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Simple Summary: Advanced endoscopy techniques that generate microscopic images can be used
to optimize cancer screening in patients with an increased risk of oesophageal cancer. However,
these microscopic endoscopy images are highly detailed and difficult for doctors to interpret. Support
by artificial intelligence (AI) could be useful when the image is too complex for human interpretation.
Therefore, this study investigated whether AI as second assessor can assist doctors in assessing
complex, microscopic endoscopy images for the presence of oesophageal cancer. To investigate this,
we developed online training and testing modules for doctors to learn to classify these novel images,
and to assess the potential of AI assistance in analysing the oesophageal microscopy images. Our data
showed that the best diagnostic scores for cancer recognition emerged through the collaboration
between doctors and AI as the second assessor. Therefore, AI could be used to support the clinical
implementation of endoscopy techniques that generate microscopic images.

Abstract: Optical biopsy in Barrett’s oesophagus (BE) using endocytoscopy (EC) could optimize
endoscopic screening. However, the identification of dysplasia is challenging due to the complex in-
terpretation of the highly detailed images. Therefore, we assessed whether using artificial intelligence
(AI) as second assessor could help gastroenterologists in interpreting endocytoscopic BE images.
First, we prospectively videotaped 52 BE patients with EC. Then we trained and tested the AI pm
distinct datasets drawn from 83,277 frames, developed an endocytoscopic BE classification system,
and designed online training and testing modules. We invited two successive cohorts for these online
modules: 10 endoscopists to validate the classification system and 12 gastroenterologists to evaluate
AI as second assessor by providing six of them with the option to request AI assistance. Training
the endoscopists in the classification system established an improved sensitivity of 90.0% (+32.67%,
p < 0.001) and an accuracy of 77.67% (+13.0%, p = 0.020) compared with the baseline. However,
these values deteriorated at follow-up (−16.67%, p < 0.001 and -8.0%, p = 0.009). Contrastingly,
AI-assisted gastroenterologists maintained high sensitivity and accuracy at follow-up, subsequently
outperforming the unassisted gastroenterologists (+20.0%, p = 0.025 and +12.22%, p = 0.05). Thus, best
diagnostic scores for the identification of dysplasia emerged through human–machine collaboration
between trained gastroenterologists with AI as the second assessor. Therefore, AI could support
clinical implementation of optical biopsies through EC.

Keywords: Barrett’s dysplasia; surveillance; computer-aided diagnosis; machine learning; medical
training; endocytoscopy
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1. Introduction

Patients with Barrett’s oesophagus (BE) are at an increased risk of developing oe-
sophageal adenocarcinoma (EAC), which can evolve from low-grade and high-grade
dysplasia (LGD/HGD) [1]. Detection of early-stage EAC and its dysplastic stages is key
to providing the patient with endoscopic treatment with excellent prognosis [2,3]. There-
fore, BE patients are subject to endoscopic surveillance examinations at stratified intervals
with four-quadrant random biopsies every 1–2 cm along the Barrett segment (the Seattle
protocol) [4,5]. Despite high-definition white light endoscopy (HD WLE) and narrow-
band imaging (NBI) highlighting the vascular patterns, dysplasia in BE can be hard to
discriminate endoscopically from non-dysplastic metaplastic tissue, as they present solely
as subtle morphological changes [6]. Furthermore, the sampling protocol is associated with
sampling error, with reported missed dysplasia rates in a quarter to half of the patients with
inconspicuous neoplasia [7,8], which especially affects patients with a long BE segment
(>10 cm) [9]. Overall, a 3.1% dysplasia detection rate is achieved during surveillance
examinations [10]. Hence, despite the labour-intensive and time-consuming characteristics,
many samples can be obtained with a relatively low yield for dysplasia or cancer during
surveillance endoscopy of BE.

Endocytoscopy (EC) is an advanced endoscopy technique that combines HD WLE
and NBI with ultra-magnification technology. The fourth-generation endocytoscope
(GIF-H290EC, Olympus, Tokyo, Japan) enables sequential evaluation of tissue ranging
from an HD WLE overview to microscopic inspection with a magnification factor of 520×
for real-time visualization of the histology and cytology of the superficial mucosa [11].
Consequently, EC can potentially generate an “optical biopsy” during endoscopy. However,
the current experience with EC in BE for this purpose is limited due to the technical insuffi-
ciencies of the previous EC models to generate adequate in vivo imaging [12,13]. As pre-
viously observed with another ultra-magnification endoscopy technique, confocal laser
endomicroscopy (CLE), this approach could reduce the number of tissue samples and save
a considerable amount of time compared with the current BE sampling approach [14,15].
Consequently, the associated costs could be reduced as well [16]. However, to optimally
exploit the functionality of optical biopsies, substantial training and experience are required
for the operator, who must pass the Preservation and Incorporation of Valuable Endoscopic
Innovations (PIVI) threshold values for potential clinical implementation [17,18]. As a
result, practicing gastroenterologists are unlikely to adopt these techniques [19,20].

To improve the assessment and processing of the information that is provided by en-
doscopy, artificial intelligence (AI) algorithms are increasingly being developed. In recent
years, a form of AI called deep learning—more specifically, convolutional neural networks
(CNN)—has been extensively studied for analysing medical imaging data [21]. AI has the
potential to help endoscopists with real-time interpretation of the increasingly complex
information from advanced endoscopies and with the associated clinical decisions [22].
However, previous research has focused mainly on the role of AI as an independent primary
assessor of endoscopic imaging, most commonly in a human-vs.-machine setup. Neverthe-
less, in future clinical practice, AI probably has much more potential in a complementary
role to the endoscopist as a second assessor, in which it could aid in the interpretation of
these complex images [23]. Subsequently, AI could be used to assist gastroenterologists
with the optical biopsy of dysplasia in complex images via advanced endoscopy techniques
to alleviate the burden of training and experience, and to ensure efficient implementation
of optical biopsies by novel imaging modes in clinical practice. Therefore, data regarding
human–machine interactions are required, as the confidence of gastroenterologists with AI
will affect the impact of AI on the introduction of optical biopsies in endoscopy.

In this study, we aimed to establish the potential of AI as a second assessor to help
gastroenterologists in identifying dysplasia through an optical biopsy in BE generated by
EC. Therefore, we first prospectively acquired EC frames of BE. We used these frames to de-
velop and validate an endocytoscopic BE classification system in a cohort of 10 endoscopists
through an online platform, and to train and test a CNN architecture. The platform con-
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sisted of online modules that included a training program and three test sets: a pretraining
test (Image Set 1A), a post-training test (Image Set 1B), and a follow-up test (Image Set 2).
After the pilot phase of the study, a second cohort of 12 gastroenterologists completed
the same online modules: one group of six gastroenterologists without AI support and
one group of six gastroenterologists who had access to feedback from the CNN if they
requested it. This approach enabled us to compare the performances of unassisted and
AI-assisted gastroenterologists in interpretating endocytoscopic BE images and to evaluate
the human–machine interactions.

2. Materials and Methods
2.1. Study Setting and Population

BE patients referred to the gastroenterology and hepatology department of the Univer-
sity Medical Centre Groningen (UMCG) were prospectively imaged with EC (model GIF
H290-EC) to acquire endocytoscopic BE frames for the purpose of the study from May 2019
to September 2020. The procedure that we used to perform in vivo EC videotaping and to
obtain targeted biopsies is described in Supplementary S1.

All participants received oral and written information before informed consent was
obtained. Patients were eligible when they were 18 years or older and scheduled for
surveillance endoscopy of their BE or endoscopic removal of their Barrett’s neoplasia.
The trial was approved by the UMCG’s institutional review board and was registered in
the Dutch Trial Register (NL8573).

2.2. Online Platform with Training and Testing Modules

We designed online modules in REDCap (Research Electronic Data Capture) to train
and test gastroenterologists in interpretating our proposed endocytoscopic BE classification
system. The online training and testing with AI could be accessed via https://redcap.
link/Endocyto_AI_test-training. The four-step process of developing our endocytoscopic
BE classification system is reported in Supplementary S2, which also includes a detailed
explanation of the online training and testing modules.

2.2.1. Participants in the Online Modules

Participants in the online modules were recruited on the basis of their time to respond
to the invitation: the ones that responded first to the invitation were included as participants.
For the pilot phase, the first cohort of 10 endoscopists (five gastroenterology residents and
five gastroenterologists with expertise in BE) was recruited from 15 invitees to participate
in the online training and testing modules (Figure 1A). Afterwards, we randomly recruited
12 additional gastroenterologists from our centre and from general hospitals for online
participation from a group of 18 invitees: one group of six gastroenterologists participated
in the tests without AI support, the other group had the versions of the test sets with AI
support (Figure 1B). Lastly, a cross-over was performed: the six gastroenterologists that
initially completed the version with Test Set 2 without AI support were requested to take
the test with Set 2 again six weeks later, but this time, they used the version of Test Set 2 that
had the option of calling for AI support. All participants did not have any experience in the
endoscopic application of AI or in EC. The baseline characteristics of the online participants
can be found in Supplementary Table S5.

https://redcap.link/Endocyto_AI_test-training
https://redcap.link/Endocyto_AI_test-training
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unassisted gastroenterologists were presented with Test Set 2 again, this time with AI assistance. 

Figure 1. Schematic overview of the two cohorts participating in the online training and testing mod-
ules. (A) The first cohort of 10 endoscopists participated in the online training and testing modules
during the pilot phase to validate the classification system. (B) A second cohort of 12 gastroenterolo-
gists participated in the same online training and testing modules: six unassisted gastroenterologists
and six AI-assisted gastroenterologists. Lastly, a cross-over was performed in which the unassisted
gastroenterologists were presented with Test Set 2 again, this time with AI assistance.

2.2.2. Training and Testing Modules

In the online training program for the gastroenterologists, we explained the EC proce-
dure (Figure 2A) and the features of our endocytoscopic BE classification system (Figure 2B)
through multiple images and (narrated) videos. We developed a binary system that differ-
entiated EC metaplasia, including histologically verified metaplastic columnar tissue of
the fundic type, cardia type, or intestinal type, from EC neoplasia, including histologically
verified LGD, HGD, and carcinoma (for the features of the proposed endocytoscopic BE
classification system, see Supplementary S2). Test Set 1 was completed by the gastroen-
terologist before (Test Set 1A) and after training (Test Set 1B), with the same images in
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different sequences. An invitation to Test Set 2 was sent after a two-week interval (Figure 1).
The gastroenterologist diagnosed the image as either EC metaplasia or EC neoplasia and
indicated the confidence level (high or low) of their decision. The test sets were all designed
with two versions: one version without the implementation of AI support, and one version
in which the gastroenterologists could request a prediction from the AI model. In the latter
version, the participant was first presented with an EC image and asked whether he/she
wanted AI support (Figure 3A). If the answer was “yes”, then the image was shown with a
prediction of the diagnosis by the AI algorithm. The predicted diagnosis was displayed as
a median value with IQRs on a continuous scale (from 0 at the green end (EC metaplasia)
to 100 at the red end (EC neoplasia)). The median value was also displayed as a score in
the bottom left corner. The participants with the version of the test sets with AI support
were aware of the sensitivity, specificity, and accuracy of the AI algorithm for the separate
test sets.
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Figure 2. In vivo EC procedure and classification. (A) Sequential assessment of the BE performed
during endoscopic examination using EC. (B) Examples of EC metaplasia and EC neoplasia with their
corresponding histopathology. Examples of EC images showing microvascular features in metaplastic
and neoplastic tissue are shown to the right. The EC metaplasia and EC neoplasia images were used
to create endocytoscopic BE datasets. BE: Barrett’s oesophagus; CV: crystal violet; EC: endocytoscopy;
H&E: haematoxylin and eosin staining; MB: methylene blue; WLE: white light endoscopy.

2.3. Training, Validating, and Testing of the CNN Architecture

For the AI model, we used the decoder of a CNN architecture based on ResNet, which
has been used in previous oesophageal CAD work [24]. The model was pretrained on
the ImageNet dataset [25], and then trained and tested using data that were extracted
from endocytoscopic BE videos (Figure 3B). The data were preprocessed by resizing to a
resolution of 512 by 512 pixels and by converting the image to grayscale. This step was
performed to avoid bias in a particular colour staining, since the number of available
patients was relatively small. Fivefold patient-based cross-validation was used to optimize
the algorithm, thereby training a separate model for each fold, which was subsequently
used as an ensemble on the test set. It should be emphasized that the training and validation
data were strictly separated on the patient level from the testing data to avoid overfitting.
To further improve generalization of the models, data augmentation was used. Images
were randomly flipped over the x- and y-axes with p = 0.5, and randomly rotated by a
multiple of 90◦. Additionally, the images were translated by up to 10% of the image’s width
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and sheered by a maximum of 8◦. Finally, a random crop of 256 by 256 pixels was extracted
during the training phase. In the testing phase, no augmentations were performed apart
from resizing and converting the images to grayscale. A cyclic cosine annealing learning
rate scheduler [26] was used in combination with Adam and AMS-grad [27] to control
the learning rate. Binary cross-entropy was used as the loss function. The five models
trained using fivefold cross-validation were then ensembled to obtain a final classification
score per image.
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Figure 3. Overview of the display and the formation of the output of the CNN architecture. (A) After
a request, AI assistance was presented as a score on a continuous scale (0–100), which was the average
score of all five models in the ensemble. (B) To develop a CNN architecture for the interpretation of
endocytoscopic BE images, we trained and tested in distinct image sets of preprocessed images that
were selected from the prospectively acquired dataset.

For the construction of the dedicated datasets for training and testing the AI model,
we first reviewed endocytoscopic BE videos (see Supplementary S3). We excluded videos
that were of a low quality due to the lack of image resolution and/or insufficient staining of
the mucosa (N = 17) (Supplementary S2). High-quality videos in which the corresponding
targeted biopsies were indefinite for dysplasia (N = 2) were also excluded. The remaining
59 endocytoscopic videos were used to extract frames, resulting in a total of 83,277 frames.
Frames that were unrecognizable due to the scattering and reflection of light, a lack of
camera focus, or peristaltic and respiratory movements were excluded from the selection.
To achieve heterogeneity in the morphology of the frames, one or two frames were manually
selected per 25 frames from each video sequence. To create distinct datasets, the selected
frames of patients were split on a per-patient basis into either the training set or the test
sets. Some patients contributed EC metaplasia frames as well as EC neoplasia frames to a
dataset. Subsequently, the AI algorithm was trained using a dataset of 1552 frames that was
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selected from 35 videos of 20 patients. The two test sets were composed of an independent
set of 710 frames that was selected from 24 videos in another 17 patients and were the same
test sets that were completed by the gastroenterologists participating online.

2.4. Statistical Analysis

To assess the potential of AI as a second assessor to help gastroenterologists in
analysing endocytoscopic BE images, we used an accuracy of 85%, which was drawn
from the sensitivity (90%) and specificity (80%) thresholds of the PIVI guidelines for po-
tential clinical implementation of new endoscopy techniques, and the follow-up accuracy
(70%) of the endoscopists during the pilot phase, which was significantly lower than their
post-training accuracy. A power of 80% and a two-sided test level at α = 0.05 were assumed
to demonstrate a difference of 15% between the accuracy of the gastroenterologists with AI
and the accuracy of gastroenterologists without AI after a two-week post-training interval.
Thus, we included two groups of six gastroenterologists to establish 360 observations per
testing moment.

Diagnostic performance was calculated on a per image basis using the values of
sensitivity, specificity, and accuracy (with 95% CIs) and with the histology as a reference
standard. Categorical variables were presented as numbers and proportions, and continu-
ous variables as medians (IQR) or means (SD), depending on the distribution. We compared
the proportions through the χ2-test or Fisher’s exact test, means through the appropriate
T-test or one-way ANOVA, and medians through the Mann–Whitney U-test. Here, p < 0.05
(two-sided) was considered statistically significant for all analyses. To assess the level of
interobserver agreement, kappa values were calculated and interpreted according to the
arbitrary thresholds of Landis and Koch [28]. Statistical analysis was performed using SPSS
Statistics 27 (IBM, Armonk, New York, NY, USA).

3. Results
3.1. Validation of the Endocytoscopic BE Classification System by Endoscopists

Compared with their baseline performance, the post-training performance of the
endoscopists improved regarding their sensitivity for recognizing dysplasia by 32.67%
(95% CI 23.28–42.06, p < 0.001) and accuracy with 13.0% (2.55–23.45, p = 0.020) (Table 1).
After an interval of 30.4 (±16.0) days, their sensitivity and accuracy dropped by 16.67%
(9.12–24.21, p < 0.001) and 8.0% (2.59–13.41, p = 0.009) respectively. Nevertheless, the
sensitivity at follow-up remained higher than at baseline (+16.0% (5.65–26.35), p = 0.007).
Comparably, the interobserver agreement scores for the endoscopists were moderate when
tested before training (0.482, 95% CI: 0.450–0.514) and at follow-up (0.492, 0.459–0.525),
but substantial (0.646, 0.610–0.681) when tested directly after training on the classification
system. An overview of the experiences of the endoscopists regarding the online modules
are included in Supplementary S4.

Table 1. Diagnostic test scores of the endoscopists at various testing moments.

Test Set 1 Test Set 2

Before Training
(Test Set 1A)

After Training
(Test Set 1B) Follow-Up

Sensitivity
(95% CI) 57.33% (48.86–65.80) 90.0% (85.37–94.63) 73.33% (63.03–83.84)

Specificity
(95% CI) 72.0% (57.47–86.53) 65.33% (56.40–74.27) 66.0% (56.09–75.92)

Accuracy
(95% CI) 64.67% (55.12–74.22) 77.67% (73.03–82.31) 69.67% (64.71–74.62)
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3.2. Results of Testing the AI Algorithm

The ROC curves that were obtained as an average from the five CNN models resulted
in AUCs of 0.894 for Test Set 1 and 0.923 for Test Set 2.

3.3. AI-Assisted Gastroenterologists versus Unassisted Gastroenterologists

For the sensitivities, specificities, and accuracies of the gastroenterologists with and
without AI support, see Table 2. When tested at 23.3 (±9.1) days after training, AI-assisted
gastroenterologists maintained higher sensitivity (+20.0% (3.14–36.86), p = 0.025) and
accuracy (+12.22% (0.03–24.48), p = 0.050) for recognizing dysplasia than the unassisted
gastroenterologists. Furthermore, all the kappa values of the unassisted gastroenterologists
were equivalent to moderate, whereas both post-training scores (Test Sets 1B and 2) of the AI-
assisted gastroenterologists were substantial (Table 3). In Figure 4A–C, an overview of the
ROC curves of the CNN and the scores of the AI-assisted and unassisted gastroenterologists
are plotted per testing moment.

The proportions of true diagnoses that were established with a high confidence level
were higher among gastroenterologists with AI support than among gastroenterologists
without AI support before training (32.8% vs. 11.7%, p < 0.001), after training (57.2%
vs. 43.9%, p = 0.011), and at follow-up (53.9% vs. 35%, p < 0.001). An overview of
the experiences of the gastroenterologists regarding the online modules are included in
Supplementary S5.

Table 2. Diagnostic test scores of unassisted and AI-assisted gastroenterologists at various testing
moments.

Test Set 1 Test Set 2

Before Training
(Test Set 1A) p-Value After Training

(Test Set 1B) p-Value Follow-Up p-Value

Sensitivity
(95% CI)

Unassisted
gastroenterologists

57.78%
(43.33–72.23)

0.002

85.56%
(77.38–93.73)

0.076

71.11%
(53.60–88.63)

0.025
AI-assisted

gastroenterologists
84.44%

(76.97–92.91)
94.44%

(86.26–100)
91.11%

(82.64–99.58)

Specificity
(95% CI)

Unassisted
gastroenterologists

63.33%
(41.32–85.35)

0.668

71.11%
(43.24–98.97)

0.652

70.0%
(50.34–89.66)

0.631
AI-assisted

gastroenterologists
68.89%

(45.20–92.58)
65.56%

(52.72–78.39)
74.44%

(62.93–86.50)

Accuracy
(95% CI)

Unassisted
gastroenterologists

60.56%
(47.58–73.54)

0.033

78.33%
(67.11–89.56)

0.765

70.56%
(57.96–83.15)

0.050
AI-assisted

gastroenterologists
76.67%

(66.05–87.28)
80.0%

(71.72–88.28)
82.78%

(76.36–89.20)

The p-values were calculated for separate comparisons regarding the sensitivity, specificity, and accuracy between
unassisted gastroenterologists (N = 6) and AI-assisted gastroenterologists (N = 6) at every moment of testing
(before training, directly after training, and at follow-up).

Table 3. Interobserver agreement for interpretation of endocytoscopic BE images for unassisted and
AI-assisted gastroenterologists at various testing moments.

Test Set 1 Test Set 2

Before Training
(Test Set 1A)

After Training
(Test Set 1B) Follow-Up

Kappa values
(95% CI)

Unassisted
gastroenterologists

0.491
(0.437–0.545)

0.562
(0.501–0.623)

0.526
(0.469–0.583)

AI-assisted
gastroenterologists

0.597
(0.537–0.657)

0.687
(0.622–0.752)

0.696
(0.631–0.761)

Interpretation of the interobserver kappa values according to the thresholds of Landis and Koch: scores less than
0.00: poor; 0.00 to 0.20: slight; 0.21 to 0.40: fair; 0.41 to 0.60: moderate; 0.61 to 0.80: substantial; 0.81 to 1.00: almost
perfect [28].
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Figure 4. Diagnostic performance of unassisted gastroenterologists and AI-assisted gastroenterolo-
gists during the online modules. (A–C) Overview of the gastroenterologists with AI support (N = 6)
and without AI support (N = 6) before training (A), after training (B), and at follow-up (C) relative to
the overall AI ROC curves for Test Set 1 and Test Set 2, and both test sets combined. (D) Sensitivity,
specificity, and accuracy scores of the unassisted gastroenterologists for Test Set 2 before the cross-over
and their scores for Test Set 2 with AI support after the cross-over, and the scores of the AI model
alone for Test Set 2. * p = 0.020, ** p = 0.024, *** p = 0.039.

3.4. Cross-Over of Unassisted Gastroenterologists to AI Assistance

After an interval of 54.5 (±10.4) days, the gastroenterologists without AI support
attempted Test Set 2 again, this time with AI support, exceeding their previous sensitivity
(+24.45% (95% CI 5.85–43.04), p = 0.020) and accuracy (+13.33% (1.02–25.65), p = 0.039)
without AI support. Additionally, they outperformed the sensitivity of the AI model alone
(+12.89% (2.11–23.67), p = 0.024) (Figure 4D). Overall, gastroenterologists opted for AI sup-
port in 64.4% (116/180) of the cases during this test. Interestingly, all six gastroenterologists
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were able to identify metaplastic tissue in one specific EC image after calling for AI support,
despite an indecisive AI prediction.

3.5. Human–Machine Interactions

Gastroenterologists who had access to AI support called for AI support in 90%
(162/180) of the cases before training, which dropped to 57.8% (104/180) after training
(p < 0.001). At follow-up, 75.6% (136/180) called for AI support, which was still less than
before training (p < 0.001). Notably, the trained gastroenterologists made fewer false
negative diagnoses in images that otherwise would have been correctly predicted by AI
(6.7% (3/45) vs. 37.5% (3/8), p = 0.038). Furthermore, we observed the following two
tendencies. First, true positive diagnoses predicted by AI were erroneously rejected by
trained gastroenterologists in 3.8% (4/105) of the cases and in 7.9% of cases (6/76) by the
untrained gastroenterologists (p = 0.325). Second, correct diagnoses by the gastroenterolo-
gists for images with an indecisive AI prediction were 50% (6/12) before training and 77.8%
(14/18) after training (p = 0.118). In Supplementary S6, data regarding the human–machine
interactions of the gastroenterologists that had access to AI support are provided for all
test sets.

4. Discussion

In this study, we demonstrated that AI as a second assessor enhances the performance
of gastroenterologists who have been trained to identify dysplasia in optical biopsies of BE
generated by EC. Notably, trained gastroenterologists with AI support achieved sensitivities
of approximately 95%, although their specificities remained suboptimal. Through our
online platform, we saw that AI-assisted gastroenterologists scored substantially better
than unassisted gastroenterologists in establishing an optical biopsy of Barrett’s-associated
dysplasia through EC. Additionally, gastroenterologists appeared to be more confident in
interpreting this novel imaging when they had access to AI support, as shown by the larger
proportion of high-confidence diagnoses in this group compared with gastroenterologists
without AI support. Lastly, the AI-assisted gastroenterologists achieved generally higher
kappa values for interobserver agreement than the gastroenterologists without AI support,
suggesting that access to AI facilitated a more objective interpretation of the EC features
of BE.

Because the level of visual detail in EC is increased compared with conventional HD
WLE, its information is considered complex and results in a more challenging real-time
interpretation. As no in vivo endocytoscopic BE classification system was available, we
developed a classification system that enabled the discrimination of dysplastic from non-
dysplastic BE during a pilot study. After 10 endoscopists were trained online to use this
system, their diagnostic scores increased compared with the pretraining scores. However,
the diagnostic performances deteriorated at follow-up, indicating that the interpretation
of this novel imaging was not straightforward and AI might be a necessary supplement.
Previous studies using AI in EC applications have not been conducted for BE but have
predominantly focused on colorectal polyps [29–32]. In one study, a CNN outperformed
30 endoscopists by distinguishing neoplastic from benign polyps from the EC imagery with
sensitivities, specificities, and accuracies of up to 96.9%, 100%, and 98%, respectively [33].
These results suggested that optical biopsy of colorectal lesions is possible; based on our
results, we believe that this also applies to BE.

In the past, experience with endoscopic microscopy imaging for the purpose of optical
biopsy in BE has been gained through CLE. Although CLE generally achieved promising
diagnostic test characteristics in BE [34–37], it has not been implemented into routine
clinical practice in most centres. As CLE is a probe-based technique, it needs to be inserted
in the working channel of the endoscope, which hampers the operator in performing a
targeted biopsy after imaging has been performed, potentially inducing sampling errors.
The current endoscope-based EC model allowed the screening of BE in a continuous
manner after competence had been developed, as well as direct sampling of the aberrant
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tissue, as a biopsy forceps can be inserted through its working channel during EC imaging.
Nevertheless, EC remains a technically challenging procedure, especially in BE, but could be
promising in surveillance of Barrett’s oesophagus, especially with AI assistance, and future
real-time studies may show its benefit over the standard Seattle biopsy protocol.

As we introduced EC for in vivo use in BE, a novel type of imaging was generated that
consequently lacked clinically standardized interpretations. Therefore, the development
of our classification system was crucial. Without this reference standard, the gastroen-
terologists would not have any tools for interpreting these novel images, thus risking
excessive reliance on AI [38]. Indeed, we observed this behaviour among the untrained
gastroenterologists who had access to AI: the rates of calling for AI support after train-
ing and at follow-up were both significantly lower than before training. After they were
able to independently interpret the imagery, the gastroenterologists were more likely to
acknowledge a correct diagnosis made by AI and compensate for the outliers that were not
recognized by AI. Therefore, the best diagnostic performances were achieved by combining
the abilities of trained gastroenterologists with the AI model. Comparable observations
for human–machine collaboration have also been made in the fields of dermatology and
radiology [39,40].

Various AI algorithms have been developed for interpreting endoscopic images in BE,
but none have yet been adopted in clinical practice. The implementation of AI in endoscopic
surveillance for lesions in BE is thought to be beneficial, as it has shown its superiority in
detecting and demarcating neoplastic lesions in conventional endoscopic imaging com-
pared with non-expert endoscopists [41]. However, the human factor should be taken into
account for the exploitation of AI-driven endoscopic applications. We therefore suggest
that studies investigating AI in GI endoscopy should change their experimental designs
from human vs. machine to human-with-machine vs. human-without-machine.

This study had several limitations. As we generated a unique in vivo endocytoscopic
high-quality BE dataset of 520-fold magnified images, we were unable to test the per-
formance of the CNN with external datasets. Although we strictly split our cohort on a
per-patient basis into training and testing datasets, it should be acknowledged that the
algorithm worked well in this particular cohort but that its performance remains unknown
for the out-of-distribution data. Due to the relatively small dataset, little variation was
present in the imaged tissues, which, in turn, limited the diversity of EC imagery that could
be incorporated in the dedicated CNN training set and shown to the gastroenterologists
in their online training program. The specificity scores could therefore have been affected.
However, we expect that the promising performance of the AI model in the present study
will improve when the training set is enlarged. Furthermore, the online environment did
not fully reflect clinical practice. We chose this deliberately, as we wanted the gastroen-
terologists to remain unbiased when assessing the EC imagery. In the online modules,
they assessed only a single static EC image of the tissue and did not have information from
the non-magnified images of the area. In clinical practice, however, endoscopists gather
information about a particular area through the observations by HD WLE prior to EC
assessments. If the approach used in the present study can be transferred to the endoscopy
suite and the AI training set could be enlarged, we would expect increased specificity and
a reduction in unnecessary biopsies, as a better selection of tissue would be offered to the
CNN. Although the currently used AI algorithm is an image-based application, we expect
that this approach could be conveniently used in real-time assessments of videos. As EC
visualizes tissue at a 520-fold magnification during lens–mucosa contact, the frames from
a video sequence are relatively similar, especially in comparison with HD WLE overviews,
where various angles and distances between the lens and mucosa intervene in analyses of
the images. EC frames with insufficient image quality due to artefacts could be excluded
from the analysis by a supportive model [42,43]. Thus, the translation to real-time video
assessments would be feasible and would potentially enhance the AI’s performance, as the
outliers could be filtered out by averaging over multiple frames. Subsequently, the AI
algorithm could generate more stable and robust predictions. Since the output of our
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algorithm was on a continuous scale, eventual variation in the probability of the predicted
diagnosis will remain comprehensible during a dynamic assessment and without frequent
switching of the prediction when using a categorical output. Moreover, in our approach, AI
served only as a second assessor, and the human operator could decide whether to consult
it or not as an artificial assistant for image interpretation.

A strength of this study is that we took an important concept into consideration in the
design of our online examination modules for clinical decision-making with AI assistance:
the human in the loop approach [44]. This approach is a branch of AI that leverages both
human and machine intelligence to create machine learning models. In AI for medical
imaging, such as the detection and characterization of lesions in GI endoscopy, an expert
physician should still make the final decisions and assume responsibility, regardless of
whether help from a computer-aided system is available or not. Therefore, clinicians
should be educated about the limitations and strengths of the output of deep learning
networks [45]. We believe that creating online resources for training and testing clinicians
in using AI are indispensable for this education, which will enable the smooth integration
of deep learning techniques in future clinical practice.

5. Conclusions

In conclusion, the collaboration between trained gastroenterologists and AI as a second
assessor enhanced the recognition of dysplasia in endocytoscopic BE images, resulting in
better scores than those of AI or human assessors alone. Additionally, AI could reduce
the amount of training and clinical experience that is needed to interpret complex images,
such as EC images of BE. As the imaging quality of endoscopy improves, the level of
visual detail is enhanced, making the interpretation of advanced endoscopy techniques
less straightforward for gastroenterologists. As well as reducing the time and effort that
is required by gastroenterologists to master the assessment of imagery from advanced
endoscopy, AI will also help to realize its potential benefits, including in optical biopsies.
These factors would make this approach interesting for optimizing the diagnostic yield
of surveillance examinations of BE. Therefore, future clinical implementation of optical
biopsies by advanced endoscopy techniques could be facilitated when these systems
are released with a corresponding AI algorithm that serves as a second assessor to help
the gastroenterologist.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/cancers15071950/s1. Supplementary S1: In vivo EC imaging
procedure. Supplementary S2: EC image classifications. Supplementary S3: Training and testing of
the AI algorithm. Supplementary S4: Experiences of the endoscopists regarding the online modules.
Supplementary S5: Experiences of the unassisted and AI-assisted gastroenterologists regarding the
online modules. Supplementary S6: Human–machine collaboration during the online modules.
References [46–50] have cited in Supplementary Materials.
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