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Simple Summary: In this paper, we investigate the application of deep learning for classifying
whole-slide images of cutaneous histopathological specimens into melanoma and non-melanoma.
To do so, we used a total of 66 images (33 melanomas and 33 non-melanomas) to train models and
evaluated them on 90 whole-slide images (40 melanomas and 50 non-melanomas). The best model
achieved ROC–AUC at 0.821 for the whole-slide image level and 0.936 for the tile level.

Abstract: Although the histopathological diagnosis of cutaneous melanocytic lesions is fairly ac-
curate and reliable among experienced surgical pathologists, it is not perfect in every case (espe-
cially melanoma). Microscopic examination–clinicopathological correlation is the gold standard for
the definitive diagnosis of melanoma. Pathologists may encounter diagnostic controversies when
melanoma closely mimics Spitz’s nevus or blue nevus, exhibits amelanotic histopathology, or is
in situ. It would be beneficial if diagnosing cutaneous melanocytic lesions can be automated by
using deep learning, particularly when assisting surgical pathologists with their workloads. In
this preliminary study, we investigated the application of deep learning for classifying cutaneous
melanoma in whole-slide images (WSIs). We trained models via weakly supervised learning using a
dataset of 66 WSIs (33 melanomas and 33 non-melanomas). We evaluated the models on a test set of
90 WSIs (40 melanomas and 50 non-melanomas), achieving ROC–AUC at 0.821 for the WSI level and
0.936 for the tile level by the best model.

Keywords: melanoma; deep learning; cancer screening; whole slide image

1. Introduction

The Global Cancer Statistics 2020 report noted that there were 324,635 new cases
of cutaneous melanoma (1.7% of all cancer sites) and 57,043 new deaths (0.6% of all
cancer sites) worldwide [1]. When comparing 2020 to 2010, there were 68,130 newly
diagnosed melanoma cases [2]. Melanoma is one of the most common cancers with
increasing incidence rates in the United States, but relatively rare incidences in Japan [3,4].
Approximately 30% of cutaneous melanomas develop in conjunction with a nevus (nevus-
associated melanoma), supporting the concept of dysplastic nevi and common-acquired
nevi as precursors to cutaneous melanoma [5,6]. In addition, lesions diagnosed as simple
lentigo or solar lentigo are potentially important precursors of melanoma [6]. The remaining
70% generally develop de novo from clinically normal skin [5,7]. Pathological examination
is considered the gold standard for diagnosing cutaneous melanoma [2], with a typical
case being identified by certain distinctive characteristics, such as invasive activity with
neighboring cells, marked melanin pigmentation, and marked cellular and nuclear atypia
with mitotic figures [8,9].

There are three major issues in the histopathological diagnosis of melanoma. First,
melanoma is notorious for its great microscopic variability [10,11]. For example, melanoma
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cells can resemble epithelial cells, or have shapes that are spindled or extremely bizarre
(monster cells) [10,12]; they can range from small to large with multiple nuclei [13]. The
cytoplasms of melanoma cells can be eosinophilic, basophilic, foamy, rhabdoid, oncocytic,
or clear (balloon cells) [14–19]. Melanin can be abundant, insufficient, or absent (amelanotic
melanoma) [20].

Second, melanoma and benign nevus share many characteristics, leading to some con-
fusion during histopathological diagnosis [21]. For example, blue nevus, combined nevus,
deep penetrating nevus, and atypical Spitz nevus exhibit unusual maturation patterns [21].
Atypical Spitz nevus can also exhibit cellular atypia and poor circumscription [21]. These
are all benign lesions and, therefore, do not require aggressive treatment. Pathologists can
avoid misdiagnosing melanoma by being familiar with these lesions.

Third, one of the most controversial aspects in the histopathological diagnosis is
melanoma in situ—melanoma lesions that are limited to the epidermis [2]. Typically,
melanoma grows horizontally within the epidermis and then penetrates the dermis [2].
Detecting melanoma at an early stage of its evolution (melanoma in situ) is important for
saving lives [2].

Therefore, histopathological diagnosis is critical for melanoma, especially in differ-
entiating between melanoma, melanoma in situ, and nevus, as this can have a significant
impact on treatment.

Performing primary diagnosis using whole-slide images (WSIs) is considered to be
similar to microscopy [22,23]. Using WSIs can help reduce the pathologist’s working time by
providing convenient access to high-quality pathological images via cloud-based software;
this saves on resources and costs by eliminating sliding-glass shipping expenses [23]. Deep
learning applications on WSIs have shown great promise in the past few years for the
creation of new tools in assisting pathologists [24]. Previous studies have looked into
melanoma classification and segmentation; for instance, [25] used 39 cases to classify cases
into melanocytic nevi, Spitz nevi, and invasive melanoma; while [26] trained a model for
segmentation of the nuclei in melanoma cases.

In this study, we trained convolutional neural networks (CNNs) by using a training
dataset consisting of 33 cutaneous melanoma and 33 cutaneous non-melanoma lesion WSIs.
We evaluated the models on a test set of 90 WSIs (40 melanomas and 50 non-melanomas),
achieving ROC–AUCs for the WSI evaluation in the range of 0.700–0.825 and the tile-level
evaluation in the range of 0.887–0.936.

2. Materials and Methods
2.1. Clinical Cases and Histopathological Records

In this retrospective study, we initially retrieved 751 histopathological H&E (hema-
toxylin and eosin)-stained sliding-glass cutaneous specimens from the surgical pathology
files of Kamachi Group Hospitals (Shintakeo, Shinmizumaki, Wajiro, and Tokyo Shinagawa
hospitals) (Fukuoka and Tokyo, Japan). The glass slides were digitized into WSIs at a ×20
magnification using a Leica Aperio AT2 Digital Whole Slide Scanner (Leica Biosystems,
Tokyo, Japan).

After a histopathological review of all specimens by three expert surgical pathologists,
97 were determined to have melanoma diagnoses. Out of these 97 cases, 19 were excluded
(14 melanoma in situ and 5 invasive melanoma cases) due to diagnostic inconsistency.
This resulted in a final number of 78 melanoma cases. In order to have a balanced set for
training and testing, we selected a roughly equal amount of 88 non-melanoma cases. Thus,
in total, we had 166 WSIs (78 melanoma and 88 non-melanoma). Tables 1 and 2 provide a
breakdown of the composition of the cases, and Table 3 provides a breakdown of cases into
training, validation, and test sets.
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Table 1. The composition of the 78 melanoma subtype cases.

Subtype Site WSI Subtype Site WSI
Melanoma in-situ Head and neck 4 NOS Head and neck 3

Upper extremity 4 Trunk 3
Lower extremity 6 Upper extremity 2

Nodular Head and neck 3 Lower extremity 3
Trunk 5 Amelanotic Head and neck 4
Upper extremity 7 Trunk 3
Lower extremity 8 Upper extremity 5

Lentigo maligna Head and neck 5 Lower extremity 4
Upper extremity 1

Superficial spreading Head and neck 2
Trunk 3
Upper extremity 2
Lower extremity 1

Table 2. The composition of the 88 non-melanoma subtype cases.

Subtype Site WSI Subtype Site WSI
Compound nevus Head and neck 6 Spitz’s nevus Head and neck 5

Trunk 4 Lower extremity 1
Upper extremity 6 Congenital nevus Head and neck 1
Lower extremity 5 Upper extremity 1

Junctional nevus Head and neck 5 Normal skin Head and neck 3
Trunk 3 Trunk 3
Upper extremity 5 Upper extremity 4
Lower extremity 4 Lower extremity 3

Intradermal nevus Head and neck 3
Non-melanocytic
benign Head and neck 3

Trunk 1 Trunk 4
Upper extremity 2 Upper extremity 3
Lower extremity 3 Lower extremity 4

Blue nevus Head and neck 2
Trunk 1
Upper extremity 1
Lower extremity 2

Table 3. Datasets.

Melanoma Non-Melanoma

Training 33 33
Validation 5 5
Test 40 50

Total 78 88

2.2. Annotation

Pathologists who performed routine histopathological diagnoses in general hospitals
in Japan manually annotated 78 melanoma WSIs from training (33 WSIs), validation (5
WSIs), and test (40 WSIs) sets (Table 3). Coarse polygonal annotations were obtained
by manual hand drawings using an in-house online tool developed by customizing the
open-source OpenSeadragon tool at https://openseadragon.github.io/ (accessed on 21
February 2021), which is a web-based viewer for zoomable images. Overall, the patholo-
gists manually annotated melanoma cell-infiltrating area on WSIs (Figure 1). We set an
annotation label as melanoma (Figure 1). Due to the tile-level evaluation, we annotated the
melanoma test set (Table 3, Figure 1). The non-melanoma subsets of the training, validation,
and test sets (Table 3) were not annotated and the entire tissue areas within the WSIs were

https://openseadragon.github.io/
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used. The average annotation time per WSI was about 15 min. The annotations performed
by the pathologists were modified (if necessary) and verified by a senior pathologist.

Figure 1. A manual drawing of an annotation for melanoma labels on whole-slide images (WSIs). In
both training (A) and test (C) sets, the melanoma cell-infiltrating areas (B,D) were manually annotated
(red lines) as melanoma labels. The test set of melanoma WSIs was annotated due to the tile-based
evaluation. Scale bars: 1 mm (A,C) and 50 µm (B,D).

2.3. Deep Learning Models

We used a modified version of the EfficientNetB1 (CNN) architecture. We performed
training using weakly supervised (WS) learning in a manner similar to the one described
in [27]. During slide-tiling, a given WSI at a magnification of ×20 was sliced into overlap-
ping tiles through a sliding window. We used 4 sets of tiling sizes: 224 × 224 px with a
stride of 224 × 224 px, 512 × 512 px with a stride of 256 × 256 px, 768 × 768 px with a
stride of 512 × 512 px, and 1024 × 1024 px with a stride of 512 × 512 px. This resulted in
four deep learning models.

We first detected tissue regions in a WSI by thresholding the grayscale version of the
WSI through Otsu’s method to exclude the white background. Annotations were used
afterward when available to further reduce the valid tissue regions to the annotated tissue
regions. Then, we divided the WSI into a grid and sampled tiles using the grid cell locations
from the valid tissue regions. When sampling, we performed image augmentation of the
extracted tiles using a variety of image transformations related to the color and image
quality. This allows the model to focus more on the content. We did not apply ICC profile
transformation to WSIs because they were from the same scanner and shared the same
color space. It might be necessary to apply the ICC profile and gamma transformation to
WSIs from different scanners to eliminate the impact of color space differences.

During training, we carried out a balanced random sampling of tiles from all WSIs in
each epoch to ensure that there was no class imbalance. For melanoma WSIs, we randomly
sampled from the annotated tissue regions; for non-melanoma, we randomly sampled from
all of the valid tissue regions. After a few epochs, we switched between the training and
inference stages and updated the mechanism of generating the subset, which was used in
the training stage. During inference, we applied the CNN to all of the tiles extracted from
the tissue regions in WSIs. We then selected the top k tiles that were most likely to be false
positives when the true label of the WSI was non-melanoma.

During the gradient descent procedure, we used the Adam (adaptive moment estima-
tion) optimizer with the binary cross-entropy loss function, with the parameters configured
as follows: beta1 = 0.9, beta2 = 0.999, batch size = (32 for 224 × 224 px, 16 for 512 × 512
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px, 8 for 768 × 768 px and 1024 × 1024 px), and the initial learning rate = 0.001 when fine
tuning. We used early stopping by monitoring the performance improvement of the model
on a validation set, and the training was automatically stopped when the validation loss no
longer improved for 10 epochs.

During the evaluation stage, we obtained a WSI level prediction for each WSI by
simply taking the maximum probability among all of its tiles.

For a bottom-to-up comparison, we evaluated the metrics of all tile-level predictions.
The metrics included ROC–AUC, log-loss, accuracy, sensitivity (true positive rate TPR),
specificity (true negative rate TNR), precision (positive prediction value PPV), etc. We
calculated the 95% confidence intervals (CIs) of the metrics by performing bootstrap resam-
pling, with a reduced resample count compared to the one used in the WSI-level evaluation
because of the increased dataset size and computation costs. We finally chose the model
that had the highest accuracy among the tile-level evaluation results and equivalent scores
as other models at the WSI level.

2.4. Software and Statistical Analysis

We used the open-source TensorFlow library [28] to implement the models. We
calculated the AUCs using the scikit-learn package [29] and plotted using matplotlib [30].
We computed the 95% CIs of the AUCs using the bootstrap method [31] with 1000 iterations.

3. Results
3.1. High ROC–AUC Performance of Melanoma WSI and Tile-Level Evaluation

We trained four deep learning models (×20, 224 × 224 px; ×20, 512 × 512 px; ×20,
768 × 768 px; ×20, 1024 × 1024 px), the primary difference between them being the tile
size. We evaluated these four models on the test set (Table 3) at the WSI and tile levels by
computing the ROC–AUC, log-loss, accuracy, sensitivity, specificity, and confusion matrix.
We summarized the results in Tables 4 and 5 and Figure 2. Overall, the model (×20, 512 ×
512 px) achieved the highest ROC–AUC (0.936) at the tile level and equivalent scores as the
models (×20, 768 × 768 px and ×20, 1024 × 1024 px) at the WSI level.

Figure 2. ROC curves for the test set using four trained deep learning models at the whole-slide
image (WSI) level and tile-level evaluations. At the WSI level evaluation (A), the models ([×20, 512
× 512 px], [×20, 768 × 768 px], and [×20, 1024 × 1024 px]) showed near-equivalent area under the
curve (AUC) scores, which reached 0.821–0.825. With the tile-level evaluation (B), the model (×20,
512 × 512 px) exhibited the highest AUC score (0.936).
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Table 4. Results of the test set of whole-slide image (WSI) level and tile level using multiple metrics.

Evaluation

WSI Level Tile Level

×20, 224 × 224 px
ROC–AUC 0.700 [0.587–0.808] 0.887 [0.885–0.890]

Log-loss 0.666 [0.642–0.686] 0.328 [0.327–0.329]
Accuracy 0.644 [0.544–0.744] 0.833 [0.831–0.837]

Sensitivity 0.850 [0.705–0.933] 0.788 [0.783–0.793]
Specificity 0.480 [0.366–0.647] 0.835 [0.834–0.837]

×20, 512 × 512 px
ROC–AUC 0.821 [0.712–0.890] 0.936 [0.935–0.938]

Log-loss 0.532 [0.472–0.618] 0.151 [0.149–0.153]
Accuracy 0.778 [0.667–0.844] 0.881 [0.880–0.882]

Sensitivity 0.725 [0.538–0.844] 0.844 [0.839–0.849]
Specificity 0.820 [0.691–0.902] 0.883 [0.882–0.884]

×20, 768 × 768 px
ROC–AUC 0.825 [0.763–0.930] 0.893 [0.888–0.898]

Log-loss 0.568 [0.435–0.651] 0.171 [0.165–0.174]
Accuracy 0.811 [0.767–0.911] 0.860 [0.858–0.862]

Sensitivity 0.750 [0.667–0.920] 0.786 [0.777–0.798]
Specificity 0.860 [0.786–0.964] 0.865 [0.863–0.867]

×20, 1024 × 1024 px
ROC–AUC 0.825 [0.752–0.916] 0.920 [0.918–0.924]

Log-loss 0.577 [0.383–0.704] 0.186 [0.180–0.192]
Accuracy 0.756 [0.667–0.844] 0.863 [0.860–0.865]

Sensitivity 0.875 [0.755–0.961] 0.823 [0.817–0.835]
Specificity 0.660 [0.523–0.800] 0.865 [0.863–0.868]

Table 5. Confusion matrix on both the WSI level and tile level. A cut-off threshold of 50% was used
to convert the probabilities into classifications.

WSI Level Tile Level

Predicted Label Predicted Label

Melanoma Non-Melanoma Melanoma Non-Melanoma

×20, 224 × 224 px

True label Melanoma 34 6 22,241 5990
Non-melanoma 26 24 70,527 358,037

×20, 512 × 512 px

True label Melanoma 29 11 18,706 3471
Non-melanoma 9 41 39,055 294,926

×20, 768 × 768 px

True label Melanoma 30 10 1287 653
Non-melanoma 7 43 46,007 38,460

×20, 1024 × 1024 px

True label Melanoma 35 5 5621 1206
Non-melanoma 17 33 12,996 83,448

3.2. True Positive Prediction

The model (×20, 512 × 512 px) satisfactorily predicted melanoma cells with melanin
in WSIs (Figure 3). According to the pathologists’ markings (black triangles), melanoma
cells can be observed in the central area of WSI (in between black triangles) (Figure 3A,C,E).
Consistent with the distribution of melanoma cells (Figure 3A,C,E), Figure 3B showed
true positive predictions of melanoma cells (Figure 3D,F). Compared to the probabilities
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of the central area of melanoma (Figure 3C), which enriches melanoma cells (Figure 3D),
the marginal area (Figure 3E) shows lower probabilities (Figure 3F), which reflects the
number of melanoma cells. At the tile level, melanoma cells with melanin (Figure 4A) were
predicted satisfactorily by the model (×20, 512 × 512 px) (Figure 4B).

Figure 3. An example of the true positive predictions of melanoma; consistent with the distribution
of the melanoma lesion as indicated by the pathologist (black triangles) (A), the heatmap image (B)
shows the true positive predictions of the melanoma area. The model (×20, 512 × 512 px) predicted
satisfactorily melanoma cells, including melanin (C,D). In the marginal area (E,F)), the model (×20,
512 × 512 px) could detect a small number of melanoma cells. Red indicates a high probability and
blue indicates a low probability.

Figure 4. An example of true positive and true negative predictions of melanoma using the ×20,
512 × 512 px model. (A) was a melanoma area with melanin, which was true-positively predicted as
melanoma by the heatmap image (B). (C) was a melanocytic nevus area with and without melanin,
which was true-negatively predicted as melanoma by the heatmap image (D). Red indicates a high
probability and blue indicates a low probability. Scale bars: 50 µm.

3.3. True Negative Prediction

The model (×20, 512 × 512 px) satisfactorily predicts non-melanoma cells, especially
melanocytic nevus, which includes melanin (Figure 5). The heatmap images show the true
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negative predictions of melanocytic nevus (Figure 5B,D). Regarding the tile-level evaluation
of melanocytic nevus (Figure 4C), the heatmap image shows true negative predictions of
melanin-positive and -negative melanocytic nevus cells (Figure 4D).

Figure 5. An example of true negative predictions of melanoma using the ×20, 512 × 512 px model.
According to the histopathological diagnostic (Dx) report, (A) was diagnosed as melanocytic nevus
according to the representative morphology (C). The heatmap images (B,D) show true negative
predictions of melanoma cells. Red indicates a high probability and blue indicates a low probability.

3.4. False Positive Prediction

Out of nine melanoma false positives predicted by the model in WSIs that were
(×20, 512 × 512 px) (Table 5), six out of nine WSIs (66.7%) were histopathologically di-
agnosed as Spitz’s nevus (Figure 6A) and three out of nine WSIs (33.3%) were blue nevi
(Figure 6E), which are histopathological mimickers of melanoma. The heatmap images
show false positive predictions of melanin-positive Spitz’s nevus (Figure 6B–D) and blue
nevus (Figure 6F–H) cells.

Figure 6. Two examples of false positive predictions of melanoma using the ×20, 512 × 512 px model.
According to the histopathological diagnostic (Dx) reports, (A) was diagnosed as a Spitz nevus and (E)
a blue nevus. Both Spitz’s nevus cells (C) and blue nevus cells (G) are morphological mimics of
melanoma cells. The heatmap images (B,F) show false positive predictions and (D,H) correspond,
respectively, to (C,G). Red indicates a high probability and blue indicates a low probability.

3.5. False Negative Prediction

At the WSI-level evaluation by the model (×20, 512 × 512 px) (Table 5), all eleven
WSIs that were false-negatively predicted were histopathologically diagnosed as melanoma
in situ (Figure 7A,C). The heatmap images show low melanoma-predicted tiles in the area
of melanoma in situ (Figure 7B–D). However, t the WSI level, melanoma in situ WSI was
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false-positively predicted. At the tile level, amelanotic variants of melanoma cells without
melanin (Figure 8A,C,E,G) were false-negatively predicted (Figure 8B,D,F,H).

Figure 7. An example of melanoma false negative prediction using the ×20, 512 × 512 px model.
According to the histopathological diagnostic (Dx) reports, (A) was diagnosed as melanoma in situ,
which is also called stage 0 melanoma. Melanoma cells are found in the epidermis (C). The heatmap
image (B,D) shows very low probabilities of melanoma but false negative predictions at the WSI
level. Red indicates a high probability and blue indicates a low probability.

Figure 8. An example of melanoma false negative using the ×20, 512 × 512 px model. Histopatho-
logically amelanotic variants of melanoma cells without melanin (A,C,E,G) were false-negatively
predicted as melanoma (B,D,F,H) at the tile level. Red indicates a high probability and blue indicates
a low probability. Scale bars: 50 µm.
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4. Discussion

In this pilot study, we trained deep learning models for the classification of cutaneous
melanoma in WSIs. We computed metric scores at the WSI and tile levels. The best model
(×20, 512 × 512 px) achieved ROC–AUC of 0.821 (CI: 0.712–0.890) at the WSI level, 0.936
(CI: 0.935–0.938) at the tile level, and low log-loss values of 0.532 (CI: 0.472–0.618) at the
WSI level and 0.151 (CI: 0.149–0.153) at the tile level (Table 4). The heatmap images reveal
that the best model (×20, 512 × 512 px) true-positively predicted cutaneous melanoma
cells with melanin (Figure 3) and true-negatively predicted non-melanoma (melanocytic
nevus) with melanin (Figure 5). The model (×20, 512 × 512 px) could differentiate between
melanoma and non-melanoma (nevi) with melanin satisfactorily (Figure 4).

This study was challenging because of the limited number of cases that could be
collected (Table 3). To train a reliable model and evaluate it accurately, we would need a
dataset of cutaneous WSIs, which are diagnosed as melanoma or non-melanoma; however,
this is challenging because there are many controversial cases in cutaneous lesions. In
addition, there are three other major limitations in this study: First, Spitz’s nevus and blue
nevus were false-positively predicted as melanoma by the model (×20, 512 × 512 px). Out
of 9 false positive WSIs (Table 5), 6 WSIs (66.7%) were Spitz’s nevi and 3 WSIs (33.3%) were
blue nevi. Spitz’s nevus typically affects children and young adults, especially on the face
and lower extremities, but it may occur anywhere and at any age [32].

Histopathologically, Spitz’s nevus has many similarities to melanoma morphology
[21,32], and we see this exhibited with the false positive cases: melanocytes dispersed in
single-cell patterns, circumscribed lesions, and nests present at edges rather than single
cells. Moreover, there are Spitz’s melanomas which are expected to show Spitz-like features
that could be classified as malignant melanomas [32–34]. The diagnosis of melanoma may
be based on a clinical follow-up and/or the opinion of an experienced pathologist [32]. In
this study, Spitz’s nevus was not included in the datasets (both training and validation
sets). Spitz’s nevus is one of the diagnostic pitfalls in cutaneous melanocytic lesions for
pathologists [34]. The blue nevus is usually small and located in the head and neck or upper
extremity [35]. Histopathologically, the blue nevus also has many similarities to melanoma
morphology; it is typically characterized by an indistinct deep dermal spread of long and
dendritic dermal melanocytes with abundant melanin [21,35]. Metastatic melanoma from
the skin (or eye) is the most important differential diagnosis of blue nevus [36,37]. Based
on these histopathological features, it is understandable that Spitz’s and blue nevi were
false-positively predicted as melanoma (Figure 6).

Second, at the tile level, amelanotic variants of melanoma cells without melanin were
false-negatively predicted as melanoma by the model (×20, 512 × 512 px) (Figure 8). When
a lesion is amelanotic, melanoma can be confused with a number of non-melanocytic
tumors [10,11]. For example, based solely on hematoxylin and eosin (H & E)-stained
specimens, benign tumors such as foam and giant cell-poor xanthogranuloma or fibroma
can be misdiagnosed as melanoma [21]. In routine histopathological diagnoses, immuno-
histochemical studies allow for definitive differentiation between them. Therefore, it is
understandable that it was difficult to precisely predict amelanotic variants of melanoma
(Figure 8) at the tile level.

Third, it was hard to predict melanoma in situ at the WSI level (Figure 7). All eleven
false negative WSIs were melanoma in situ. However, in routine histopathological di-
agnoses, melanoma in situ is one of the most controversial aspects in the pathology of
melanocytic lesions [21,38–40].

The major three limitations mentioned previously are due to a lack of training datasets
that cover controversial nevi (e.g., Spitz’s nevus and blue nevus), amelanotic melanomas,
and melanoma in situ. Thus, for future work, we will attempt to collect more melanocytic
lesions from a wide variety of hospitals and clinical laboratories and perform active and/or
iterative learning on the existing model (×20, 512 × 512 px).
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5. Conclusions

In this study, we trained models to classify cutaneous melanoma WSIs, and we eval-
uated them at the WSI and tile levels, achieving ROC–AUCs for the WSI level at 0.821
(CI: 0.712–0.890) and the tile level at 0.936 (CI: 0.935–0.938) by the best model (×20, 512 ×
512 px). At the WSI and tile levels, the model (×20, 512 × 512 px) satisfactorily predicted
melanoma with melanin and true-negatively predicted melanin-positive nevus by the
heatmap images. At the WSI level, the model (×20, 512 × 512 px) false-positively predicted
Spitz’s nevus and blue nevus and false-negatively predicted melanoma in situ. At the tile
level, the model (×20, 512 × 512 px) false-negatively predicted amelanotic melanoma cells
that lacked melanin. To overcome these false positives and false negatives, the number of
images in the training set should be increased.
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