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Simple Summary: The interactions between Acute Myeloid Leukaemia (AML) cells and the sur-
rounding bone marrow (BM) tissue contribute to blocking the efficacy of current drug treatments and
to the relapse of patients. Relapsing AML tumours are refractory to current therapies and remain
untreatable. Developing new therapies for AML requires the development of new drug-screening
methods using in vitro models that closely mimic the interactions of AML cells with cytoprotective
BM cells. We have developed a new fluorescence-based in vitro model and an analytical method
that takes into consideration the reciprocal interactions between AML cells and the protective BM
stroma during drug treatments. Using this new method and combining it with bioinformatics, we
have identified new combinations of drugs that may overcome resistance to drug treatments and
lead to improved therapies for AML.

Abstract: The interactions between Acute Myeloid Leukaemia (AML) leukemic stem cells and the
bone marrow (BM) microenvironment play a critical role during AML progression and resistance to
drug treatments. Therefore, the identification of novel therapies requires drug-screening methods
using in vitro co-culture models that closely recreate the cytoprotective BM setting. We have devel-
oped a new fluorescence-based in vitro co-culture system scalable to high throughput for measuring
the concomitant effect of drugs on AML cells and the cytoprotective BM microenvironment. eGFP-
expressing AML cells are co-cultured in direct contact with mCherry-expressing BM stromal cells
for the accurate assessment of proliferation, viability, and signaling in both cell types. This model
identified several efficacious compounds that overcome BM stroma-mediated drug resistance against
daunorubicin, including the chromosome region maintenance 1 (CRM1/XPO1) inhibitor KPT-330.
In silico analysis of genes co-expressed with CRM1, combined with in vitro experiments using our
new methodology, also indicates that the combination of KPT-330 with the AURKA pharmacological
inhibitor alisertib circumvents the cytoprotection of AML cells mediated by the BM stroma. This new
experimental model and analysis provide a more precise screening method for developing improved
therapeutics targeting AML cells within the cytoprotective BM microenvironment.

Keywords: AML; tumour microenvironment; co-culture system; daunorubicin; resistance;
KPT-330; selinexor
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1. Introduction

Although 70–80% of Acute Myeloid Leukaemia (AML) patients undergo complete
remission after chemotherapy [1,2] long-term disease-free survival remains at low levels
(between 30–50% [1–3]). Therefore, there is an urgent, unmet need for improved therapies
against AML. Devising new therapeutic interventions will require a better understanding
of the tumour biology in AML that leads to relapse and drug resistance.

Currently, treatments for AML patients fit for intensive or low-intensive chemotherapy
regimens are frequently based on the combination of daunorubicin and cytarabine [4–6].
These initial treatments can be followed by stem-cell transplantation [7]. Some more
specialized therapies for specific AML subgroups may include dasatinib [8] and the FLT3
kinase inhibitor for FLT3-ITD AML patients [9]. Despite the improvements during the
last decade in management of AML with the current therapies, the majority of AML
patients will relapse within 3 years [4]. A relapse in AML has been ascribed to minimal
residual disease (MRD) in the bone marrow (BM) [3,10,11], and there is compelling evidence
that the adhesive interactions between AML stem cells and the BM niches are vital in
MRD, leading to a resistance to drug treatments [3,12] as well as in AML maintenance
and progression [13,14].

Given the emerging key role of the BM microenvironment in AML, the identification of
new therapeutic interventions to overcome cell adhesion-mediated drug resistance (CAM-
DR) requires the development of in vitro co-culture models that recreate the in vivo BM
setting for studies of the biology of AML, as well as for drug screening [13]. Despite some
advances using primary samples from AML patients [15] or luciferase-based technology
and AML cell lines [16], currently available in vitro co-culture systems fail to discriminate
and evaluate the concomitant impact of drugs on AML cells and other BM cells. It is
becoming evident that understanding the direct impact of drug treatments on the tumour
microenvironment in the presence of cancer cells is critical to accurately evaluate drug
efficacy against cancer cells. Therapeutic drugs can induce direct cancer cell killing while
simultaneously stimulating the tumour microenvironment to paradoxically induce the
formation of niches that promote the resistance of cancer cells against treatments [17–19].
Determining the concomitant effect of drug treatments in cancer and tissue stromal cells
can lead to new strategies for drug discovery. Preclinical models that measure the simulta-
neous effect of drugs on both stromal and tumour cells are, therefore, better predictors of
therapeutic drug efficacy [19].

We have previously devised a fluorescence-based experimental model for drug screen-
ing against multiple myeloma (MM) that is scalable to high throughput. This model
provides a significant improvement on previous methodologies [20] by allowing for the
assessment of both MM and BM stromal responses (BM fibroblastic cells and osteoclasts) to
anticancer drugs [19]. Using this methodology, we revealed that a resistance to dexametha-
sone (a MM drug already in use in the clinic with a widespread problem of resistance being
developed over time) involves the enhancement of stromal cell proliferation in response to
the drug treatment [19], as well as the previously described MM cell attachment to stromal
cells. We routinely use this platform in our current drug discovery projects.

We now report a new fluorescence-based in vitro co-culture system-based high through-
put analysis for the assessment of drug efficacy against AML. This AML experimental
model is based on the same principles as our MM method. For AML, we tested the in-
teractions of eGFP–AML-expressing cells with the BM mesenchymal fibroblastic cell line
mCherry-HS5 and primary osteoblasts, as both BM cell types have been shown to provide
cytoprotection against drug treatments in AML [21–23].

Using our new platform, we found distinctive patterns of interaction between AML
and BM mesenchymal/fibroblastic stromal cells that differ from the interactions of MM
cells with the same BM niche. We also performed a drug screening and identified some
pharmacological candidates that overcome BM-mediated resistance to daunorubicin, in-
cluding KPT-330 (selinexor, xpovio®, nexpovio®), an inhibitor of the nuclear export receptor
CRM1/XPO1. By combining in silico analysis using transcriptomics data of AML patients
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with in vitro testing using our new AML experimental model, we also identified the po-
tentially efficacious combination of KPT-330 with the AURKA pharmacological inhibitor
alisertib to prevent CAM-DR. Our data warrant further investigation of these identified
drug combinations in order to improve the efficacy of AML therapy.

2. Materials and Methods
2.1. Cell Culture

The Human AML cell lines eGFP-MOLM-14, eGFP-MV4-11, eGFP-Kasumi, and eGFP-
THP-1 were generated using lentiviral vectors, as previously described [19]. The BM mes-
enchymal/fibroblastic stromal cell line mCherry-HS5 cells were previously characterized [19].
All cell lines were cultured at 37 ◦C in a humidified atmosphere in the presence of 5% CO2,
95% air. AML cells were cultured in RPMI-1640 medium and mCherry-HS5 cells in DMEM
supplemented with L-glutamax and 10% foetal bovine serum (FBS). Primary Human os-
teoblasts were obtained from Lonza Ltd. and were grown using the OGM™ Osteoblast
Growth Mediu BulletKit™.

2.2. Determination of Cell Proliferation in eGFP-AML Cell Lines in Co-Culture with
mCherry-HS5 Cells

mCherry-HS5 BM fibroblastic stromal cells were seeded at 10 × 103 cells per well in
96 well plates and incubated overnight in DMEM supplemented with 10% FBS. The
following day, the culture media was aspirated and eGFP–AML cells were layered on
mCherry-HS5 cells at a density of 2 × 105 cells/mL in 200 µL per well of RPMI sup-
plemented with 10% FBS. Three technical replicas were seeded per experimental condi-
tion. The library of compounds tested in our high throughput studies was Library I-384
from Merck. To determine the proliferation index, the fluorescence intensity (FI) per
well was read at λex488 nm/λem528 nm and at λex584 nm/λem607 nm to estimate the
numbers of eGFP-AML cells and mCherry-HS5 cells, respectively, using a FLx800 mul-
tidetection microplate reader (Biotek Instruments, Winooski, VT, USA). Measurements
were taken at d0 and d3 and the proliferation index was calculated as the ratio of the
fluorescence emission at d3/d0 after subtracting the background emission. Each exper-
iment was repeated three times. Quest Graph™ EC50 Calculator, AAT Bioquest, Inc.,
https://www.aatbio.com/tools/ec50-calculator (accessed on 15 February 2023) was used
to calculate the half maximal inhibitory concentration (IC50) and the half maximal effica-
cious concentration (EC50) values.

2.3. Determination of AML Cell Viability by Flow Cytometry

The percentage of viable and apoptotic cells was determined using flow cytometry.
Cell cultures were harvested and Annexin-V-APC and propidium iodide staining in the
eGFP positive population (AML cells) was measured by flow cytometry using a BD FAC-
SCanto II flow cytometer (BD BioSciences, Franklin Lakes, NJ, USA) equipped with a High
Throughput Sampler.

2.4. Cell Cycle Analysis

The percentage of cells in the different phases of the cell cycle was determined ac-
cording to the DNA content using the propidium iodide staining detected by FACS as a
readout. Cells seeded in 96 well plates were fixed with cold 70% ethanol for 30 min. Cells
were washed twice with PBS and then resuspended in 50 µL of PBS with propidium iodide
(50 µg/mL) and RNase (100 µg/mL) and incubated in the dark for 30 min. The levels of
propidium iodide staining were detected using a BD FACSCanto II flow cytometer (BD
BioSciences, Franklin Lakes, NJ, USA).

https://www.aatbio.com/tools/ec50-calculator
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2.5. In Silico Analysis of the Correlation between the Expression of CRM1-Encoding XPO1 Gene
and Genes in the TARGET Database

The potential co-expression of XPO1 (the gene encoding CRM1) with the 135 genes
collected in the CGA TARGET (Tumour Alterations Relevant for GEnomics-driven Therapy)
database of the Broad Institute (https://software.broadinstitute.org/cancer/cga/target
(accessed on 11 January 2019)) (herein referred to as TARGET genes) was performed using
two previously described bioinformatics tools. CANCERTOOL [24] was used for the
analysis of breast, lung, prostate, and colorectal cancer samples, and the cBioPortal analysis
suite [25,26] was used for the analysis of AML samples. Pearson’s correlation values (R)
were determined for each XPO1/TARGET gene pair in each tumor type analyzed, and the
mean R value across the five tumor types was calculated and used as a criterion to select
XPO1-co-expressed genes. Significant co-expression correlation values (p < 0.05) higher
than 0.2 or lower than −0.2 were considered to calculate an average correlation value for
the five types of cancer for each gene from the CGA TARGET database.

2.6. Statistics

For statistical analysis using the adequate tests, GraphPad Prism 9 software was
used. Statistically significant difference using ANOVA or Student t-test was determined
from p < 0.05. The interaction of pairs of pharmacological compounds under study was
analyzed using Calcusyn software (Biosoft, Ferguson, MO, USA) based on the Chou–Talalay
method [27]. Data from the percentage of apoptotic cells were expressed as the fraction of
affected cells by the treatments (Fa) by the compounds as single agents or in combination
with respect to untreated cells to calculate the combination index (CI) of the compounds
CI ≤ 1 and CI = 1 indicate synergism and additive effects, respectively.

3. Results
3.1. Characterisation of a High Throughput Experimental Platform to Distinguish Changes in the
Proliferation of AML and BM Mesenchymal Stromal Cells in Co-Culture

Methods such as the MTT assay, commonly used to determine the numbers of cells
in the culture, are unable to differentiate the presence of stromal and AML cells when in
co-culture. Previous AML studies have used luciferase-expressing AML cells to distinguish
the proliferative response of AML in co-culture with BM stromal cells [16]. However, to our
knowledge, there are no published methods to determine simultaneously the reciprocal
effect of AML cells and/or anticancer therapy on the stromal cell compartment in vitro and
in a high throughput setting. We used our previously published approach [19] to develop a
new fluorescence-based high throughput platform to determine the inter-relation between
AML and BM stromal niches and the response to drug treatments.

The AML cell lines MOLM-14, MV4-11, Kasumi, and THP-1 were chosen for assess-
ment in our model as they represent some of the most common genetic and cytogenetic
abnormalities observed in AML patients, including those poor prognostic subtypes car-
rying FLT3 internal tandem duplication [28] and MLL-gene fusions [29], as well as for
representing different possible differentiation status of AML blasts. We generated eGFP-
expressing versions of these cell lines so that the fluorescent signal emitted by the cells
allowed for the determination of cell numbers in culture with comparable sensitivity to the
MTT assay. The levels of expression of eGFP in the AML cell lines were equivalent to those
of the previously generated MM cell lines [19]. Accordingly, eGFP-expressing AML cells
showed linear correlations between the number of seeded cells and the emitted fluorescent
signal with equivalent sensitivity to the MTT assay (Figures 1A–C and S1). GFP-expressing
cells maintained the same proliferation rates and the sensitivity to anticancer drugs, such
as daunorubicin as the parental cell lines (Figures 1D–F and S2).

https://software.broadinstitute.org/cancer/cga/target
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Figure 1. Characterization of eGFP-expressing AML cells. Comparison of the sensitivity of estimation
of cell numbers by measuring optical density (OD) using an MTT assay in arbitrary units (AU),
or fluorescent intensity emitted by eGFP-expressing tumour cells. Correlation between values of
cell numbers seeded per well and OD (A) or fluorescent intensity (B). Correlation of values of OD
and fluorescent intensity (C). Proliferation of parental (D) and eGFP-expressing MOLM-14 cells (E)
left untreated or treated with increasing concentrations of daunorubicin was estimated using MTT
assays or fluorimetry (F). The half maximal inhibitory concentration (IC50) values for inhibition of
the proliferation of the cell lines are shown in the graphs. Plates used for measurements of optical
density were previously used to measure fluorescent intensity of the cultures of eGFP-MOLM-14.
* p < 0.05; *** p < 0.005 ANOVA test versus control untreated.

The presence of mCherry-HS5 cells in co-culture did not alter the levels of expression
of eGFP in eGFP–AML-viable cells (Figure S3). This shows that our determination of cell
numbers based on integrated eGFP fluorescence intensity is applicable for eGFP–AML
cells cultured alone or in the presence of other cell types. Non-viable eGFP–AML cells un-
derwent a reduction in eGFP levels similar to those previously described in MM cells [19]
(Figure S3C–F), so that the low-expressing cells are detectable by flow cytometry with-
out interfering with the eGFP signal required to estimate viable eGFP cell numbers
by fluorimetry [19].

We assessed the reciprocal influence on proliferation between mCherry-HS5 cells and
eGFP-tumour cell lines (Figure 2) and found that the presence of AML cells affected the
proliferation of mCherry-HS5 BM stromal cells in a distinctive manner that was different
from the effect elicited by the presence of MM cells [19]. We previously found that MM
cell lines significantly increased the proliferation rate of mCherry-HS5 cells seeded at
low density (≤10 × 103 mCherry-HS5 cells/well) [19]. Using the same cell densities as
a starting point, we now report that AML cells either did not affect the proliferation of
mCherry-HS5 cells or inhibited their proliferation when AML cells were seeded at a density
of 4 × 104 cells/well or above (Figure 2A,C,E).
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Figure 2. Analysis of stromal and tumour cells’ proliferation in co-culture. Fluorescent-based analysis
of proliferation of mCherry-HS5 stromal cells (A,C,E) and eGFP-AML cell lines (B,D,F). Proliferation
of cells was evaluated after 72 h. Histograms indicate the fold-increase in cell numbers. * p < 0.05;
** p < 0.01; *** p < 0.005; ANOVA test versus cells cultured alone.

The impact of the presence of mCherry-HS5 cells on AML cell proliferation presented
some variations among the cell lines tested. Thus, the proliferation of eGFP-MOLM-14 cells
was either not affected or halted by mCherry-HS5 cells (Figure 2B). eGFP-MV4-11 cells, on
the other hand, presented a pattern of proliferation in response to the presence of mCherry-
HS5 cells that varied depending on the initial AML cell density used. mCherry-HS5 cells
increased the proliferation of eGFP-MV4-11 cells (Figure 2D) seeded at lower densities
(≤5 × 103 cells/well). However, when seeded at a density above 2 × 104 cells/well, the
co-culture with increasing numbers of mCherry-HS5 cells correlated with an inhibition of
the proliferation of eGFP-MV4-11 cells (Figure 2D). The proliferation of eGFP-THP-1 cells
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was generally unaffected by the presence of mCherry-HS5 cells. Only when eGFP-THP-1
cells were seeded at the highest tested densities (≥4 × 104 cells/well) was their expansion
reduced by the presence of mCherry-HS5 cells (Figure 2F).

Overall, the presence of AML cells failed to stimulate the proliferation of mCherry-HS5
cells, while this BM stromal cell line did not promote the proliferation of sparsely seeded
AML cells. These results are in contrast to the mCherry-HS5-mediated stimulation of the
proliferation of MM cells that we previously reported [19]. Taken together, our results show
that AML cells display distinctive heterotypic cell–cell interactions with mCherry-HS5 cells
that differ from previous patterns of interaction by MM cells and other types of cancers
that can colonize the BM [19].

We then used our methodology to analyze the capacity of mCherry-HS5 cells to
inhibit the AML killing efficacy of daunorubicin and cytarabine at doses achievable in
patients [30,31]. Treatment with these compounds inhibited the proliferation of AML
cells in a concentration-dependent manner independently of the presence of BM stromal
cells, and the combination of the two drugs significantly increased this anti-proliferative
effect (Figure 3A). However, the analysis of the percentage of apoptotic cells showed
that the presence of BM stromal cells inhibited the cytotoxic effect of daunorubicin and
cytarabine, as previously reported [16] (Figure 3B,C), and increased the EC50 of both drugs
(Figure 3D). The use of daunorubicin and cytarabine in combination did not prevent this
cytoprotective effect (Figure 3B). Treatment of the heterotypic cultures with the lower
concentrations of daunorubicin enhanced the proliferation of mCherry-HS5 cells and did
not affect their proliferation at the higher concentrations used (Figure 3E). Cytarabine
inhibited the proliferation of mCherry-HS5 cells in a concentration-dependent manner
(Figure 3E). The BD Accuri flow cytometer used for analysis of the cells in co-culture
lacked the adequate laser configuration to detect the protein mCherry. Hence, it was
not possible to determine the exact percentage of apoptotic cells in the mCherry-HS5
population in our experiments. It remains to be elucidated whether the inhibition of
mCherry-HS5 proliferation induced by cytarabine is due to a cytotoxic effect on these
cells. Co-treatment with daunorubicin and cytarabine prevented the daunorubicin-induced
increase in mCherry-HS5 proliferation (Figure 3E), but the remaining viable stromal cells
sustained the cytoprotective effect against the drug combination (Figure 3B). Taken together,
our data suggest that in the presence of BM mesenchymal/fibroblastic stromal cells, the
inhibition of the proliferation of AML cells by daunorubicin and cytarabine is due to both
cytostatic and cytotoxic effects.

In order to further understand the mechanisms of cytoprotection against daunorubicin
and cytarabine mediated by mCherry-HS5 cells, we analyzed the pattern of cell cycle
progression of AML cells. Cell cycle analysis confirmed the cytoprotection mediated by the
presence of mCherry-HS5 cells, resulting in a reduction in the percentage of late apoptotic
(sub G1/G0 population) AML cells versus cells cultured alone (Figure 4A). The treatment of
AML cells in monoculture with drugs as single agents induced a concentration-dependent
decrease in the percentage of cells in all phases of the cell cycle (Figure 4B–D). In contrast, the
presence of mCherry-HS5 blocked the efficacy of both drugs by inducing an accumulation
of AML cells in S (Figure 4C) and G1 phases in comparison to AML cells cultured alone
(Figure 4B). Additionally, a sustained higher percentage of mitotic cells (Figure 4D) was
noted in the case of treatment with daunorubicin. Overall, these results indicate that when
treated in monoculture, AML cells continue to cycle and drug treatments cause DNA
damage in cells entering S phase, resulting in apoptosis and, therefore, a reduced rate of
proliferating cells. However, when AML cells are treated in co-culture, the presence of
BM stromal/fibroblastic cells induce a delayed transition from G1 and S phases, slowing
down cell cycle progression and, hence, interfering with the mechanisms of action of
daunorubicin and cytarabine during DNA synthesis, resulting in the inhibition of their
pro-apoptotic effect.
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Figure 3. Analysis of the response to daunorubicin and cytarabine of eGFP–MOLM-14 cells cultured
alone or in heterotypic cultures with mCherry-HS5 cells. Analysis of changes in proliferation (A)
and percentage of apoptotic cells (B) in cultures of eGFP-MOLM-14 cells at Day 3 post-seeeding.
Cultures were left or were treated with daunorubicin (DNR) or cytarabine (CYT) as single agents or in
combination; (C) Composites of phase contrast and fluorescence micrographs of GFP-MOLM-14 cells
(green) cultured alone or in co-culture with mCherry-HS5 cells (red) generated using NIS-Elements
AR 5.10 software. Bar 40 µM; (D) Table showing the half maximal efficacious concentration (EC50)
values of DNR and CYT for inducing apoptosis of eGFP-MOLM-14; (E) Proliferation of mCherry-HS5
cells. * p < 0.05; ** p < 0.01; *** p < 0.005 ANOVA test versus untreated cells under the same culture
conditions. # p < 0.05; ## p < 0.01 post-hoc Student T-test comparing cells co-cultured with mCherry-
HS5 cells vs. cells cultured alone treated with the same concentration of the drug under study.
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treated with the same concentration of drug treatment.

Overall, these results show that our fluorescence-based experimental model provides
insight for a better understanding of the behaviour of AML cells and BM mesenchy-
mal/fibroblastic cells and the concomitant impact of drugs on both cell populations.

3.2. High Throughput Screening to Identify Drug Candidates and Signalling Pathways Involved in
BM Stromal-Mediated Drug Resistance in AML

In MM, the presence of mCherry-HS5 cells provided a cytoprotective microenviron-
ment against therapeutic drugs by promoting both the survival and proliferation of MM
cells [19]. Our results so far indicate that in AML, mCherry-HS5 cells provide pro-survival
signals but fail to sustain the proliferation of AML cells treated with daunorubicin and
cytarabine. This implies that identifying candidate compounds that may prevent BM-
stroma-mediated drug resistance requires the analysis of the percentage of cells undergoing
apoptosis rather than the analysis of cell proliferation. This can be achieved by staining
cells with Annexin V and propidium iodide as described in the above sections. We noticed
that AML cells undergoing apoptosis (both early and late) can be clearly distinguished
by flow cytometry by the low levels of expression of eGFP (Figure S4A). Our data using
various AML cell lines consistently showed a clear correlation between the percentage
of apoptotic cells determined by Annexin V staining and the percentage of GFP-low-
expressing AML cells (Figure S4B,C). Hence, the quantification of the percentage of low
eGFP-expressing cells is a valid and rapid method to determine the levels of apoptosis in
GFP-AML cell cultures (Figure S4D,E). This novel approach eliminates several staining
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steps required in the standard protocol to determine the percentage of apoptosis in cultured
cells, significantly reducing the time required for data acquisition and analysis during high
throughput experiments. We used this methodology for our high throughput screening to
determine possible compounds that would overcome BM-stroma-mediated cytoprotection
against daunorubicin.

The Library I-384 from the Merck library of compounds, which includes inhibitors
of a variety of pathways involved in cell survival and cell adhesion, was selected for
screening. We tested the potential of these compounds to revert the cytoprotection of AML
cells mediated by BM stromal cells, as well as their ability to inhibit the proliferation of
BM cells. A compound was selected as a positive hit when it fulfilled the following two
criteria: (a) It reverted the mCherry-HS5 cells-mediated cytoprotection by increasing the
percentage of apoptosis of eGFP–AML cells in co-culture with mCherry-HS5 cells by at least
25% with respect to this heterotypic culture treated with daunorubicin as a single agent;
and (b) It inhibited the proliferation of mCherry-HS5 cells by at least 10% with respect to
daunorubicin as a single agent (Table 1 and Figure S5). Our data showed that the following
pathways from the library under study regulated BM stromal-mediated mechanisms of
AML resistance to daurorubicin: PKC kinase, PI3K/Akt, JAK I, CDK1/2/4, and Src kinases,
as well as the activity of the nuclear export receptor CRM1/XPO1 (Table 1 and Figure S5).

Table 1. Hit compounds that revert BM-mediated drug resistance against daunorubicin of
eGFP-MOLM-14 are listed showing the percentage of apoptosis induced on eGFP-MOLM-14 and
the percentage of inhibition of mCherry-HS5 cells in co-culture and treated with daunorubicin.
(*) Compounds labelled with asterisks partially fulfilled the selection criteria.

% eGFP-MOLM-14
Apoptotic Cells

% Inhib Prolif
mCh-HS5

KPT-330 92.7 57.3

Staurosporine, Streptomyces sp. (PKC inhibitor) 99.9 78.1

Staurosporine, N-benzoyl-
(PKC inhibitor) 78.1 39.7

PKR Inhibitor 99.9 42.5

PI-103
(PI3K/mTOR inhibitor) 81.4 47.8

PDK1/Akt/Flt Dual Pathway Inhibitor 99.9 87.9

PDGF RTK Inhibitor 76.2 13.5

K-252a, Nocardiopsis sp.
(PKA, PKC, PKG, others) 100.0 51.2

JAK Inhibitor I 98.1 11.5

Indirubin Derivative E804
(Src-STA3 inhibitor) 80.9 8.9

IKK-2 Inhibitor IV * 81.5 0.8

Herbimycin A, Streptomyces sp.
(Src inhibitor) 99.2 36.7

GSK-3 Inhibitor XIII * 75.3 0.6

Gö 6976 (PKC inhibitor) 94.9 40.2

Fascaplysin, (CDK4 inhibitor) 82.1 60.1

Cdk1/2 Inhibitor III 99.8 45.2

Cdk/Crk Inhibitor 99.9 56.2
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Table 1. Cont.

% eGFP-MOLM-14
Apoptotic Cells

% Inhib Prolif
mCh-HS5

Aurora Kinase/Cdk Inhibitor * 81.9 -15.2

Alsterpaullone, 2-Cyanoethyl
(GSK-3β, CDK5/p25, CDK1/cyclin B) 99.7 55

Alsterpaullone *
(GSK-3β, CDK5/p25, CDK1/cyclin B) 97.1 6.3

Akt Inhibitor V, Triciribine 81.1 24.7

Akt Inhibitor IV 89.4 56.2

To identify possible common pathways involved in BM-mediated drug resistance to
daunorubicin in AML cells independently of their genetic background, we extended the
analysis of the selected hits to a wider panel of eGFP-expressing AML cell lines (eGFP–MV4-
11, eGFP–THP-1 and eGFP–Kasumi). As negative controls, we used compounds that were
not selected as hits in our initial screening. Eleven compounds (Akt Inhibitor IV, Alster-
paullone, 2-Cyanoethyl, Cdk1/2 Inhibitor III, Cdk/Crk Inhibitor, Fascaplysin, Gö 6976, JAK
I, PDK1/Akt/Flt Dual Pathway Inhibitor, the PKC inhibitor Staurosporine Streptomyces sp.
and the CRM1 inhibitor KPT-330) showed enhanced killing of daunorubicin-treated AML
cells in all the cell lines tested (Figure 5). These inhibitors targeted all the same pathways
identified using eGFP-MOLM-14 cells, except for Src and PKR signaling.
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cells cultured alone (white bars) or in the presence of mCherry-HS5 cells (light grey bars) and were left
untreated or were treated with 100 nM of daunorubicin. Co-cultures were also treated with 100 nM
of daunorubicin in combination with the drugs labelled in the x axis. Black bars indicate previously
identified hit compounds and dark grey bars, compounds discarded as efficacious in the screening
using eGFP–MOLM-14. Graphs show the results using eGFP–Kasumi (A), eGFP–THP-1 (B), and
eGFP–MV4-11 (C). * p < 0.05, ** p < 0.01, *** p < 0.005 ANOVA versus eGFP-AML cells in co-culture
with mCherry–HS5 treated with 100 nM of daunorubicin.

We then tested the efficacy of the selected hit compounds to overcome the possi-
ble cytoprotection of AML cells mediated by osteoblasts. Osteoblasts comprise a criti-
cal haematopoietic BM niche that supports the survival of normal haematopoietic stem
cells and long-term haematopoietic progenitors, as well as pre-leukaemic stem cells [14].
Therefore, the interaction of AML stem cells with osteoblasts plays a crucial role in AML
tumour initiation during the onset of the disease [14] and in resistance to therapeutic
drugs [21,22]. Similarly, to the results obtained with mCherry-HS5 cells, the proliferation
of AML cells was inhibited by daunorubicin independently of the presence of primary
osteoblasts (Figure 6A), while the presence of osteoblasts inhibited the pro-apoptotic effect
of daunorubicin (Figure 6B). The combination of daunorubicin with the hit compounds
identified using the mCherry-HS5 cells overcame the cytoprotection of all the AML cell
lines tested (Figure 6C–E), except for the Akt IV inhibitor.

Finally, we investigated a possible synergistic pro-apoptotic effect of daunorubicin
in combination with inhibitors targeting the identified pathways. In the study, we used
the inhibitor compounds selected in the high throughput drug screening to overcome
cytoprotection mediated by mCherry-HS5 cells and osteoblasts, as well as several clinical
inhibitors of the same pathways currently used as therapies or under investigation in
clinical trials against various types of cancers. In eGFP–MOLM-14 cells cultured alone, we
found some synergistic effect with the combination of daunorubicin and cytarabine (Table 2).
However, when these AML cells were treated in heterotypic culture with mCherry-HS5
cells, the synergy between these two drugs was blocked and an antagonistic effect was
observed. In contrast, the combination of daunorubicin with the selected hit compounds
resulted in a synergistic effect of various degrees that was sustained in the presence of BM
cytoprotective cells (Table 2).

Taken together, our data suggest that the inhibition of the pathways regulated by PKC
kinase, CDK1 to 7, and CRM1/XPO1 are critical to overcome BM-mediated drug resistance of
AML cells against daunorubicin in both the mesenchymal/fibroblastic and osteoblast niches.

3.3. In Silico Identification of Potential New KPT-330-Based Combination Therapies against AML

The efficacy of daunorubicin in combination with the CRM1 inhibitor KPT-330 de-
tected in our drug screening has been further validated by recently published preclinical
and clinical studies. KPT-330 has been shown to increase in vitro and in vivo the AML-
killing efficacy of daunorubicin and other anthracyclins by restoring the nuclear localization
of topoisomerase IIα and by downregulating the expression of DNA damage repair genes
in AML cells [32]. These results translated into clinical trials, which showed an increased ef-
ficacy of the combination of daunorubicin and cytarabine when used with KPT-330 [33,34].
Taken together, these recent in vivo studies and clinical trials strongly support the effec-
tiveness of our high throughput experimental platform and analysis methodology for the
identification of efficacious therapies against AML and validate de efficacy of KPT-330 in
combination with daunorubicin for treatment of AML patients. However, a recent clinical
trial indicates possible limitations in the efficacy of the combination of daunorubicin and
KPT-330 for certain AML patient populations [35]. Therefore, new effective KPT-330-based
drug combinations may be explored since this CRM1 inhibitor has been shown to be more
efficacious in clinical trials when used in combination regimes with additional therapeutic
agents [34,36,37].
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Figure 6. Analysis of the cytotoxic effects of the combination of daunorubicin with the hit compounds
identified in the initial drug screening on eGFP–AML cells in co-culture with osteoblasts. The initial
optimization of seeding numbers of osteoblasts per well in 96 well plates in co-culture with eGFP–
MOLM-14 cells leading to protection against therapeutic drugs, which was tested by measuring the
impact of daunorubicin on proliferation (A) and the levels of apoptosis (B) in eGFP–MOLM-14 cells. In
subsequent co-culture experiments, 2000 osteoblasts were seeded per well. A percentage of apoptotic
eGFP–MOLM-14 (C), eGFP–MV4-11 (D), and eGFP–Kasumi (E) cells cultured alone (white bars) or
in the presence of osteoblasts (light grey bars) when left untreated or when treated with 100 nM
daunorubicin. Co-cultures were also treated with 100 nM of daunorubicin in combination with the
drugs indicated in the x axis. Black bars indicate hit compounds previously identified in our screening
using eGFP–MOLM-14, and dark grey bars, compounds discarded as efficacious in that screening.
** p < 0.01; *** p < 0.005 ANOVA test versus untreated cells under the same culture conditions.
## p < 0.01; ### p < 0.005 ANOVA test versus the same treatment in monoculture of AML cells.
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Table 2. Analysis of the possible synergistic effect of selected hit compounds. Combination index
(CI) and affected fraction (Fa) of the listed compounds are shown at the specified concentration in
combination with 10, 25, 50 and 100 nM daunorubicin in eGFP–MOLM-14 cells cultured alone or in co-
culture with mCherry-HS5 cells. CI values labelled in red indicate synergism or very strong synergism,
according to the Chou–Talalay method. CI values labelled in blue indicate moderate synergism.

eMOLM-14 Alone eMOLM-14 + mCherry-HS5

Dauno (nM) Fa CI Fa CI

Cytarabine
100 nM 10 0.709 0.94 0.415 3.083
300 nM 25 0.855 1.446 0.573 2.271
600 nM 50 0.988 0.754 0.685 1.79
1 µM 100 0.995 1.005 0.799 1.178

Cdk/Crk Inhibitor
10 nM 10 0.397 1.175 0.452 1.133
20 nM 25 0.877 1.052 0.653 1.104
30 nM 50 0.992 0.644 0.828 0.789
40 nM 100 0.994 1.082 0.916 0.601

Fascaplysin
200 nM 10 0.907 0.925 0.530 1.076
300 nM 25 0.984 0.957 0.766 0.605
400 nM 50 0.990 1.337 0.867 0.537
600 nM 100 0.993 2.097 0.957 0.426

PDK1/Akt/Flt Inhibitor
100 nM 10 0.340 1.522 0.324 2.129
200 nM 25 0.966 0.834 0.667 0.988
300 nM 50 0.991 0.917 0.728 1.285
400 nM 100 0.993 1.466 0.975 0.116

Go6976
500 nM 10 0.883 0.605 0.498 0.753
600 nM 25 0.989 0.396 0.795 0.372
700 nM 50 0.993 0.644 0.837 0.484
800 nM 100 0.996 1.031 0.919 0.39

Staurosporine, N-benzoyl
200 nM 10 0.975 0.46 0.471 0.909
400 nM 25 0.993 0.441 0.629 0.841
600 nM 50 0.993 0.791 0.765 0.6
800 nM 100 0.992 1.501 0.916 0.192

Staurosporine, Streptomyces sp.
5 nM 10 0.992 0.247 0.454 1.216

10 nM 25 0.990 0.84 0.763 0.529
20 nM 50 0.991 1.357 0.901 0.425
30 nM 100 0.994 1.279 0.949 0.363

KPT-330
100 nM 10 0.756 1.118 0.485 1.097
130 nM 25 0.959 1.024 0.693 0.748
160 nM 50 0.992 0.957 0.824 0.549
200 nM 100 0.994 1.404 0.929 0.34

An overexpression of CRM1 in AML patients inversely correlates with overall survival,
constituting a predictive factor for poor prognosis [38]. CRM1 alterations in cancer cells
(including mutations and overexpression) are also a common feature associated with poor
prognosis in non-haematological tumours [39–48]. In fact, the compelling preclinical effi-
cacy of KPT-330 in various solid cancer models [49] has led to current clinical trials [47,49].
In order to select drug candidates for screening in combination with KPT-330 in our in vitro
AML experimental model, we hypothesized that proteins co-overexpressed with CRM1
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in patients with AML, as well as in other tumour types, would represent pro-tumoral
pathways co-activated with CRM1 and, therefore, relevant targets for putatively synergistic
KPT-330-based combination treatments. We performed an in silico analysis to identify can-
cer genes whose mRNA levels positively correlate with those of XPO1, the gene coding for
CRM1 in various solid tumours and AML patients. Specifically, we analyzed the correlation
between XPO1 expression and the expression of a set of 135 cancer-related genes included in
the CGA TARGET (Tumour Alterations Relevant for GEnomics-driven Therapy) database
of the Broad Institute (https://software.broadinstitute.org/cancer/cga/target (accessed on
19 March 2023)). This database contains genes (hereafter referred to as TARGET genes) with
diagnostic, prognostic, or predictive utility whose alteration in cancer is directly linked to a
clinical action. Correlation analyses were carried out using publicly available datasets from
several cancer types, summarized in Table 3.

Table 3. List of datasets used in our in silico analysis of the correlation between the expression of
XPO1 and the expression of TARGET genes. Data for solid tumor cohorts are pre-loaded in the
CANCERTOOL webtool (http://genomics.cicbiogune.es/CANCERTOOL/citeUs.html, accessed on
11 January 2019). AML data from Liu et al. were retrieved at gdc-portal.nci.nih.gov/legacy-archive/
(accessed on 25 November 2020).

Cancer Type Study/Reference Cohort Size ID

Breast cancer

Lu et al., 2008 [50] 131 GEO: GSE5460
Ivshina et al., 2016 [51] 249 GEO: GSE4922

TCGA 522
Pawitan et al., 2005 [52] 159 GEO: GSE1456

Wang et al., 2005 [53] 286 GEO: GSE2034

Lung cancer

Chitale et al., 2009 [54] 128
Sheden et al., 2008 [55] 442 GEO: GSE68465

TCGA 514
Wilkerson et al., 2012 [56] 116 GEO: GSE26939

Prostate cancer

Glinsky et al., 2004 [57] 79
Grasso et al., 2012 [58] 88 GEO: GSE35988

Lapointe et al., 2004 [59] 26 GEO: GSE3933
Taylor et al., 2010 [60] 179 GEO: GSE21034

TCGA 496
Varambally et al., 2005 [61] 19 GEO: GSE3325

Colorectal cancer

Colonomics 246 GEO: GSE44076
Jorissen et al., 2009 [62] 290 GEO: GSE14333
Kemper et al., 2012 [63] 90 GEO: GSE33113

Laibe et al., 2012 [64] 130 GEO: GSE37892
Marisa et al., 2013 [65] 585 GEO: GSE39582

Roepman et al., 2014 [66] 188 GEO: GSE42284
TCGA 374

Acute myeloid leukaemia (AML) Tyner et al., 2018 [67] 672 dbGaP: 30641
Liu et al., 2018 [68] 200

For each type of analyzed tumour type, we selected TARGET genes showing a statisti-
cally significant correlation with XPO1 (p ≤ 0.05) with Pearson’s correlation indexes R > 0.2
or R < −0.2 (Supplementary Tables S1–S5). We then calculated the average correlation
(mean R value) across the five tumour types (Supplementary Table S6) and identified eight
TARGET genes (MSH2, ATR, MSH6, BRCA1, EZH2, BRCA2, AURKA, and NPM1) whose
expression positively correlated with XPO1 expression in all the tumour types analyzed
(Figure 7) that were considered as potential targets in co-treatments with KPT-330. Seven
of the identified genes (MSH2, MSH6, ATR, BRCA1, BRCA2, AURKA, and NPM1) regulate
the DNA damage response, while EZH2 encodes for the protein enhancer of zeste homolog
2 (EZH2), a histone methyltransferase that plays an important role in global transcrip-

https://software.broadinstitute.org/cancer/cga/target
http://genomics.cicbiogune.es/CANCERTOOL/citeUs.html
gdc-portal.nci.nih.gov/legacy-archive/
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tional regulation [69,70]. The overexpression or enhanced activation of EZH2 results in
transcriptional repression of tumour suppressor genes [71–74].
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At present, there are no reliable pharmacological inhibitors available to target MSH2,
MSH6, BRCA1, BRCA2, or NPM1. On the other hand, there is mounting evidence of
AURKA (Aurora Kinase A) and EZH2 proteins as possible targets for cancer therapy in
a variety of cancers [75–82] and specific inhibitors, such as alisertib (targeting AURKA)
and tazemetostat (targeting EZH2) that are commercially available, which make them
ideal compounds for the next steps of drug testing in our system. Importantly, alisertib
(MLN8237) is the most clinically advanced AURKA inhibitor currently being tested in
clinical trials for cancer treatment [83], and tazemetostat (Tazverik®, EPZ-6438, E-7438)
has recently received FDA approval for specific subsets of sarcoma and lymphoma pa-
tients (https://www.fda.gov/news-events/press-announcements/fda-approves-first-t
reatment-option-specifically-patients-epithelioid-sarcoma-rare-soft-tissue (accessed on
2 December 2020); https://www.fda.gov/drugs/resources-information-approved-dru
gs/fda-approves-tazemetostat-advanced-epithelioid-sarcoma (accessed on 2 December
2020); https://www.fda.gov/drugs/fda-granted-accelerated-approval-tazemetostat-foll
icular-lymphoma (accessed on 2 December 2020).

3.4. In Vitro Evaluation of Efficacy of Alisertib and Tazemetostat in Combination with KPT-330-to
Overcome BM-Mediated Drug Resistance of AML Cells

Treatment of eGFP–MV4-11 cells with concentrations of alisertib achievable in pa-
tients [84] inhibited their proliferation by at least 75% with minor cytoprotection when cells
were cultured in the presence of mCherry-HS5 cells (Figure 8A). The proliferation data
correlated with detection of over 70% of cells undergoing apoptosis at all the concentrations
tested (Figure 8B), indicating a cytotoxic effect of the treatment. However, alisertib as a
single treatment did not affect, or even increase at the lowest concentrations, the prolif-
eration of mCherry-HS5 cells (Figure 8C). In contrast, the combination of KPT-330 with
alisertib inhibited the proliferation of mCherry-HS5 cells in a concentration-dependent
manner (Figure 8C). This correlated with a more significant decrease in proliferation in
comparison with the single treatments (Figure 8A) and a significant increase in the percent-
age of apoptotic cells in the combination treatment in comparison to the effect of KPT-330
as a single agent when AML cells were cultured alone or in the presence of mCherry-HS5

https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-option-specifically-patients-epithelioid-sarcoma-rare-soft-tissue
https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-option-specifically-patients-epithelioid-sarcoma-rare-soft-tissue
https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-tazemetostat-advanced-epithelioid-sarcoma
https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-tazemetostat-advanced-epithelioid-sarcoma
https://www.fda.gov/drugs/fda-granted-accelerated-approval-tazemetostat-follicular-lymphoma
https://www.fda.gov/drugs/fda-granted-accelerated-approval-tazemetostat-follicular-lymphoma
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cells (Figure 8B). A synergistic effect was observed in co-cultured cells at the two higher
doses tested (Figure 8G). Of note, treatment with KPT-330 alone blocked the proliferation of
mCherry-HS5 cells, which may explain the inhibition of the proliferation of mCherry-HS5
cells when KTP-330 is used in combination with alisertib (Figure 8C) and daunorubicin
(Figure S5).
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Figure 8. Analysis of the anti-proliferative and pro-apoptotic effect of the combination of KPT-330
with alisertib or tazemetostat. eGFP–MV4-11 cells cultured alone or in the presence of mCherry–
HS5 cells were left untreated or were treated with KPT-330 alone or in combination with alisertib
(A–C) or tazemetostat (D–F). Graphs show the impact of the treatments on the proliferation of
eGFP–MV4-11 cells (A,D), the levels of apoptosis in eGFP–MV4-11 cell cultures (B,E), and on the
proliferation of mCherry–HS5 cells (C,F). * p < 0.05, ** p < 0.01, *** p < 0.005 ANOVA versus control
untreated in the same culture condition. # p < 0.05, ## p < 0.01, ### p < 0.005 post-hoc Student
T-test comparing the efficacy of a drug combination with the treatment at the same concentration
with KPT-330 as a single agent. (G) Table showing the fraction affected (Fa) and combination
index (CI) of alisertib or tazemetostat at the specified concentration in combination with 25, 50, 100,
and 200 nM of KPT-330. CI values labelled in red indicate synergism or very strong synergism,
according to the Chou–Talalay method.
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In contrast, when eGFP–MV4-11 were treated with doses of tazemetostat detectable in
plasma from patients [85], cells continue to proliferate or even increase their proliferation
rate, especially in the presence of mCherry-HS5 cells (Figure 8D). The combination treat-
ment did not enhance the anti-proliferative efficacy of KPT-330 (Figure 8D) or reduce its
efficacy to induce apoptosis in eGFP-MV4-11 cells (Figure 8E) or to reduce the prolifera-
tion of mCherry-HS5 cells (Figure 8F). This may be due to the pro-proliferative effect of
tazemetostat on mCherry-HS5 cells (Figure 8F).

Taken together, our data show increased efficacy of the combination of KPT-330 and
alisertib to overcome the cytoprotection by BM stromal cells in comparison to the single
agents. However, our results indicate that tazemetostat does not increase the efficacy of
KPT-330 and, in fact, the combination with tazemetostat may even exert a detrimental effect
on the efficacy of KPT-330.

4. Discussion

Numerous studies validate the role of the BM microenvironment in oncogenesis [23,86]
and the development of drug resistance in AML [3,12,16,21–23,86]. Hence, devising new,
improved therapeutic interventions for AML requires the use of significant preclinical
in vitro models that recapitulate critical interactions between AML cells and the cytopro-
tective BM niches. The crosstalk between haematological tumour cells and the local BM
stroma leads to reciprocal phenotypic modifications in both cell compartments that favour
the expansion of the malignant clones in detriment of normal haematopoiesis [23,86,87].
Therefore, assessing the activity of both cancer and stromal cells using adequate in vitro
heterotypic culture models could lead to an improved understanding of the intricate
interactions leading to tumour progression and drug resistance.

The BM-derived stromal cell line HS5 largely reproduces critical patterns of activation
of BM mesenchymal/fibroblastic stromal cells that contribute to the expansion and survival
of malignant clones in different types of haematological malignancies [16,19,20,88]. For
example, in the case of MM, the activated transcriptome of MM cells lines in co-culture
with HS5 cells, which corresponds to those observed in malignant plasma cells from MM
patients [20]. We have previously shown that HS5 cells distinctively activate different cancer
cell types that develop tumours in the BM [19,20]. HS5 cells promote the proliferation of
MM cells to a much greater extent than other cancer cell types, including chronic myeloid
leukaemia (CML), prostate cancer, and breast cancer [19,20]. We now show that HS5 cells
do not promote the proliferation of AML cells and even tend to reduce their proliferative
potential, similarly to the effect on other myeloid malignancies and in contrast to the impact
on MM cells [19]. The use of cancer and stromal cells expressing different fluorescent
proteins (eGFP and mCherry, respectively) in our experimental platform allows us to
determine the concomitant behaviour of both cellular compartments in co-culture. Using
this model presented herein, we found that, similarly to our previous observations with
CML cells, AML cells failed to induce the proliferation of HS5 cells. This is in contrast
to the pro-proliferative effect of MM cells on HS5 cells [19]. Taken together, our previous
and current results validate the reproduction of complex patterns of reciprocal interaction
between specific cancer types and stromal cells in the BM niche by heterotypic cultures of
tumour cells and HS5 stromal cells.

We then proceeded to use our model for screening of possible compounds that may
block the BM stromal-mediated drug resistance of AML cells against daunorubicin, which
has been shown to be mimicked by HS5 cells [16]. Our initial findings showed a synergistic
effect of daunorubicin and cytarabine to reduce AML proliferation independently of the
presence of cytoprotective BM stroma. However, a more detailed analysis of AML cells
showed that the lack of proliferation in monocultures of AML cells was due to a pro-
apoptotic effect of the drugs, which also synergized for MM cell killing, whereas in the
presence of HS5 cells, a significant percentage of the population remained viable albeit non-
proliferative. HS5 cells facilitated the cell cycle arrest in G1 and S of AML cells, inhibiting
cell cycle progression so that AML cells adopted a non-proliferative phenotype that blocked
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the pro-apoptotic effect of the drug treatments. In vivo studies have also indicated that
the quiescence of AML leukemic stem cells induced by the BM-stroma may be an essential
mechanism that promotes resistance to cell proliferation-dependent cytotoxic drugs such
as cytarabine [21].

To devise possible strategies to overcome the mechanisms of resistance to daunoru-
bicin, a drug library was screened and compounds were selected by their capacity to
block the pro-survival cues of BM stromal cells so that apoptosis was restored to the levels
observed in AML cells grown in monoculture, as well as for their ability to reduce the
proliferation of HS5 cells in co-culture with AML cells. We have previously shown that
a similar strategy works to identify drug combinations to overcome BM-mediated drug
resistance in MM [19]. The identified hits were also tested for their capacity to block cyto-
protection of AML cells by osteoblasts [23]. The experiments were performed with a battery
of eGFP-expressing AML cell lines bearing various representative genetic abnormalities
observed in AML patients, as our goal is to identify therapies that could be applied to
AML patients independently of their genetic and cytogenetic backgrounds. Our hypothesis
is that AML cells may present different strategies based on their genetic background to
induce reciprocal interactions with the BM stroma that will lead to the activation of common
signaling nodes that promote tumour progression and drug resistance [23].

One such signaling node identified in our screening was the pathway regulated by the
CRM1 protein, as its specific inhibitor, KPT-330, was a hit compound in our study. CRM1 is
a specialized nuclear export receptor that mediates the translocation of hundreds of cargo
proteins bearing nuclear export signals to the cytoplasm (reviewed in [89]). The activity of
the CRM1 cargo proteins is regulated by their nucleocytoplasmic distribution and many
of them are involved in oncogenesis through the regulation of cell survival, proliferation,
and cell adhesion and migration [48,90]. The overexpression of CRM1 is considered a
prediction factor for the poor prognosis of AML patients [38], and recent studies show
that the combination of KPT-330 with daunorubicin and cytarabine results in increased
responses of AML patients to therapy [32–34]. These studies further validate the efficacy of
our fluorescence-based experimental model and analysis to identify potential improved
therapeutic approaches for AML. It has been shown that KPT-330 can enhance the efficacy
of daunorubicin and other anthracyclins by interfering with autonomous mechanisms of
drug resistance in AML cells involving the DNA repair machinery [32]. Our data suggest
that CRM1 may also be involved in the regulation of non-autonomous mechanisms of drug
resistance by modulating the interaction of AML cells with cytoprotective BM stromal cells.
Possible molecular mechanisms involved in this process may include CRM1 cargo proteins
involved in cell adhesion and cytoskeletal remodeling, including N-WASP [91], which has
been shown to regulate the adhesive forces of AML cells during the interaction with BM
mesenchymal stem cells leading to drug resistance [92].

Importantly, there is recent evidence indicating that the AML therapies based on
the combination of KPT-330 with daunorubicin may not be as effective in populations
of elderly AML patients [35]. This prompted us to take a combined in silico and in vitro
investigation approach to identify new possible alternative combinational therapies based
on KPT-330. We then tested in silico the possible co-expression of XPO1 (gene coding for
CRM1) with 135 cancer-related genes included in the CGA TARGET database of the Broad
Institute in various types of solid tumours and AML. We reasoned that the co-expression
of cancer-related genes and XPO1 may imply a possible cooperation to promote cancer
cell progression and possibly drug resistance. Two of the eight genes identified in this in
silico analysis (AURKA and EZH2) were targets for specific pharmacological inhibitors:
the AURKA inhibitor alisertib under testing in clinical trials [83] and the EZH2 inhibitor
tazemetostat, which is FDA approved for subsets of sarcoma and lymphoma patients,
respectively. Our data showed a synergistic efficacious effect of KPT-330 and alisertib,
whereas the combination with tazemetostat failed to increase the anti-AML effect of KPT-
330. The efficacy of the KTP-330/alisertib combination has also been recently reported in
in vitro and in vivo models of neuroblastoma where these drugs synergize to reactivate



Cancers 2023, 15, 1988 20 of 25

p53 activity to induce apoptosis [93]. Further studies should determine whether these or
alternative mechanisms of action may be involved in the efficacy of the combination of
these two compounds against AML.

5. Conclusions

In summary, we have devised a new fluorescence-based experimental model and
sequence of procedures to effectively identify new therapeutic approaches for AML. Our
method mimics essential reciprocal interactions between AML and cytoprotective BM stro-
mal cells involved in the final response to therapeutic agents. The data obtained suggest that
the combination of the CRM1 inhibitor KPT-330 with the AURKA inhibitor alisertib may
overcome BM-mediated drug resistance in AML. These data warrant further in vitro and
in vivo studies to investigate the possible efficacy of this drug combination against AML.
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