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Simple Summary: In boron neutron capture therapy (BNCT), the amount and localization of boron-
10 atoms in tumor tissues directly determine the therapeutic effect. This study developed a novel
fluorescence sensor, BITQ, to analyze boronic acid agents used for BNCT. Mixing BITQ and a
representative 10B-labeled boronoagent, BPA, immediately produced significant fluorescence in a
highly quantitative and selective manner. BITQ enabled the visualization of BPA distribution within
a living cell and quantified the concentration of BPA in mouse blood to a degree comparable with
that of current methods. This study highlights the highly effective properties of BITQ as a versatile
fluorescence sensor for analyzing boronic acid agents.

Abstract: Boron neutron capture therapy (BNCT) is an attractive approach to treating cancers.
Currently, only one 10B-labeled boronoagent (Borofalan, BPA) has been approved for clinical BNCT
in Japan, and methods for predicting and measuring BNCT efficacy must be established to support
the development of next-generation 10B-boronoagents. Fluorescence sensors targeting boronic acids
can achieve this because the amount and localization of 10B in tumor tissues directly determine
BNCT efficacy; however, current sensors are nonoptimal given their slow reaction rate and weak
fluorescence (quantum yield < 0.1). Herein, we designed and synthesized a novel small molecular-
weight fluorescence sensor, BITQ, targeting boronic acids. In vitro qualitative and quantitative
properties of BITQ were assessed using a fluorophotometer and a fluorescence microscope together
with BPA quantification in blood samples. BITQ exhibited significant quantitative and selective
fluorescence after reacting with BPA (post-to-pre-fluorescence ratio = 5.6; quantum yield = 0.53); the
fluorescence plateaued within 1 min after BPA mixing, enabling the visualization of intracellular BPA
distribution. Furthermore, BITQ quantified the BPA concentration in mouse blood with reliability
comparable with that of current methods. This study identifies BITQ as a versatile fluorescence
sensor for analyzing boronic acid agents. BITQ will contribute to 10B-boronoagent development and
promote research in BNCT.

Keywords: boron neutron capture therapy; boronoagents; Borofalan; fluorescence sensor

1. Introduction

Boron neutron capture therapy (BNCT) is a cancer treatment method based on the
nuclear capture and fission reactions that occur when boron-10 (10B) atoms collide with
externally irradiated thermal neutrons. This produces high-linear energy transfer (LET)
alpha (α) particles (4He) and recoiling lithium-7 (7Li) nuclei. These high LET radiations
have very short ranges (<10 µm), and their destructive effects are therefore limited to
10B-containing cells [1,2]. 4-[10B]Borono-L-phenylalanine (BPA) is the most representative
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and extensively studied boronoagent for BNCT [3–5]. BPA is delivered to the intracellular
space in a cancer cell-specific manner via the L-type amino acid transporter 1 (LAT1) [6,7].
Following positive outcomes in clinical trials, BPA was approved in Japan in 2020 and is
commercially available under the name Borofalan (10B). However, the application of BPA
is limited to the locally advanced or recurrent unresectable head and neck cancer [8], and
next-generation 10B-boronoagents are urgently needed to expand the applicability of BNCT
to a broader cancer treatment field; consequently, several studies are ongoing to fulfill this
purpose [9–12].

Given the therapeutic mechanism of BNCT, the 10B concentration in the tumor directly
affects the therapeutic effect and must be monitored in clinical settings to estimate the
intratumor 10B concentration during continuous BPA infusion [13,14]. Furthermore, the sub-
cellular 10B localization is known to affect the therapeutic effect, considering the efficiency
of DNA double-strand breakage [15,16]. Therefore, it is critical to develop a method to
quantify 10B concentrations and visualize 10B localization in cancers to support the efficient
development of novel 10B-boronoagents and predict and measure the therapeutic effects of
clinical BNCT. Inductively coupled plasma mass spectrometry (ICP-MS) and inductively
coupled plasma optical emission spectrometry (ICP-OES) have been used as the standard
methods for determining 10B concentration from initial research to clinical measurements.
However, these methods are not applicable for localization assessment because they require
ashing samples using a high concentration of acid [13]. Recently, the visualization of boron
localization in tissues has been made possible by applying mass imaging (secondary ion
mass spectrometry, SIMS) [17,18] and autoradiography [19]. However, these methods
require high-cost equipment and complex pretreatment and data acquisition processes and
thus are not feasible to use for quick or quantitative measurements.

Consequently, small molecular-weight compounds that emit fluorescence after reacting
with boronic acid have been recognized as fluorescence sensors that can be used to evaluate
10B-boronoagents. DAHMI is a well-known fluorescence sensor [10,20,21]. The fluorescence
intensity emitted after reacting with boronic acid is sufficient to visualize intracellular
boronic acid distribution, and DAHMI has been used to evaluate various BNCT agents
to date. However, fluorescence is only slowly produced after the reaction with boronic
acid, preventing DAHMI from being used for rapid quantitative measurements. Recently,
we reported a novel fluorescence sensor, PPN-1, that reacts quickly with boronic acid [22]
but exhibits a low fluorescence quantum yield that could not be applied to fluorescence
microscopic observation.

Herein, we aimed to develop a novel sensor compound that emits strong fluorescence
with a high quantum yield immediately after reacting with boronic acid. Specifically,
we selected 2-(2-hydroxyphenyl)-1H-benzimidazole (HPBI), which rapidly reacts with
boronic acid and emits strong fluorescence regardless of forming a complex with boronic
acid [23,24] as the skeleton of a fluorescence sensor. To achieve an off/on fluorescence
property, we introduced an electron-donating moiety to the skeleton to suppress the fluores-
cence before complexation with boronic acid [25]. We then adopted the 1,4-diethyl-1,2,3,4-
tetrahydropyrazine structure among electron-donating groups to design BITQ (Figure 1) to
not only suppress the fluorescence before the complexation but also improve fluorescence
properties after the complexation [26–28] in comparison with those of the diethylamino
group of DAHMI [29].

Therefore, we synthesized BITQ and evaluated its fundamental properties as a boronic
acid fluorescence sensor in an aqueous solution compared with those of HPBI and DAHMI.
We then applied BITQ to visualize the subcellular boronic acid distribution and to quantify
boronic acid in the blood to estimate its potential for assessing 10B-boronoagents.
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Figure 1. Schematic of boronic acid detection by formation of a fluorescent complex with BITQ.

2. Materials and Methods
2.1. Preparation of BITQ

All reagents were obtained from Tokyo Chemical Industry (Tokyo, Japan), Nacalai
Tesque (Kyoto, Japan), or Wako Pure Chemical Industry (Osaka, Japan) and used without
further purification. BPA was supplied by Stella Pharma Corp. (Osaka, Japan). Mass
spectra (MS) and high-resolution mass spectra (HRMS) were collected with a JMS-700(2)
mass spectrometer (JEOL Ltd., Tokyo, Japan). 1H and 13C-NMR spectra were obtained
with a DD2 NMR Spectrometer (Agilent, CA, USA, 600 MHz). An intermediate of BITQ,
1,4-diethyl-7-hydroxy-1,2,3,4-tetrahydro-quinoxaline-6-carbaldehyde, was synthesized as
previously described [29]. 1,2-Phenylenediamine (0.03 g, 0.26 mmol) was added to DMF
(2 mL) solution containing the intermediate (0.06 g, 0.26 mmol) and stirred for 1 min at
room temperature (RT). Na2S2O5 (50.2 mg, 0.26 mmol) in water (0.5 mL) was added to
the solution and stirred for 4 h at 90 ◦C. After completion of the reaction, the reaction
mixture was diluted with ethyl acetate (150 mL) and washed with water. The organic
layer was dried over anhydrous Na2SO4 and concentrated under reduced pressure. The
residue was purified by silica gel chromatography (hexane/EtOAc) to afford BITQ (0.05 g,
56%) as an orange solid. 1H NMR (600 MHz, DMSO-d6): δ1.10 (t, J = 7.2 Hz, 3H), 1.14 (t,
J = 6.6 Hz, 3H), 3.15 (m, 2H), 3.34 (m, 4H), 3.40 (m, 2H), 6.11 (s, 1H), 7.06 (s, 1H), 7.15–7.19 (m,
2H), 7.48–7.50 (m, 1H), 7.55–7.56 (m, 1H), 12.5 (brs, 1H), 12.6 (brs, 1H); 13C NMR (150 MHz,
DMSO-d6): δ9.7, 10.0, 44.4, 44.7, 44.7, 46.4, 97.4, 99.1, 107.2, 110.4, 116.6, 121.5, 121.7, 127.8,
133.0, 139.3, 141.4, 152.7, 153.5, FAB-MS: m/z: 322. Measured: 323[+H]+. FAB-HRMS:
Calculated for C19H23N4O: 323.1872. Measured: 323.1868.

2.2. Fluorescence Properties

BITQ was mixed with BPA to final concentrations of 1.0 and 100 µM, respectively, in
0.5% DMSO/H2O. Excitation and emission spectra were measured 15 min later using a
spectrometer (FP-8600, JASCO Corporation, Tokyo, Japan, photomultiplier voltage: 700 V)
to evaluate the maximum excitation (λex

max) and emission (λem
max) wavelengths. HPBI was

analyzed similarly. The fluorescence intensity (λex/λem: 390/480 nm; photomultiplier
voltage: 700 V) was intermittently measured for 30 min after the addition of BPA (100 µM)
to BITQ (1.0 µM) in 0.5% DMSO/H2O.

To evaluate the relationship between the fluorescence intensity and BPA concentration,
BITQ was mixed to a final concentration of 1.0 µM with various concentrations of BPA
(0–50 µM at final concentration) in 0.5% DMSO/H2O. Fluorescence intensities were mea-
sured using a spectrometer 15 min after mixing (λex/λem: 390/480 nm). A linear regression
analysis was performed to fit the data (0–10 µM, n = 5) and calculate the quantification and
detection limits from the following equations:

quantification limit = 10 σ/slope and detection limit = 3 σ/slope,

where σ is the standard deviation of the fluorescence intensities of samples at 0 µM, and
the slope is derived from the regression line. DAHMI was mixed to a final concentration
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of 1.0 mM with various concentrations of BPA (0–40 µM at final concentration) in 50%
DMSO/H2O. Fluorescence intensities were measured using a spectrometer 120 min after
mixing (λex/λem: 411/431 nm, photomultiplier voltage: 1130 V) and analyzed similarly.

The relative quantum yields of BITQ, HPBI, and DAHMI (λex = 330, 310, and 330 nm,
respectively) were measured in ethanol before and after mixing with phenylboronic acid
(50 eq.) using anthracene (ϕR = 0.27) as a reference following the equation:

ϕS = ϕR × (AbsR/AbsS) × (AreaS/AreaR),

where the subscripts R and S refer to the reference and sample, respectively, and Abs
and Area refer to the absorbance at the excitation wavelength and the area under the
fluorescence spectrum, respectively.

2.3. Reactivity for Boron-Containing Compounds

BITQ (final concentration of 1.0 µM) was mixed with boric acid, ethylboronic acid,
2-(hydroxymethyl)phenyl boronic acid monoester, or bis(pinacol)diboron (final concen-
tration of 100 µM) in 0.5% DMSO/H2O. Fluorescence intensities were measured using a
spectrometer 5 min after mixing (photomultiplier voltage: 700 V).

2.4. Selectivity Assay

BITQ (final concentration of 1.0 µM) was mixed with BPA or a metal cation (NaCl,
KCl, MgCl2·6H2O, CaCl2, FeCl2·4H2O, FeCl3·6H2O, CoCl2·6H2O, ZnCl2, CdCl2·2.5H2O,
NiCl2·6H2O, CuCl2, MnCl2·4H2O, or AlCl3·6H2O) (final concentration of 100 µM) in
0.5% DMSO/Tris HCl buffer (100 mM, pH 7.4). Fluorescence intensities of the samples
were measured 15 min after mixing using a plate reader (EnSpire Multilabel Reader 2300,
PerkinElmer Japan, Kanagawa, Japan, λex/λem: 390/480 nm) in quadruplicate (n = 3). The
fluorescence intensities were expressed in relative value to that of the BITQ solution in the
absence of metal cations and BPA.

BITQ, BPA, and each metal cation above (final concentration of 1.0, 100, and 100 µM,
respectively) were mixed in 0.5% DMSO/Tris HCl buffer (100 mM, pH 7.4) in quadrupli-
cate (n = 3), followed by the measurement of fluorescence intensities at 15 min as above.
Fluorescence intensities were expressed relative to that of the BITQ-BPA solution without
adding metal cations.

2.5. Fluorescence Microscopy

T3M-4 human pancreatic adenocarcinoma cells (RCB1021) were provided by the
RIKEN BioResource Research Center (Ibaraki, Japan) and were cultured in DMEM/Ham’s
F-12 medium containing 10% fetal bovine serum at 37 ◦C in a humidified atmosphere of 5%
CO2. The uptake of BPA into T3M-4 cells was performed with several modifications to the
previously reported method [29]. Briefly, T3M-4 cells were cultured in a glass bottom dish
35 mm (Matsunami Glass Ind., Osaka, Japan) 2 days before the experiment. After washing
three times with Na+-free Hank’s balanced salt solution (HBSS: 125 mM choline chloride,
25 mM HEPES, 4.8 mM KCl, 5.6 mM D-glucose, 1.3 mM CaCl2, 1.2 mM MgSO4, and 1.2 mM
KH2PO4), 1.5 mL of BPA (1.0 mM in HBSS) was added and incubated at 37 ◦C for 30 min.
For the BPA-absent group, only HBSS was added and incubated. After washing three
times with HBSS, 1.5 mL of BITQ (10 µM in 0.5% DMSO/HBSS) was added and incubated
for 5 min at RT. For nuclei staining, cells were incubated with NucRed Live647 (Thermo
Fisher Scientific, Tokyo, Japan, 1:15 dilution in HBSS) at 37 ◦C for 30 min. Fluorescence
images were acquired with a BZ-X810 (Keyence, Osaka, Japan) instrument using a DAPI-V
filter cube (Keyence OP-88359, Ex: 395/25 nm, Em: 460/50 nm) and a Cy5 filter (Keyence
OP-87766, Ex: 620/60 nm, Em: 700/75 nm) for BITQ and NucRed Liver647, respectively.

2.6. Quantification of BPA Concentration in Mice Plasma

Male ddY mice (6–8 weeks old, Japan SLC, Shizuoka, Japan) were housed under a
12 h light/12 h dark cycle and given free access to food and water. Animal experiments
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were conducted according to the institutional guidelines for animal experiments. The study
protocol was approved by the institutional Experimental Animal Committee (Permission
Number: 21-76 and 22-76). To solubilize BPA, BPA and 2.2 equivalents of D-fructose
were pre-mixed to make a BPA-fructose solution. BPA-fructose solution (20 µL; final
concentration of 0–900 µM) was added to blood (480 µL) collected from mice and mixed
by inversion. After 5 min, plasma was collected by centrifugation. Methanol (400 µL) was
added to the plasma (200 µL), vortexed for 30 s, and centrifuged to remove protein. A 100-
µL volume of the supernatant was added to 2.9 mL 0.5% DMSO/H2O solution containing
BITQ (final 5.0 µM), followed by the fluorescence measurement using a spectrometer
15 min after mixing (λex/λem: 390/480 nm, photomultiplier tube voltage: 700 V). A linear
regression analysis was performed to fit the data (n = 3).

To evaluate the quantitative range of the fluorescence analysis with BITQ compared
with that of ICP-MS, mouse blood (480 µL) was mixed with an unknown concentration
of BPA-fructose solution (20 µL) prepared blindly. The samples were divided into two
parts and measured by the lead researcher (S.T.) using fluorescence analysis with BITQ
and ICP-MS. For ICP-MS measurement, the sample was ashed with concentrated nitric
acid, and the boron concentration was determined using 8800 triple quadrupole ICP-MS
(Agilent, Santa Clara, CA, USA).

2.7. Statistics

Data are presented as mean± standard deviations. Statistical analyses were performed
using Dunn’s multiple comparison tests with GraphPad Prism 8. Differences at the 95%
confidence level (p < 0.05) were considered significant.

3. Results
3.1. Fluorescence Properties of BITQ

BITQ was synthesized with a yield of 56.3%. The fluorescence properties of BITQ,
HPBI, and DAHMI are summarized in Table 1. After the addition of BPA, the maximum ex-
citation (λex

max) and emission wavelengths (λem
max) of BITQ fluorescence were 390 and 480 nm,

respectively (Figure 2A), showing the longer emission wavelength and broader Stokes shift
compared with those of HPBI (λex

max: 337 nm; λem
max: 399 nm; Figure 2B). The quantum yield

of HPBI before the addition of boronic acid was 0.71, but this was significantly suppressed
to 0.09 for BITQ. Consequently, the post-to-pre-fluorescence ratio was 5.6 and 1.3 for BITQ
and HPBI, respectively, indicating the superior off/on property of BITQ. The quantum
yield of BITQ after adding boronic acid was 0.53, which was ten-fold larger than that of
DAHMI (0.053). Aside from BPA, the fluorescence increased markedly after mixing BITQ
with 2-(hydroxymethyl)phenyl boronic acid monoester, but the increase in fluorescence
was slight for boric acid, ethylboronic acid, and bis(pinacol)diboron, which do not contain
a benzene ring (Figure S1).

The fluorescence intensity of BITQ increased within 1 min after adding BPA and
remained constant for 30 min (Figure 3). For DAHMI, the fluorescence intensity did not
plateau until 120 min after BPA addition [22], suggesting a faster reactivity of BITQ with
BPA compared with that of DAHMI. Linear regression analysis revealed high linearity
(R2 = 0.99, Figure 4) between the fluorescence intensities of BITQ and the concentrations of
BPA reacted. The detection and quantification limits were 0.24 and 0.82 µM, respectively
(R2 = 0.99, Figure S2). As for DAHMI, the detection and quantification limits were 0.72 and
2.40 µM, respectively (R2 = 0.99, Figure S3).
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Table 1. Fluorescence properties of tested compounds.

λex
max λem

max
Stokes
Shift ϕboron ϕfree ϕboron

/ϕfree

BITQ 390 nm 480 nm 90 nm 0.53 0.094 5.6
DAHMI 411 nm 431 nm 20 nm 0.053 0.0034 15.7

HPBI 337 nm 399 nm 62 nm 0.89 0.71 1.3
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for Zn2+ (130%, not significant).

Cancers 2023, 14, x FOR PEER REVIEW 8 of 13 
 

 

 
Figure 5. BITQ fluorescence intensity (1.0 µM) 15 min after adding BPA or metal cation (100 µM, pH 
7.4) with buffer-only sample as a standard (100%). * p < 0.05 vs. buffer (0.5% DMSO/Tris HCl buffer 
only) by Dunn’s multiple comparison test. 

Next, the effects of the coexistence of high concentrations of metal cations (100 µM) 
in the fluorescence intensity of the solution containing BITQ (1.0 µM) and BPA (100 µM) 
were evaluated (Figure S4). Lower fluorescence was evident when Mn2+, Fe2+, Fe3+, Co2+, 
Ni2+, and Cu2+ coexisted in the BITQ/BPA solution compared with that of the control. 

3.3. Fluorescence Microscopy Study 
Fluorescence images of T3M-4 cells pretreated with or without BPA after adding 

BITQ are shown in Figure 6A,D (pseudo-color; blue). Faint fluorescence was observed in 
the BPA-absent group (Figure 6D), while fluorescence was observed throughout the cells 
in the BPA-treated group (Figure 6A). The merged image (Figure 6C) indicated that the 
BITQ fluorescence was strongly present around the cell nuclei visualized with NucRed 
Live647 (Figure 6B, pseudo-color; red). 

 
Figure 6. Representative fluorescence images of T3M-4 cells: (A–C) BPA-present group, (D–F) BPA-
absent group. (A,D) Fluorescence images after 5 min incubation with BITQ (10 µM) (DAPI-V filter: 
Ex: 395/25 nm, Em: 460/50 nm); (B,E) nucleus staining using NucRed Live647 (Cy5 filter: Ex: 620/60 
nm, Em: 700/75 nm); and (C,F) merged images of fluorescence from BITQ and NucRed Live647. 

3.4. Quantification of BPA Concentration in Mouse Blood 
Linear regression analysis revealed that the BITQ fluorescence was obtained with 

high linearity over a wide range of the BPA concentrations in mice blood (R2 = 0.99, Figure 
S5). Furthermore, in an experiment using blood samples containing BPA blindly prepared 
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7.4) with buffer-only sample as a standard (100%). * p < 0.05 vs. buffer (0.5% DMSO/Tris HCl buffer
only) by Dunn’s multiple comparison test.

Next, the effects of the coexistence of high concentrations of metal cations (100 µM) in
the fluorescence intensity of the solution containing BITQ (1.0 µM) and BPA (100 µM) were
evaluated (Figure S4). Lower fluorescence was evident when Mn2+, Fe2+, Fe3+, Co2+, Ni2+,
and Cu2+ coexisted in the BITQ/BPA solution compared with that of the control.

3.3. Fluorescence Microscopy Study

Fluorescence images of T3M-4 cells pretreated with or without BPA after adding BITQ
are shown in Figure 6A,D (pseudo-color; blue). Faint fluorescence was observed in the
BPA-absent group (Figure 6D), while fluorescence was observed throughout the cells in
the BPA-treated group (Figure 6A). The merged image (Figure 6C) indicated that the BITQ
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fluorescence was strongly present around the cell nuclei visualized with NucRed Live647
(Figure 6B, pseudo-color; red).
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3.4. Quantification of BPA Concentration in Mouse Blood

Linear regression analysis revealed that the BITQ fluorescence was obtained with high
linearity over a wide range of the BPA concentrations in mice blood (R2 = 0.99, Figure S5).
Furthermore, in an experiment using blood samples containing BPA blindly prepared for
the authors, the boron concentration measured from the BITQ fluorescence was linearly
correlated with that evaluated by the ICP-MS analysis with a slope of 1 (R2 = 0.98, Figure 7).
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4. Discussion

Herein, we synthesized a novel off/on-type fluorescence sensor (BITQ) that targeted
boronic acids and was designed by introducing the 1,4-diethyl-1,2,3,4-tetrahydropyrazine
structure as an electron-donating group [26–28] to the HPBI skeleton to improve the
fluorescence properties. We then evaluated the potential of BITQ as a sensor compound
for qualitative and quantitative analyses in the BNCT-related fields. As expected, we
found that BITQ had promising properties, including a high quantum yield, high off/on
switching ability, rapid reactivity, longer emission wavelength, and extended Stokes shift, in
comparison with these aspects of DAHMI used as a control [20–22]. These results indicate
that BITQ can potentially replace DAHMI to promote the development of 10B-boronoagents
and evaluate BPA in BNCT research.

The high quantum yield and off/on ability of BITQ produced an improved quantifica-
tion limit (0.82 µM) that was superior to those of DAHMI (2.40 µM), PPN-1 (6.01 µM) [22],
and BS-631 (65.3 µM) [29], which we previously reported as a sensor for BNCT, suggesting
a high sensitivity comparable with that of ICP-OES [30] and that would be sufficient for
measuring the boron concentration (>2 mM) required for BNCT [2]. The BITQ fluorescence
rapidly increased to maintain a constant value for 30 min after mixing with BPA, indicating
the high stability in an aqueous solution as well as the high reactivity mentioned above.
DAHMI contains (E)-2-[(methylimino)methyl]phenol as the core structure to react with
boronic acids, although this produces instability in an aqueous solution in addition to the
slow reactivity [31]; therefore, BITQ would be more efficacious than DAHMI for quantita-
tive assessment during in vitro pharmacokinetic studies such as a time-dependent uptake
experiment for evaluating the effect of 10B-boronoagents. The subcellular 10B localization
is known to affect the efficiency of energy transfer to the nucleus [15,16,32]. In addition,
the intracellular trafficking and the efficiency of efflux of agents differ depending on the
localization position (organelle) after intracellular uptake of the agent [10]. Therefore, it
is significant to visualize 10B localization in cancers. In this study, BPA distribution in
high LAT1-expressing T3M-4 cells [7,9] was visualized using fluorescence microscopy
with BITQ at a lower concentration and in a shorter time (10 µM, 5 min) compared with
the conditions reported for DAHMI (1 mM, 20 min) [20], which was attributable to the
higher quantum yield, faster reactivity, and improved adaptability to filter sets due to
Stokes shift expansion. The intracellular BPA distribution seen in this study was visually
consistent with previously reported localization evaluated by SIMS [17,18]. BITQ could
also be applied to microscopic fluorescence observation using living cells, unlike DAHMI,
which requires a fixation process for the observation. Thus, BITQ is expected to be applied
to observing changes in boron uptake over time in living cells and could be a powerful tool
for drug development for BNCT.

BITQ fluorescence did not increase following mixing with major cations known to be
present at millimolar levels in cells [33]. However, Zn2+ did react with BITQ to produce a
small, but not significant, increase in fluorescence. The fluorescence intensity of BPA/BITQ
was attenuated by up to approximately 20% for metal ions (Fe2+, Fe3+, Co2+, Ni2+, and
Cu2+) when 100 equivalents of metal ions were added to the sensor. A similar tendency was
observed with the fluorescence of DAHMI and PPN-1 in the presence of trace metals [22].
To achieve BNCT treatment, intratumor boron concentration was required to be 2 mM
or higher. In contrast, the amount of intracellular metal ions present is reportedly at the
sub-micromolar or few micromolar levels [34]. Therefore, the influence of coexisting trace
metal cations is negligible in the detection ability of BITQ.

Currently, 18F-labeled BPA ([18F]FBPA, 4-Borono-2-[18F]fluoro-L-phenylalanine) is
utilized as a positron emission tomography (PET) probe for imaging and the evaluation
of the pharmacokinetics of BPA in vivo [35]. In clinical BNCT using BPA, [18F]FBPA-PET
is performed before BNCT treatment. The tumor-to-normal and tumor-to-blood ratios
of radioactivity accumulation are calculated from the PET images to determine whether
BNCT is applicable. Since the amount of boron accumulated in the tumor is estimated from
the tumor-to-blood ratio data obtained from PET and the actual blood boron concentration
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during treatment, it is necessary to quantify the 10B concentration in the venous blood
via ICP-MS/OES method during 2–3 h BPA infusion several times [14,36]. Therefore,
ICP-MS/OES is indispensable equipment for hospitals currently performing BNCT. As
BNCT continues to expand, the number of BNCT hospitals is expected to increase. In
such case, fluorescence measurement using a plate reader is considered safer and less
difficult to perform than the ICP-MS/OES method, which requires hazardous treatment
with high concentrations of acid. We thus tried to quantify BPA concentrations in mouse
blood using BITQ because fluorescence analysis is generally used in clinics, reasonable
to install, and easy to perform by clinicians. The results clearly showed the effectiveness
of BITQ in quantifying BPA in the blood with high precision comparable with that of
the ICP-MS method within 30 min after blood collection. Although further efforts are
required to shorten the measurement protocol to apply to actual clinical practice, this result
strongly suggests that the ex vivo fluorescence analysis with BITQ can be an alternative
BPA quantification method in patient blood in the future.

We mainly used BPA as a boronic acid-containing compound to validate the effective-
ness of BITQ, as BPA is currently the only 10B-boronoagent available for clinical BNCT.
Boronic acid-containing structures are recognized as having potential for the develop-
ment of effective therapeutic agents [37–39], including 10B-boronoagents for BNCT [9–12].
This study has provided preliminary evidence that BITQ exhibited a marked increase in
fluorescence after reaction with boronic acids containing a benzene ring, such as BPA,
phenylboronic acid, and 2-(hydroxymethyl)phenyl boronic acid monoester, while the fluo-
rescence increase was attenuated with structures that do not contain benzene rings, such
as boric acid and ethylboronic acid. Thus, BITQ will need further careful assessment for
evaluating its reactivity to a boronoagent newly developed in the future. Furthermore,
although it is reasonably expected that BITQ will be applicable to ex vivo samples, which
SIMS and autoradiography can assess [17–19], this should also be validated. For example,
BITQ would be a powerful tool to visualize 10B distribution in ex vivo tumor sections in
preclinical experiments for predicting the therapeutic effect of drug candidates for BNCT.

5. Conclusions

In this study, we developed a novel fluorescence sensor targeting boronic acids, BITQ,
showing high quantum yield, excellent off/on ability, rapid reactivity, and high quantitative
scope for BPA. BITQ could visualize intracellular BPA in a short time and quantify BPA
in mice blood with a precision comparable with that of ICP-MS. This study highlights the
excellent properties of BITQ as a versatile fluorescence sensor for analyzing boronic acid
agents, and BITQ will therefore contribute to developing 10B-boronoagents and promote
biological research in BNCT.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers15061862/s1, Figure S1: The structure of tested boron-
containing compounds and the emission spectra of BITQ after the addition of these compounds;
Figure S2: Linear regression analysis between the fluorescence intensities of BITQ (1.0 µM) and BPA
(0–10 µM); Figure S3: Linear regression analysis between the fluorescence intensities of DAHMI
(1.0 mM) and BPA (0–40 µM); Figure S4: BITQ fluorescence intensity (1.0 µM) 15 min after the
addition of BPA (100 µM) when coexisted with metal cations (100 µM, pH 7.4); Figure S5: Linear
regression analysis between the fluorescence intensities of BITQ (5.0 µM) and BPA concentrations
contained (0–900 µM) in mouse blood.
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