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Simple Summary: Real-time diagnosis tools and methods are desired to aid in the intraoperative
grading of glioma and tumor boundary identification to achieve safe maximal tumor removal.
Raman spectroscopy is an optical method for real-time glioma detection, but few studies use fresh
glioma tissue for biochemical analysis. This study is the first investigation of human glioma using
a portable VRR-LRRTM Raman analyzer under quasi-clinical conditions, and reveals significant
spectral differences between normal (control) and different grades of glioma. A principal component
analysis–support vector machine (PCA-SVM) machine learning method was used to distinguish
glioma tissues from normal tissues and different glioma grades. The accuracy in identifying glioma
from normal tissue was over 80%, compared with histopathology as the gold standard. This result
validates the possibility of glioma diagnosis using fresh tissue and provides instant feedback for
neurosurgeons in guiding maximal safe resection, and it may support the translation of this portable
tool for in vivo and real-time use in tissue biochemical analysis.

Abstract: There is still a lack of reliable intraoperative tools for glioma diagnosis and to guide the
maximal safe resection of glioma. We report continuing work on the optical biopsy method to
detect glioma grades and assess glioma boundaries intraoperatively using the VRR-LRRTM Raman
analyzer, which is based on the visible resonance Raman spectroscopy (VRR) technique. A total of
2220 VRR spectra were collected during surgeries from 63 unprocessed fresh glioma tissues using the
VRR-LRRTM Raman analyzer. After the VRR spectral analysis, we found differences in the native
molecules in the fingerprint region and in the high-wavenumber region, and differences between
normal (control) and different grades of glioma tissues. A principal component analysis–support
vector machine (PCA-SVM) machine learning method was used to distinguish glioma tissues from
normal tissues and different glioma grades. The accuracy in identifying glioma from normal tissue
was over 80%, compared with the gold standard of histopathology reports of glioma. The VRR-
LRRTM Raman analyzer may be a new label-free, real-time optical molecular pathology tool aiding in
the intraoperative detection of glioma and identification of tumor boundaries, thus helping to guide
maximal safe glioma removal and adjacent healthy tissue preservation.

Keywords: portable optical-fiber-probe Raman analyzer; human brain; glioma; visible resonance
Raman (VRR); intraoperative; optical biopsy; optical molecular pathology

Cancers 2023, 15, 1752. https://doi.org/10.3390/cancers15061752 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers15061752
https://doi.org/10.3390/cancers15061752
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0002-7729-4663
https://doi.org/10.3390/cancers15061752
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers15061752?type=check_update&version=2


Cancers 2023, 15, 1752 2 of 18

1. Introduction

Glioma is the most common brain neoplasm and represents around 27% of all in-
tracranial tumors [1,2]. Most gliomas are high-grade and malignant [3,4] and feature an
infiltrative growing pattern and aggressive behavior with a dismal prognosis. Despite the
advancement of surgical resection and adjuvant radio-chemotherapy, the survival outcome
has not been improved and is far from desirable. The median overall survival (OS) is only
3 years and 12–18 months for grade 3 and 4 glioma, respectively, and the 5-year survival
rate is only 6.8% for glioblastoma (GBM) [1,5–7].

The current brain tumor treatment starts with surgical resection, which is the most
critical first step in the comprehensive treatment of glioma. Maximal safe surgical resec-
tion plays a key role in the management of patients with glioma. Increasing evidence
demonstrates that a greater extent of resection has a positive correlation with the patient’s
progression-free survival (PFS) [7–10]. However, the infiltrative growing nature of glioma
makes it difficult to distinguish normal tissue from the tumor region, thus preventing
neurosurgeons from achieving total resection [10].

The most commonly used auxiliary techniques during surgery, such as stereotaxis [11],
can not only provide preoperative biopsies for pathological analysis but also help the sur-
geon to better identify and calibrate the location of the tumor, which has a great advantage
compared with traditional microsurgery. However, due to the limitations of positioning,
the biopsy specimens obtained in a stereotactic surgery are small and do not represent
the overall nature of the tumor, leading to an underestimation of high-grade brain tumor
malignancy. Another auxiliary technique is intraoperative ultrasound technology, which
was first applied in 1980, attracting the attention of neurosurgeons [12,13]. Intraoperative
ultrasound has many advantages, such as clear images for surgeons; it is simple, flexible,
low-cost, and allows intraoperative real-time positioning, and the procedure helps neuro-
surgeons to remove the lesions. However, even using intraoperative ultrasound, it is still
difficult to determine the real boundary of a glioma. The invasive growth of tumor cells
often occurs in the aggressive area of the tumor.

Currently, a definitive diagnosis is usually made by histopathological and molecular
examination retrospectively, but it is very time-consuming. Real-time diagnosis tools and
methods are needed to aid in the intraoperative grading of glioma and tumor boundary
identification, since an essential balance between maximal tumor removal and the risk of
disability is needed intraoperatively. Such techniques will allow the neurosurgeon to tailor
their surgical strategy according to each patient’s profile [7,10,14].

Among the newly explored molecular diagnosis methods, Raman spectroscopy can
analyze the changes in the chemical compositions of different lesions in human tissue and
the small changes in protein structure and nucleic acids [15–20] using intrinsic molecular
fingerprints in situ, being label-free and near-real-time [17,21–34], and at a low cost. Raman
spectral changes can reveal the metabolic processes of brain tissue [24,25,30] and can poten-
tially be used for margin assessment, even during surgery [24,30–35]. Raman spectroscopy
techniques have been used to study human bladder cancer, esophageal cancer, gastroin-
testinal cancer, cervical cancer, skin melanoma lesions, lung cancer, breast cancer, and brain
tumors, not only ex vivo but also in vivo [15,16,19–22,22,23,26–28,31,33,36–40]. Besides
solid tumors, Raman spectroscopy has also been used to detect vulnerable atheroscle-
rotic plaques, atherosclerotic abdominal aortic tissues, and nerve tissues, and even the
cerebrospinal fluid and serum of patients [41–44].

We have developed a novel optical spectroscopic technique based on visible resonance
Raman (VRR) spectroscopy that can probe the specific molecular vibration bonds in a tissue
and provide information to make an optical pathology diagnosis. This new optical biopsy
technique using 532 nm wavelength excitation has been used for the investigation and di-
agnosis of human lesions since 2011 and has shown unique advantages [26,34,40,41,45–47].
Besides the existing advantages of conventional spontaneous Raman (SR), near-infrared
Raman (NIR), and ultraviolet resonance Raman (UVRR) methods, VRR has additional
advantages over other Raman techniques [48]. This is due to the use of 532 nm light
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being in-resonance or near-resonance with the native bio-molecular absorption bands in
biological tissue and cells, which can enhance the Raman signals from biomolecules by
10 to 1000 times. VRR can be used to discover and study changes in the composition of
biomolecules locally and reveal their variations in the concentration and spatial distribution
based on the spectral fingerprints of the biochemical vibrational bands. In recent years,
some research groups have begun to use 532 nm as a light source for Raman for basic
research in biomedicine, such as surface-enhanced Raman spectroscopy (SERS), using
targeted label methods [49–51]. Based on our previous studies, we have developed a new
portable VRR-LRRTM Raman analyzer (LRR2000) with a handheld optical-fiber probe that
shows comparable diagnostic ability for glioma in mice in vivo and for human brains ex
vivo [47,52,53]. In this manuscript, we report the evaluation of the VRR-LRRTM analyzer in
identifying human glioma grades and margins under quasi-clinical conditions.

There are similar systems that have been developed based on Raman techniques and
are promising for intraoperative cancer diagnosis, such as the landmark handheld Raman
spectroscopy probe developed by Desroches et al. for intraoperative glioma detection [36],
an in vivo pathology system based on confocal laser scanning microscopy–Zeiss CON-
VIVO [37] and Stimulated Raman Histology (SRH) [38,54]. Desroches’ system uses an NIR
785 nm wavelength with a power of 37–64 mW for excitation. Compared to this system,
we believe that our VRR-LRRTM system can improve the signal to noise ratio (SNR) due to
the resonance effect. The Zeiss CONVIVO can be used for in vivo pathology. The system
collects a fluorescence signal from the tissue with a contrast agent, fluorescein sodium. It
provides real-time images of the tissue microstructure, which can then be evaluated by
trained pathology experts. Compared to CONVIVO, our VRR system is label-free and
does not use any contrast agent. It provides chemical changes at the molecular level. The
molecular information can then be used for classification using machine learning methods.
SRH is an important and promising Raman imaging technique based on stimulated Raman
scattering (SRS) for ex vivo diagnosis. SRS typically uses a high-cost pico- or femto-second
ultrafast pulsed laser as the light source. Images are collected at selected wavenumbers,
such as 2845 cm−1 and 2930 cm−1 [38], to form images due to macromolecules such as
lipids, proteins, and DNA, etc. On the contrary, the VRR system is low-cost and can com-
plete the full scan of the Raman spectra, including the fingerprint and high-wavenumber
regions, with a single quick scan.

2. Materials and Methods

In this study, the raw experimental data were collected from patients who underwent
surgical resection of brain glioma from October 2019 to February 2020. The study was
approved by the Institutional Review Board (IRB) of the PLA General Hospital. Consent
was obtained from all patients. A total of 63 fresh unprocessed tissue samples (consid-
ered quasi-clinical condition) were collected from 52 adult patients (grade 1: 1 patient;
grade 2: 7 patients, grade 3: 17 patients; grade 4: 27 patients) with an age range of
18–78. The samples included 4 additional glioma tissues collected from grade 4 patients,
and 7 normal control tissues collected from negative margins of gliomas. The sub-class
breakdown of the glioma patients is as follows: grade 1, including 1 pilocytic astrocy-
toma; grade 2, including 2 astrocytomas IDHmutant (isocitrate dehydrogenase, IDH) and
5 oligodendrogliomas IDHmutant; grade 3, including 4 astrocytomas IDHmutant and 13 oligo-
dendrogliomas IDHmutant; and grade 4, including 26 GBMs IDHwild-type and astrocytomas
IDHmutant and 1 diffuse midline glioma. Of these patients, 32 were male (61.5%) and
20 female (38.5%), with an age of 48.4 ± 14.1 years. The classification of these tumors was
made according to the 2021 WHO classification [4]. Our study was conducted before the
2021 WHO classification was published. The major changes from the 2016 to 2021 classifi-
cation included the restriction of the diagnosis of GBM only to tumors that are IDHwild-type

and the reclassification of tumors previously diagnosed as GBMs IDHmutant now as astrocy-
tomas IDHmutant, grade 4 [55,56]. Therefore, according to the 2021 classification, the grade
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4 tumors in this study included GBM and IDH-mutant astrocytoma based on the molecular
testing results of the tissue samples.

A total of 2220 raw VRR spectra (grade 1: 15 spectra, grade 2: 359 spectra, grade 3:
717 spectra, grade 4: 1103 spectra, and normal control: 26 spectra) were acquired from the
samples using LRR2000 with different acquisition parameters for exposure and averaging.

Samples were obtained under a microscope with the guidance of neuro-navigation
(Brainlab, Munich, Germany) and were transferred immediately to the adjacent theater
for spectral measurements using the VRR-LRRTM (LRR2000) Raman analyzer, as shown
in Figure 1. This portable Raman analyzer uses a 532 nm excitation wavelength. An
optical-fiber probe was used to focus the laser beam to a 200 µm focal spot with laser power
of 5 mW on the sample surface. The same probe was used to collect the scattered signals
from the sample surface. The VRR spectra of a specimen were measured from multiple
sites (3 or more) according to the sample size, with an acquisition time of 1 s, 3 s, or 5 s, and
a spectral resolution of 8 cm−1 in the range of 200 to 4000 cm−1, as shown in Figure 2.

In the left two columns of Figure 2, the top right, bottom left, and bottom right images
are selected axial, sagittal, and coronal planes of MRI images of the tumor. The boundary
of the tumor is outlined. The image in the top left is a reconstructed 3D image of the tumor.
The third column of Figure 3 shows a picture of the tumor tissue along with the image of a
ruler, where the numbers 1–4 indicate four spectral acquisition sites. The data evaluation
and processing used LRR2000TM-1, JRME, the Origin 2015 software, and MATLAB.

All grades of glioma samples were included in the peak analysis. For classification
using machine learning and statistical analysis, grade 1 glioma samples were omitted due to
the small sample size, one grade 2 patient was omitted due to uncertainty in histopathology,
and only the spectra collected using a 5-s exposure time and average of 3 acquisitions
were used. More details of the samples used for the classification will be provided in a
later section.
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Figure 1. Photographs of the portable VRR-LRRTM analyzer with a label-free optical-fiber probe along
with example experimental data. The analyzer is 32 cm × 33 cm × 38 cm in size and weighs 7.5 kg,
with a standard cable of probe of 2 m. The screen displays recorded signals and test results, along
with flickering color and ringtones in real time (right side of screen). When the surgical resection
is challenging, the tissue may be located at the border of the tumor with the real-time display of
classification; the VRR-LRRTM handheld probe provides the results and helps the surgeon to decide
whether to remove the tissue [45].
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Figure 2. Magnetic resonance imaging (MRI) data were transferred to the neuro-navigation system
(Brainlab, Germany), and demonstrated a large glioma in the left parietal lobe. The sample was
obtained under a microscope with the guidance of intraoperative neuro-navigation. The spectra
were obtained from 4 sites in the fresh unprocessed specimen immediately after resection. Spectra
acquisition was performed using the VRR-LRRTM analyzer. The exposure time was 3 s, excitation
laser wavelength 532 nm, with full scan range from 200 to 4000 cm−1 for analysis of VRR spectra.
The tumor was pathologically verified as glioblastoma (WHO grade 4).
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Figure 3. Average VRR spectral data plots: the ratios of (a) R1 = I1584/I1442 and (b) R2 = I2934/I2885

from glioma tissues with increasing malignancy. G I, glioma grade 1; G II, glioma grade 2; G II-III,
glioma grade 2–3; G III, glioma grade 3; G III-IV, glioma grade 3–4; and G IV, glioma grade 4.

After the spectral measurements using LRR2000, all samples were snap-frozen and
restored under −80 ◦C conditions. Then, a Horiba LabRAM HR-Evolution micro-confocal
Raman system (HORIBA, Longjumeau, France) was used to collect Raman data from some
of the samples for comparison. The HR-Evolution Raman system also uses a 532-nm
excitation wavelength and a laser power of 1.0 mW and a 50× objective. The spot size
of the beam on the sample surface was ~2 µm. The spectral resolution was ~2 cm−1. A
single scan was carried out in the process of spectral collection with an integration time
of 5 s. A section of an adjacent specimen was collected and stained with hematoxylin and
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eosin (H&E) and underwent molecular examination by a trained neuropathologist. The
histopathological diagnosis was in accordance with the 2021 WHO classification as the
gold standard.

3. Glioma Grading Using Machine Learning

To perform glioma grade classification, VRR spectra collected with a 5-s integration
time were used. Classification models based on individual peaks and whole spectral
profiles were both performed and compared. For classification based on individual peaks,
a selective set of peak intensities was used as features. For classification based on whole
profiles, the spectra were first analyzed using principal component analysis (PCA), and
then a selective set of principal component (PC) scores was used as the features to build
models [45]. Various combinations of the features were compared to select the optimal
combination of the features. The method to select the model with the optimal feature
combination is described below. Support vector machines (SVMs) with Gaussian kernels
were used to train the classifiers [45]. SVM attempts to find a hyperplane to separate two
classes with the largest distance from the nearest class members (data points). When SVM
is used for multi-class classification, a model is trained with a hyperplane to separate each
class from all other classes. A composite hyperplane to separate multiple classes can be
created and visualized by combining all the individual hyperplanes. When a data point is
tested, it will be evaluated using all the individual models. The model that results in the
highest score will be used to determine the predicted class.

To reduce sample selection bias, leave-one-out cross-validation (LOOCV) [45,57] was
used to evaluate the classification performance. To perform LOOCV, each time, one individ-
ual data point corresponding to a spectrum was removed from the dataset. The rest of the
dataset was used to train the SVM model. The removed data point was then classified using
the model for testing. This process was repeated for all data points. In the end, statistical
measures including sensitivity, specificity, and accuracy, along with area under receiver
operating characteristic (ROC) curve, i.e., AUROC, were calculated based on the results of
all tests as an overall evaluation of the classification performance [45,57]. Since there are
many features (Raman peaks or PCs) available, we evaluated different combinations of
features to find the optimal combination by comparing the classification result with LOOCV.
All of the computations for peak-SVM and PCA-SVM were performed in MATLAB R2017b
using the built-in machine learning toolbox.

4. Analysis and Results

VRR spectra of glioma with grade 1 to grade 4 from human brain tissues were mea-
sured. To perform preliminary peak analysis, all RR spectra were first normalized by the
peak at 1001 cm−1 of phenylalanine, which has a relatively stable intensity and position
in different environments [45]. The spectral data collected by LRR2000 were qualitatively
compared with those collected using the Horiba LabRAM system to validate the Raman
peaks. The data collected using the Horiba system are not shown in this manuscript. The
changes in proteins and lipids indicated by the average values of the two peak ratios
R1 = I1584/I1442 and R2 = I2934/I2885 were analyzed. An enhancement was observed due to
the Fermi resonance doublet of amide B and amide A under the quasi-clinical conditions.
One of the new biomarkers at the RR mode of 3058 cm−1 in the high-wavenumber region,
which arises from tryptophan, was also analyzed.

4.1. The Changes in Lipids and Proteins for Identification of Grades 1 through 4 of Glioma

The changes in proteins and lipids indicated by the average values of the two peak
ratios R1 = I1584/I1442 and R2 = I2934/I2885 during the evolution of the metabolism of
gliomas are shown in Figure 3. The standard deviations of the peak ratios are within
30% and 15% for R1 and R2, respectively. The ratio R1 for G0 is less than 1, and R2 is
~1.1, which is close to that of GI. For better visualization, we have omitted G0 from the
plots. The two Raman peak ratios in Figure 3 indicate the ratio of proteins to lipids vs.
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glioma grades that were calculated from the VRR spectra data. Figure 3a shows the VRR
spectral peak intensity ratio of R1 = I1584 to I1442 versus glioma grades. The graph shows a
positive correlation between the peak intensity ratio and the glioma grade. For instance,
from the ratio values, we can see that the strength of the saturated lipid bond, which is
related to the hydrophobic chains of lipids near 1442 cm−1, becomes relatively weaker with
higher grades [58,59], while the other VRR molecular fingerprint of 1584 cm−1, which is
contributed from proteins of tryptophan, mitochondria, hemeproteins, and nucleic acids,
shows a resonance enhancement and a tendency to increase with the grade [34,45].

Figure 3b shows the VRR spectral peak intensity ratio of R2 = I2934 to I2885 versus
glioma grades. The Raman modes of 2934 and 2885 cm−1 are symmetric stretches that
correspond to methyl (-CH3) and methylene (-CH2-), respectively [45]. Comparing grade 1
through grade 4, an increase in the intensity ratio was observed and it gradually increased in
gliomas with increasing grades. This indicates that the relative peak intensity of 2885 cm−1

was reduced and the peak at 2934 cm−1 became stronger compared to that at 2885 cm−1.
These changes can be explained by the fact that the composition and conformation of

saturated lipids and proteins (including amino acids and lipoproteins) in cells and tissues
change during the evolution of the metabolism of glioma from grade 1 to grade 4 [45].
It should also be noted that there is a significant fluctuation, especially from grade 2
through grade 4 in R2. The fluctuation may be attributed to the fluctuation in the chemical
composition of each grade of glioma, the condition of the samples in the intraoperative
study, and the relatively lower signal to noise ratio of the home-built system compared to
the commercial confocal systems. These ratios should be further verified in future studies
with large datasets. In summary, the above two ratios versus glioma grades are consistent
with our previous report of the criteria for glioma grading by the VRR spectroscopy
technique, except that no significant decrease in the ratio value was observed in the glioma
grade 4 data in this study [34,45]. The ratios R1 and R2 used as diagnostic criteria reveal the
relative concentration changes between proteins and lipids during the metabolic processes
of glioma. The result clearly indicates that the concentration of saturated lipids was reduced
in the tumors. This method and the results are consistent with reports in the literature [51].

4.2. Identification of Glioma Margin by Carotenoids and the Ratio of Protein to Lipids

The resonance-enhanced intrinsic molecular fingerprints with intense RR modes at
1159 cm−1 (νs C-C) and 1517 cm−1 (νs C=C) mainly arise from lutein in the carotenoids of
the human brain. Carotenoids play an important role in the antioxidant defense system in
the healthy brain [60]. Carotenoids have been extensively studied and confirmed as a cancer
biomarker in human organs using Raman, especially resonance Raman spectroscopy, to
identify cancers of the skin, rectum/colon, lung, breast, and brain [42,61–63]. Johnson et al.
reported the important role of carotenoids, and particularly the presence of lutein and
zeaxanthin, in normal brain tissue [64–66].

In this study, the normal/control VRR spectra were collected from the margins of
different grades of glioma. A typical VRR spectrum of the control site is shown in Figure 4a.
From Figure 4a, the relatively sharp and enhanced VRR peaks of 1159 and 1517 cm−1 arising
from carotenoids can be observed at the cancer–normal tissue interface of the specimens.
Rich fatty acid peaks at 2851 and 2885 cm−1 are stronger than the protein bands at 1001,
1634, and 2934 cm−1 in intensity. In a comparative study, Verdiyan et al. collected Raman
spectra from the myelin sheath of sciatic nerve fiber tissue using 532 nm laser excitation
and observed peaks at 1160, 1520, 2850, 2885, and 2935 cm−1, respectively [42]. Figure 4b
is the typical VRR spectrum from glioma grade 4 tissue. Figure 4b shows that the feature
peaks at 1159 and 1517 cm−1 of carotenoids both underwent remarkable decreases, with
the 1517 cm−1 peak almost disappeared. By comparing Figure 4a,b, a clear decrease is
observed in the intensities of the Raman peaks with the increase in the glioma grade.
This indicates the progression of the mutation process in the glioma and can be used as a
biomarker to identify the glioma margin. Our observation shows that in order to identify
the boundary of a tumor, one can combine the resonance-enhanced characteristic Raman
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resonance modes 1159 and 1517 cm−1 of carotenoids, and the ratios of proteins to lipids.
The boundary values of the ratios are R1 less than 6.0 and R2 less than or equal to 1.0. These
results agree with our previous findings obtained with the LRR2000 and HR800 Raman
systems ex vivo [34,45,52,53].
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Figure 4. Typical VRR spectra of (a) normal/control of glioma margin tissue, (b) glioma grade 4
tissues, and (c) tryptophan powder, along with (d) the content of the RR mode around 3058 cm−1 of
tryptophan versus glioma grade. Raman peak of 3058 cm−1 was normalized by RR peak at 1001 cm−1

of phenylalanine. G0, normal; G I, grade 1; G II, grade 2; G III, grade 3; and G IV, grade 4.

4.3. The New VRR Biomarkers of Glioma in the High-Wavenumber Region

Two new biomarkers were found in gliomas that were strongly enhanced RR modes
at 3174 cm−1 and 3224 cm−1, associated with natural molecular vibrational bands assigned
to the N-H stretching vibration of the amide B protein and the NH2/O-H symmetric
stretching vibration of the amide A protein/amino acid glutamine, respectively, as shown
in Figure 4b. In this study, we propose that the amide A band at 3224 cm−1 is assigned to a
Fermi resonance doublet (R-doublet), and its second component is assigned to amide B at
3174 cm−1 [67].
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We also observed that the intensity changes and frequency shifts of the two vibrational
modes at 3174 and 3224 cm−1 were approximately proportional to the VRR vibration
modes of 1584 and 1634 cm−1 (amide I). This phenomenon could be caused by two possible
sources. First, the enhancement of the peaks is a result of Fermi resonance. We propose that,
it is due to anharmonicity that two relatively strong bands at around 3174 and 3224 cm−1

were observed, although only one strong band at approximately 3174 cm−1 (overtone) for
the fundamental vibrational band near 1584 cm−1 was expected. Second, under the quasi-
clinical test conditions, the surface of the tissue was covered by water, which may work as
a solvent to produce a solvent effect. Due to the external molecular field, the interaction of
the hydrogen-bonded NH groups with the amide B band may affect the Fermi resonance
and cause the frequency shift and intensity change of the Fermi resonance doublet [68].
This phenomenon is revealed in Figure 4a,b. Comparing Figure 4a,b, one finding is that,
in Figure 4b, in the high-grade glioma tissue, the resonance-enhanced vibration modes of
1584 and 1634 cm−1 correspond to the Fermi resonance-enhanced doublet modes of 3174
and 3224 cm−1. However, in Figure 4a, in the normal control VRR spectrum, the weakened
1584 and 1634 cm−1 peaks correspond to the almost disappearing 3174 cm−1 peak and
the 3249 cm−1 peak, which shifted to a higher-wavenumber position compared to grade 4.
This is an interesting result and will be further verified.

Figure 4 shows a new, important biomarker for gliomas, which is a resonance Raman
mode of tryptophan at 3058 cm−1. In the literature, it has been shown that the heterocyclic
amino acid tryptophan in human brain gliomas is an essential factor and plays a critical
role in the metabolic process [69,70]. Tryptophan metabolism involves the kynurenine
pathway [71–74]. The catabolism of >95% of tryptophan in the brain metabolic process takes
place through the kynurenine pathway. Previous studies have found that the degradation
of tryptophan and the tryptophan metabolite, kynurenine (Kyn), can inhibit the antitumor
immune response. The enzyme of tryptophan-2,3-plusoxidase can act directly on glioma
cells and promotes tumorigenesis [73,75]. The change in the 3058 cm−1 peak in Figure 4
reflects the change in the concentration of tryptophan during its catabolism in glioma of
different grades.

Figure 4a–c include the typical VRR spectra from normal/control samples of glioma
margin in (a); a VRR spectrum of glioma grade 4 in (b); and a VRR spectrum of tryptophan
powder in (c). The dotted line inserted in the spectra of Figure 4a–c marks the position of
the RR mode of 3058 cm−1 in the spectrum of normal brain tissue, glioma grade 4, and
tryptophan. Figure 4d shows the two metabolic stages of tryptophan. We observed that,
first, in normal/control brain tissue, the concentration of tryptophan is greater than that in
gliomas. This decrease in tryptophan may be due to tryptophan depletion in cancers [76].
However, the decrease was not observed in our ex vivo study [45]. It may be due to the
difference in the microenvironment between ex vivo frozen tissue and intraoperative fresh
tissue. This will be verified in further studies. Second, in glioma tissue, the concentration
of tryptophan increases slightly with the malignancy of tumors. Many studies have shown
that the degradation of tryptophan is a mechanism that tumors select to achieve immune
escape [75,77]. There are more large amino acid transporters on the cell membranes of
more aggressive cancer cells; therefore, tryptophan can be taken up more efficiently in such
cells than others from the surrounding environment. The RR mode of 3058 cm−1 reveals
that tryptophan in glioma tissues accumulates during tumor progression from GI to GIV.
However, the concentration of tryptophan in GIV decreases rapidly. This may be due to the
metabolism of high-grade tumors, with the changes in cell apoptosis and tissue necrosis,
where the concentration of tryptophan is also reduced. A similar phenomenon was also
observed in ex vivo studies [45].



Cancers 2023, 15, 1752 10 of 18

According to Figure 4c and the literature [78], the Raman bands at 873 cm−1 (not
labeled in Figure 4c), 3058 cm−1, and 3404 cm−1 are the contributions of tryptophan.
Figure 4a is the VRR spectrum of normal brain tissue. However, the 873 and 3404 cm−1

bands are significantly weaker or even disappeared in Figure 4a, which is different from the
3058 cm−1 band. We propose this is due to the environment in tissue being different from
that of pure tryptophan chemical. The 873 cm−1 band is an indole ring vibration mode
associated with N1H bonds and sensitive to hydrogen bonding. The 3404 cm−1 band is
assigned to the indole-stretching vibration mode ν(NH), and is also sensitive to hydrogen
bonding. We propose that under 532 nm excitation, both the 873 and 3404 cm−1 bands are
in strongly hydrogen-bonded states, which leads to significant weakening in their Raman
modes. This will be further verified in future studies.

The most intense Raman band of water is also at approximately 3400 cm−1 [79], which
is close to one of the high-wavenumber tryptophan peaks. The contribution of water,
especially in the high-wavenumber region, needs to be further discussed.

4.4. PCA-SVM and Peak-SVM Analyses

Although the proposed biomarkers that we observed above are promising for the
diagnosis of glioma, a more robust method to perform the diagnosis would be to evaluate
all present Raman peaks and the whole profiles of the spectra. We present an analysis
based on individual Raman peaks and whole profiles, and compare the performance of
classifications using various combinations of spectral features based on peaks and whole
profiles for a thorough evaluation.

To perform classification using machine learning, the spectra collected using a 5-s
exposure time and three-acquisition average were used. The original samples include
grey matter and white matter in normal brain tissues, and glioma tissues at grades 1,
2, 3, and 4. Since there was only one case of glioma grade 1, it was omitted from the
classification. Normal tissue samples were white matter tissues that were near gliomas.
Due to histopathology conventions, grade “2–3” is treated as grade 3, and grade “3–4” as
grade 4. In summary, the data used for classification included normal tissue and glioma
grades 2, 3, and 4. In total, there were 359 spectra from 59 tissue samples selected from the
52 patients. The number of samples and number of spectra are summarized in Table 1 below.

Table 1. Number of samples and spectra used in the classification analysis.

Tissue Type No. of Samples No. of Spectra

Normal 7 26

Grade 2 6 39

Grade 3 15 92

Grade 4 31 202

Total 59 359

The data were first baseline-subtracted and normalized to the root-mean-squares
(RMS) of each spectrum for pre-processing. The baseline subtraction was performed using
a novel algorithm, the Sensitive Nonlinear Iterative Peak (SNIP) clipping algorithm [80,81].
Peak intensities were obtained from the pre-processed data. PCA was then performed,
with PC scores obtained. Both the intensities of selected peaks and PC scores from PCA
were used as the features for classification in peak-SVM and PCA-SVM, respectively.
To perform PCA-SVM, the pre-processed data were analyzed using PCA. The optimal
combinations of the features, either peaks or PC scores, were found by evaluating the
models based on different combinations of the features with LOOCV for comparison [57].
The optimal combinations of peaks and PCs were then used in another LOOCV to evaluate
the performance of classification. In the peak combinations, 1512 cm−1 is considered to be
due to carotenoids since the resolution of the system is 8 cm−1. Raman modes at 1302 cm−1

can be assigned to both lipids and proteins; 1371 cm−1 can be assigned to saccharide,
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DNA/RNA, and lipids; 1620 cm−1 can be assigned to proteins; 3002 cm−1 can be assigned
to lipids. The significance of the peaks selected in the optimal combination will be further
evaluated in future studies.

Binary classification was performed to distinguish all tumor grades from normal
tissue, as well as each individual tumor grade from normal tissue. Multi-class classification
was also performed to classify all four types of samples, and the three tissue types with
normal tissues excluded. The classification results, including sensitivity, specificity, and
accuracy, as well as AUROC with LOOCV, are summarized in Table 1 for both peak-SVM
and PCA-SVM. The scatterplot with the SVM classifier hyperplane is shown in Figure 5 for
classification between normal and grades 2, 3, and 4, respectively.
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to (a,c,e,g), respectively.

The results in Table 2 show that the performance of peak-SVM and that of PCA-SVM is
similar, without significant differences in most cases. The overall accuracy is over 80% for all
binary classifications. The discrimination between normal and grade 2 glioma tissues was
found to be better than other binary classification results. This may be due to the increasing
heterogeneity of the tumor tissues, which caused a larger spread for the data points of
higher grades. The sensitivity of the classification is over 90% for all binary classifications.
However, the specificity is as low as 50% for normal vs. cancer (including all grades), with
the highest for normal vs. grade 2 at ~80%. For multiclass classifications, the accuracy
for grade 4 spectra is over 70% for peak-SVM and over 90% for PCA-SVM. However, the
accuracy for other tissue types is low, at approximately 50% at the highest. This means
that simultaneously distinguishing all tissue types is challenging. This is because there is
significant overlapping of data among different tissue types.
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Table 2. Peak-SVM and PCA-SVM classification results.

Binary Classes N vs. C N vs. G2 N vs. G3 N vs. G4

Peak-SVM

Peaks (cm−1) 1371, 1512, 3002, 3474 1620, 3474, 3882 1302, 1371, 3210 1302, 1371, 1512, 3002

Sensitivity (%) 99.1 94.9 92.4 98.5

Specificity (%) 50.0 80.8 65.4 57.7

Accuracy (%) 95.5 89.2 86.4 93.9

AUROC (%) 75.5 92.4 72.7 77.3

PCA-SVM

PCs 1, 9, 19 3, 10, 13 1, 5, 9, 24 1, 2, 8

Sensitivity (%) 96.9 94.9 90.2 97.0

Specificity (%) 50.0 76.9 61.5 53.8

Accuracy (%) 93.1 87.7 83.9 92.1

AUROC (%) 74.7 94.6 81.6 80.9

Multiclass N vs. G2 vs. G3 vs. G4

Model Peak-SVM PCA-SVM

Peaks (cm−1)/PCs 1512, 3210, 3497, 3541, 3847 1, 4, 10, 14

Accuracy

N (%) 50.0 42.3

G2 (%) 56.4 43.6

G3 (%) 37.0 40.2

G4 (%) 73.8 90.1

Total (%) 60.7 68.8

N: normal; C: cancer; G2, G3, G4: grade 2, 3, 4.

5. Discussion

In freshly tested human brain tissue, we found Raman modes as evidence of water
and hemoglobin. This is an important problem that needs further study for intraoperative
use of VRR or in vivo use in the future. The water concentration is greater in gliomas than
grey and white matter. This concentration is different in different tissues. These changes
have diagnostic importance. For example, glioma often causes peritumoral edema and the
adjacent normal brain tissue is often swollen. Moreover, when additional water is used to
flush the operating field, the bipolar nature of water molecules can cause the surface of a
tissue to carry more water, which may be shown in the high-wavenumber Raman biomarker
test [67]. Another important phenomenon is that the Raman signal from hemoglobin is
usually resonance-enhanced with 532 nm excitation. High-grade gliomas usually need
more feeding arteries for their rapid growth with abundant de novo blood microvessels.
Blood or hemoglobin may have diagnostic value for the malignancy of the glioma tumor
margin. We should bear in mind this confounding factor and identify the tissue signal with
the contribution of blood. Water and blood are two significant components in the lesion’s
metabolism that are worthy of further study in clinical Raman testing in vivo.

In our previous research, it was shown that there were changes in the intensities of
the RR peaks of carotenoids (1159 and 1517 cm−1) in the glioma boundary. β-carotene
plays an important role in the antioxidant defense system in the healthy brain and has been
considered as a disease biomarker. The strong carotenoid peaks at 1159 and 1517 cm−1

decreased or shifted in the chemical vibrational bands in glioma tissue. These changes
were used to distinguish glioma and tumor boundaries in our previous study. In this
study, Raman peaks of carotenoids and the differences among different types of tissues
were also observed, which shows that the new system is promising for intraoperative
measurement. However, due to the complexity of tissue properties and the challenge in
tissue classification, using a single Raman peak or using peaks due to a single molecular
component may not lead to optimal classification. Therefore, we evaluated the classification
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performance using different combinations of multiple features based on Raman peaks and
PC spectra, respectively. It was shown that combinations of Raman peaks due to different
biochemical components including a peak of carotenoids led to optimal results. In fact,
cancer diagnosis based on the combination of multiple features is a common practice in
pathological analysis.

The lipid concentration decreases and its composition also changes during transfor-
mation from normal brain tissue into different glioma types. Early reports on brain tumors
have highlighted the perturbations in lipid metabolism and a decreased level of lipids that
are associated with tumor malignancy. As found in our report, the ratio of phosphorylated
protein to fatty acid (I1584/I1442) increased with the tumor grade progression. The ratio
of RR peaks of protein (and collagen) to fatty acid (I2934/I2885) also increased with the
increase in glioma grade. These RR characteristics reveal the importance of the changes in
the lipid and protein metabolism in the tumor cells and tissues, which is consistent with
our previous reports [26,45–47].

In summary, this study has demonstrated the potential of the portable VRR-LRRTM

Raman analyzer in intraoperative glioma diagnoses. This technique does not require
tissue processing or labeling before spectral acquisition, thus providing a fast and low-
cost alternative diagnosis method. It can provide the neurosurgeon with fast and reliable
feedback. The intraoperative detection of cancerous tissue would be of great benefit to
supplement intraoperative decision making and pathological evaluation.

In this study, surgical margins were defined based on the surgeon’s experience, visual
observation, and neuro-navigation. This is a common practice for glioma surgery [82]. The
negative control tissues were collected from surgical margins. Pathological analysis was
performed to confirm that these tissues were healthy tissues. We observed that Raman
peaks due to carotenoids, proteins, and lipids from the margin tissues were different from
those in the tumor tissues. Similar Raman spectral changes were also observed in skin,
breast, and heart tissue in our previous studies [26,34,40,41,45–47].

Despite being one of our largest cohorts of patients with glioma subjected to Raman
analysis to date, the small case number is still a limitation. A larger study needs to be
undertaken to improve the diagnostic accuracy, efficiency, and feasibility of the intraop-
erative technique, and to study the sub-types of glioma. Secondly, although spectra were
acquired from sites of specimens avoiding blood, blood contamination in the spectra is still
inevitable. Further study is needed to explore the effect of blood in VRR in different grades
of glioma. Thirdly, the 2021 WHO classification classified adult glioma into astrocytoma
(IDH-mutant), oligodendroglioma (IDH-mutant, and 1p/19q-codeleted), and GBM (IDH-
wildtype). We will report our recent study on the diagnosis of glioma with different IDH
status in another paper.

6. Conclusions

In conclusion, we developed a low-cost VRR-LRRTM Raman analyzer (Model# LRR2000)
with a handheld optical-fiber probe based on VRR spectroscopy, which can potentially
be used for rapid or real-time label-free in situ brain glioma detection. We conducted the
first pioneering intraoperative study using the new VRR Raman system and human brain
tissues immediately after removal in surgeries. Raman peaks due to key biomolecules
were observed and were consistent with our previous ex vivo human glioma studies using
commercial confocal micro Raman imaging systems. We have demonstrated that the VRR-
LRRTM analyzer has the potential to classify gliomas at different grades from normal brain
tissues and may be used to differentiate glioma boundaries. The accuracy is moderate at
the current stage, and may be improved in future studies by re-designing the system to
improve the signal level.

Using VRR, we evaluated the biochemical composition and changes in the concentra-
tions of biomarkers during glioma’s metabolic process, which may be used to create criteria
for margin detection and grading for glioma. By investigating the VRR enhancement in the
new molecular biomarkers of 3174 and 3224 cm−1, we found that the RR enhancement on
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the two structures of the FR doublet may be due to oxygen- and hydrogen-bonding effects.
An important new biomarker for glioma was found at 3058 cm−1 due to a resonance Raman
mode of tryptophan.

Although some of the proposed biomarkers observed in this study were consistent
with those in our previous ex vivo studies using commercial confocal micro-Raman imaging
systems, considering the more complicated environment of the tissue in the intraoperative
condition, such as the presence of blood, and this study being the first evaluation of the
home-built VRR system, as well as the limited sample size in this study, the findings from
this study and the efficacy of the intraoperative diagnosis method using the home-built
system should be further verified in future studies.

Nevertheless, this study shows that the proposed VRR-LRRTM Raman analyzer has the
potential to be employed as a routine detection approach with a wide range of applications,
such as a new optical molecular pathology assay, or an ideal tool for rapid intraoperative
in situ glioma diagnosis.

LRR2000 is a new portable analyzer based on VRR with a handheld optical-fiber
probe that can be implemented in the operating theatre. We can detect tissue spectra in
the operating room immediately after tumor removal, without processing the specimen.
Intraoperative information about the glioma grading, sub-typing, and tumor boundary is
essential for neurosurgeons, since maximal safe tumor resection and the glioma grade are
two important factors that affect tumor progression. VRR provides a potential alternative
method for intraoperative diagnosis that would aid neurosurgeons to tailor their surgical
strategies to each patient’s tumor profile.
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