T2, GTVnp_R_CECT, and GTVnp_R_cT1) were established
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with single modal, single modality, and single VOI data. The best validation AUC was
at 0.75 ± 0.12 (training AUC = 0.73 ± 0.01) of a GNB model (GTVnp_R_cT1) with ra-
diomics data from GTVnp of cT1WI. Seven groups of models with data integrated before
feature selection (raw-data integration) were generated with the best AUC of a GNB model
(GTVnp_RD) at 0.81 ± 0.01 (training AUC = 0.79 ± 0.01). This best-performing model
was constructed with features selected from radiomics and dosiomics data in the region of
GTVnp. In addition, six sets of combined data after feature selection were also used for mod-
eling. A best LR model (C&R&D) with AUC at 0.79 ± 0.14 (training AUC = 0.81 ± 0.02)
was set with the simply combined data of selected clinical, dosiomics, and radiomics
features (details of mean 10-fold validation AUC results are listed in Figure 3).
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Figure 3. 10-fold validation AUC results for the test set. (a) The AUC plot of GNB model for the
GTVnp_R_cT1 data set. (b) The AUC plot of GNB model for the GTVnp_RD data set. (c) The AUC
plot of LR model for the C&R&D data set. (d) The heatmap of mean AUC results for all models.

The SHAP analysis showed the importance of the five features in the GTVnp_RD
model for prediction of severe AOM. Four of the five features were derived from cT1WI.
All five features are texture features. No dosiomics features were selected after the feature
selections (details in Figure 4).
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4. Discussion

In our study, we used simply combined and data-fusion methods to manage multi-
modalities of data (clinical, radiomics, and dosiomics), multimodalities of imaging (CECT,
cT1WI, and T2WI), and multi-regional information (GTVn, GTVnp, and PTVn) to predict
the incidence of severe AOM. Multiple models were established to evaluate and determine
which method was effective for clinical decision-making. Comparison of the AUC between
models showed that the simple combination of single-modal data of selected features had
the most stable performance (C&R&D), with an average AUC of 0.77 ± 0.17. In addition,
data-fusion methods, integrating radiomics and dosiomics data before selection proce-
dures, resulted in the best-performing model (GTVnp_RD), with the best test AUC of
0.81 ± 0.01. This is also the best AUC among the existing AOM prediction models from
previous studies.

The feature numbers in the C&R&D model and GTVnp RD were 29 and 5, respectively.
Obviously, data fusion was more efficient for training a model with one-sixth the number
of features to achieve stronger model predictability. To better explain the correlations of
the selected features and severe AOM for NPC patients, a SHAP plot was applied for the
GTVnp_RD XGBoost model. In this model, radiomics features extracted from GTVnp in
cT1WI images yielded the highest and majority prediction value for severe AOM.

Poolakkad and his colleagues established a machine learning (ML) model of 253 H&N
patients’ clinical data with the best AUC of 0.79 for AOM prediction [42]. Most clinical
data selected in their study were late after the CRT scheme, for example, the anti-neoplastic
chemotherapy-induced pancytopenia, co-morbidity score, and agranulocytosis. It is worth
noting that the features and variables selected in our study were all from the data collected
before implementation of the RT regimen. Clinicians could predict the severe AOM before
the commencement of RT planning. Personalized treatment strategies adjustment could be
achieved using the developed prediction model.

Strictly speaking, the concept of dosiomics is originated from radiomics. The data
for dosiomics and radiomics are similar in terms of the feature calculation algorithm [43].
The clinical data are different from the “-omics” data in nature. Therefore, instead of
integrating raw clinical data with other data, the combination of selected clinical data
was only applied in this study. Compared with less increase of AUC for the combination
of clinical data with integrated RD data, the clinical data could enhance the prediction
capability of single-modal models. The single radiomics models (R) and single clinical
models (C) have limited prediction performance with average AUC of three models (LR,
GNB, and XGBoost) at 0.63 ± 0.06 and 0.63 ± 0.64, respectively. When combining the
clinical data with the selected radiomics features, the model (C&R) outperformed both R
and C models with average AUC at 0.74 ± 0.03.
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The single dosiomics models yielded poor performance, with most AUCs under 0.7 in
the validation data set. In a previous study, dose distribution correlated with the incidence
and severity of AOM [44]. Dean et al. [45] developed an RF model with a testing AUC of
0.71 ± 0.09, using a dose–volume histogram, spatial dose metrics from the oral cavity, and
clinical data. In the current study, the best dosiomics model had the mean testing AUC of
0.69 ± 0.14. Different tumor-related VOIs may present different prediction value for severe
AOM. The difference in VOI selection between the two studies might shed some light on
the discrepancy in the findings. The oral cavity directly represents the dose distribution in
the oral mucosa, which might be more accurate than the GTVn, GTVnp, PTVn 60 Gy, or
PTVn 70 Gy. The VOI of the oral cavity requires specific contouring. It is worth noting that
contouring of the oral cavity is not a common practice in the participating hospital of this
study. Extra contouring is labor-intensive work in daily clinical practice. Our study only
selected the routine VOI broadly used for RT planning, which could support our model to
be applied from bench to bedside for clinical decision-making. Besides, the DVH is prone
to over-simplifying the dose distribution [46]. It is recommended to combine or integrate
dosiomics data with other modalities of data. When incorporating dosiomics data with
other data types, the best mean validation AUC could surge to 0.81 ± 0.01.

At present, there exists no effective preventive measures for the occurrence of severe
AOM in NPC patients undergoing RT. Nevertheless, it is feasible to mitigate the severity of
this affliction: (1) Use of alternative radiation techniques, such as proton therapy, may be
considered to reduce the risk of oral mucositis while maintaining treatment efficacy [34,47].
(2) Shortening the duration of chemotherapy. For advanced NPC patients who need to accept
both radiotherapy and chemotherapy, shortening the exposition time to chemotherapy agents
has shown lower mucosal toxicity [48]. (3) Photobiomodulation is a supportive treatment
for the protection of high-risk mucositis patients [49]. (4) Supportive care interventions:
preemptive or proactive use of supportive care interventions, such as oral hygiene measures,
pain management, or nutritional support, may be considered to prevent or reduce the severity
of AOM [50].

The limitations of our study were: (1) The mucositis grade levels of our patients had
an imbalanced distribution. This might have had a negative influence on the data analysis
work. The imbalanced results were the nature of the clinical situation. Patients were
stratified into the training and validation groups according to the severity of OM, which
could offset the imbalance problem [18,19,34]. (2) Potential bias of smoking information:
in our study, the number of smoking patients might be underestimated due to the nature
of this patient-reported outcome. This data were reported by patients at the time of their
hospital visit and recorded in the nursing consultation notes. (3) The severity of AOM
was scaled with standard terminology criteria for adverse events (CTCAE) in v3 or v4.03,
almost equivalent to mucositis. Various criteria are available for mucositis grading, such
as the those of the Radiation Therapy Oncology Group (RTOG) and the World Health
Organization (WHO). These scales have excellent concordance with bundled scores of
3 and 4 to describe severe AOM [51]. The CTCAE is easily conducted by clinicians and
nurses and broadly applied in the hospital. (4) The correlations of contributors under
AOM for NPC patients are complex. For clinical decision-making, genome information,
other clinical information such as fermented-food consumption and EBV infection, and
pathological image may also play critical roles. The limited data resources for multimodal
data integration are common challenges in the data-mining field. The radiomics data in our
study also provided relevant genomic information. Compared with gene test results, the
CECT and MRI examination images collected in our research are clinical routines used by
clinicians to set the RT plan for NPC patients. These noninvasive examinations could serve
as high-throughput screening tools for further application of severe AOM prediction in the
future. (5) Other selection of VOIs: for practical consideration, we have not added the VOIs
of the oral cavity, tongue, pharyngeal muscles, etc., which may hold potential predictive
value for AOM. Further investigation is recommended to incorporate this information to
enhance the accuracy of the analysis.
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5. Conclusions

AOM is a challenging and distressing complication in NPC patients following RT.
Prediction of severe AOM is necessary for timely prevention and intervention, which
would further improve the QoL and survival of patients. In this study, we adopted
multimodal data (clinical, radiomics, and dosiomics), multimodality of imaging (CECT,
cT1WI, and T2WI), and multi-regional information (GTVn, GTVnp, and PTVn) to develop
a best-performance model for severe AOM prediction. The simple combination of selected
information and data fusion were applied in our work. The results demonstrated that
the fusion of radiomics and dosiomics data from the primary tumor could generate the
most effective and best-performing model (mean AUC = 0.81 ± 0.01). The data resources
and VOIs selected in this study are routinely used in clinical practice, which has excellent
potential for further clinical support. Further validation work on a large cohort is warranted
to validate model generalizability.
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Appendix B

CECT. All patients were scanned in the CT stimulator (16-slice Brilliance Big 1Bore CT,
Philips Medical Systems, Cleveland, OH) at Queen Elizabeth Hospital in Hong Kong. The
scanned regions were from vertex to 5 cm below the sternoclavicular notch. The contrast-
enhanced images were acquired at 30 s after intravenous injection of 70 mL iodinated
contrast agents. The detailed acquisition parameters are listed in Table A1.

Table A1. Acquisition parameters of CECT.

Parameters CECT

Pitch 1
Kilovoltage (kV) 120
Current (mAs) 250–350
Slice thickness (mm) 3
Matrix 512 × 512
Scan time (s) 15

MRI. MRI scans were acquired with an MR scanner (1.5 Tesla, Siemens Avanto,
Germany). T2 weighted imaging with short-tau-inversion-recovery (STIR) sequence and
cT1WI with spin-echo MRI sequence were applied. The detailed acquisition parameters are
listed in Table A2.

Table A2. Parameters of T2WI and T1WI.

Parameters T2-STIR cT1WI

[TR]/[TE] (ms) 7640/97 739/17
FOV (cm2) 24 × 24 24 × 24
Number of acquisitions 1 1
Slice thickness (mm×slices) 4 × 25 3 × 28
Spacing (cm3) 0.75 × 0.75 × 4.4 0.938 × 0.938 × 3.3
Matrix 320 × 320 256 × 256

Appendix C

Table A3. Threshold of RFC selection and feature numbers for further model development.

Modal of Data Threshold Number of Features

GTVnp_RD 0.014 5
GTVnp_R_CECTcT1T2 0.01 8
GTVnp_R_CECTcT1 0.0125 5
GTVnp_R_cT1T2 0.125 5
GTVnp_R_cT1 0.015 4
GTVnp_R_CECT 0.01 19
GTVnp_R_T2 0.03 2
GTVnp_D 0.024 6
GTVn_RD 0.02 7
GTVn_R 0.03 7
GTVn_D 0.06 7
PTVn_D 0.03 3
PTVn_60Gy_D 0.03 12
PTVn_70Gy_D 0.042 1
R 0.012 2
D 0.016 13
RD 0.005 13
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