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Simple Summary: In order to evaluate precision cancer therapies, it would be advantageous to
measure at the same time their action on tumor growth and on the biological target of the therapy.
New non-invasive hybrid imaging techniques allow access to multiple quantitative parameters.
Here, we trained machine learning classifiers of features extracted from longitudinal in vivo co-
registered metabolic, vascular and anatomical images in a mouse model of paraganglioma. We
show that machine learning identifies ensembles of tumor states that correspond to stages of tumor
evolution with or without anti-angiogenic treatment. These classifiers define individual trajectories
of tumor progression and response to treatment, supporting the use of machine learning analysis
of multiparametric imaging for the identification of response to anti-angiogenic treatment in this
rodent model.

Abstract: The standard assessment of response to cancer treatments is based on gross tumor char-
acteristics, such as tumor size or glycolysis, which provide very indirect information about the
effect of precision treatments on the pharmacological targets of tumors. Several advanced imaging
modalities allow for the visualization of targeted tumor hallmarks. Descriptors extracted from these
images can help establishing new classifications of precision treatment response. We propose a
machine learning (ML) framework to analyze metabolic–anatomical–vascular imaging features from
positron emission tomography, ultrafast Doppler, and computed tomography in a mouse model
of paraganglioma undergoing anti-angiogenic treatment with sunitinib. Imaging features from the
follow-up of sunitinib-treated (n = 8, imaged once-per-week/6-weeks) and sham-treated (n = 8,
imaged once-per-week/3-weeks) mice groups were dimensionally reduced and analyzed with hierar-
chical clustering Analysis (HCA). The classes extracted from HCA were used with 10 ML classifiers to
find a generalized tumor stage prediction model, which was validated with an independent dataset
of sunitinib-treated mice. HCA provided three stages of treatment response that were validated using
the best-performing ML classifier. The Gaussian naive Bayes classifier showed the best performance,
with a training accuracy of 98.7 and an average area under curve of 100. Our results show that
metabolic–anatomical–vascular markers allow defining treatment response trajectories that reflect
the efficacy of an anti-angiogenic drug on the tumor target hallmark.

Keywords: multi-modal imaging; paraganglioma; machine learning; hierarchical clustering;
treatment response
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1. Introduction

Establishing treatment response is a crucial aspect of precision oncology [1]. This de-
termination involves categorizing the patient’s status into predefined discrete classes [2,3].
These classes are established by pooled assessment of the margins of variation of descriptive
features extracted from medical data or images. Given the wide existing variety of medical
data, imaging systems, and clinical protocols in oncology, there are standardized recom-
mendations for defining treatment response. The World Health Organization (WHO) in
1979 determined four categories of response or non-response to treatment based on tumor
volume [4]: a complete, partial, stable, and progressive disease. In 2000, the Response Eval-
uation Criteria for Solid Tumors (RECIST) proposed to sum one-dimensional measurements
of the greatest length of all lesions extracted from X-ray tomography (CT) or magnetic
resonance imaging (MRI) images [5]. The RECIST criteria have periodically been revised,
and new versions have emerged to accommodate new targeted therapies. In 2009, the
Positron Emission Tomography (PET) Response Criteria for Solid Tumours (PERCIST) was
introduced to provide a continuous variable for categorizing patient response to treatment.
This involves calculating the percentage change between pre-and post-treatment PET scans
of the peak standard uptake value (SUL) corrected for body mass or the sum of all SULs of
all lesions. The RECIST and PERCIST criteria provide classification labels that respond to
the macroscopic characteristics of tumors and are robust and convenient for clinical practice.
However, they provide little, if any, information about the effect of a precision treatment
on its pharmacological target, e.g., immune checkpoint inhibition, anti-angiogenesis, and
targeted immunotherapy. Therefore, RECIST and PERCIST are of limited interest for the
evaluation of new treatments, which contrasts with the increasing availability of in vivo
molecular and functional imaging approaches targeting tumor hallmarks [6], and even the
interaction of these hallmarks through hybrid imaging [7–9]. Thus, new tumor response
criteria specific to the pharmacological target being addressed are needed.

Artificial intelligence (AI), a term derived from the informatics field, has shown promis-
ing potential to accelerate the evolution of healthcare toward precision oncology [3,10].
In particular, machine learning (ML), a branch of AI that applies statistical methods to
detect patterns within datasets, enables the assembly and analysis of large volumes of
data and facilitates diagnosis, prognosis, and treatment response assessment [3,10–18].
Traditionally, unsupervised ML clustering methods have been used to cluster the molec-
ular and/or genomics patient profiles and to analyze in response to treatment [18] with
posterior supervised learning generalization [19]. These early “omics” studies have laid
the groundwork for more recent analyses using profiles created with radiology imaging
features, known as radiomics. Radiomics provide a large number of quantitative features
that can be used by ML methods to detect high-dimensional patterns that correlate with
relevant clinical endpoints. Because they can be applied to routinely acquired images at
no cost, radiomics have expanded to almost all branches of molecular imaging [20–22],
anatomical imaging [23–25] and hybrid imaging [12]. However, radiomics techniques
possess several limitations. Firstly, the biological significance of the imaging features ex-
tracted through radiomics is often unclear. To overcome this limitation, certain studies
have attempted to establish correlations between radiomics features and manually crafted
biological descriptors derived from the images [17]. However, numerous radiomics features
remain inadequately understood and their clinical applicability is hampered by a lack of
interpretability [26,27]. Secondly, radiomics involves a vast number of features computed
using predefined mathematical expressions [12]. Given that translational research datasets
are often limited in size, it is probable that employing numerous features may result in
overfitting during machine learning (ML) training [28]. Therefore, most radiomics studies
concentrate on large clinical databases. On the other hand, preclinical studies, which, due
to animal experimentation regulations, rely on small databases, often favor the use of a few
handcrafted clinical image descriptors with direct biological interpretation [29].

In this study, we investigate the response to an antitumoral treatment of paragan-
gliomas (PGLs), rare neuroendocrine tumors arising from extra-adrenal chromaffin cells
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that originate from the neural crest cells and are characterized by high metabolism and
extensive vascularization [30]. Sunitinib is an anti-angiogenic drug used to treat patients
with PGLs [31]. In previous work by our team, we showed that the response to sunitinib
treatment in experimental PGLs-bearing mice was highly variable [32]. In some animals,
the tumors responded well to sunitinib, while in other animals, the tumors resumed growth
in just a couple of weeks [32]. During treatment, we documented the vascular (using ultra-
fast Doppler imaging (UDI)), metabolic (using PET), and anatomical (using CT) responses
of mice to sunitinib using a new hybrid imaging system that combines PET-registered
ultrafast sonography (PETRUS) [33]. Imaging with PETRUS sunitinib-treated or sham-
treated mice documented the effect of sunitinib on tumor growth, vessels development,
and 2′-[18F]fluoro-2′deoxy-D-glucose (FDG) uptake [32].

Here, we combine hierarchical clustering analysis (HCA) and supervised ML classifiers
to identify different stages of tumor progression and the response of PGLs undergoing
sunitinib or sham treatments using a few longitudinal-handcrafted vascular–molecular–
anatomical features with direct biological interpretation. Multiple classical ML classifiers
exist with simplified models suitable for small preclinical databases such as ours, and
to date, it has not been explored which classifier is best suited to the task of identifying
response to the sunitinib treatment of PGL using multimodal descriptors. Therefore, in
this work, we evaluated several ML classifiers and used the one with the best performance
for the generalized classification of tumor progression stages. The concatenation of the
resulting stages along the duration of anti-angiogenic or sham treatments resulted in the
identification of trajectories of tumor evolution.

2. Materials and Methods

Figure 1 shows the pipeline of the framework implemented in this study that pro-
gresses from the acquisition of multi-modal image volumes to the definition of individual
trajectories of response to treatment. Each element of this diagram will be described in the
following sections.

Figure 1. Process diagram showing the framework pipeline. Images were co-registered and processed
to extract features describing the metabolic, vascular, and morphological components of tumor devel-
opment. A Pearson correlation study was performed to remove redundant features. Longitudinal
features were combined, and hierarchical clustering analysis was applied to obtain clusters and
classes representing different stages of tumor evolution. The clusters and classes identified with HCA
were used with 10 different supervised machine-learning classifiers for model generalization and
final validation. Finally, time-wise concatenation of the identified stages was performed to form the
individual trajectories of tumor evolution for each animal.
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2.1. Acquisition of Live Animal IMAGING Data

Two groups of mice followed the protocol of animal housing, tumor implantation,
follow-up, and anti-angiogenic drug delivery described in [32] and schematized in Figure 2.
The first group (training group) included 16 mice from [32], while the second group
(validation group) included another 11 mice that underwent the same experimental protocol.
Imaging of the training group was performed at baseline, and then every week until week
3 for vehicle-treated animals (8 mice), and every week until week 6 for sunitinib-treated
animals (8 mice). The validation group concerned only sunitinib-treated animals, and
imaging was performed at the baseline, week 1, week 3 and week 6.

Figure 2. Database generation process. Mice in the training group were divided into two groups:
sunitinib-treated and sham-treated. Eight mice from each group were scanned with PETRUS before
and after 1, 2, and 3 weeks of treatment. Sinitinib-treated mice were also imaged at 4, 5, and 6 weeks
of treatment. Mice of the independent validation set were sunitinib-treated and scanned at baseline
and at weeks: 1, 3, and 6 of the treatment.

Animal experiments were approved by the French Ethical committee under reference
No. 16-098 and performed by certified personnel following the French law on animal
experimentation n°2013-118. In brief, adult female nude 6-week-old mice weighing 30 g
(Janvier Labs, France) were implanted in the dorsal fat pad with tumors obtained from
immortalized mouse chromaffin cells (imCC) carrying a homozygous knockout of the
Sdhb gene (Sdhb−/−) as previously described [32]. Mice were housed under controlled
temperature (24 °C), relative humidity (50%), a 12/12 light/dark cycle, and free access to
water and food. When the tumor volume reached 140 mm3, mice were randomly divided
into a vehicle group (CON, n = 8) and a sunitinib group (SUNI, n = 8). The sunitinib group
received sunitinib malate (Clinisciences, A10880-500) daily at a dose of 50 mg/kg body
weight for 6 consecutive weeks, administered by oral gavage of 200 µL in a 10 mg/mL
DMSO/PBS (1:4) solution. The control group received daily 200 µL doses of the DMSO-PBS
solution (1:4) for 3 weeks. Mice were euthanized if the tumor volume exceeded UKCCCR
recommendations [34] or if they showed signs of advanced cancer disease.

The effect of sunitinib was monitored non-invasively using the hybrid In vivo imag-
ing technology PETRUS (positron emission tomography registered ultrafast sonogra-
phy) [33], which allows for the simultaneous acquisition of tissue metabolism using
[18F]Fluorodeoxyglucose (FDG) PET, computed tomography (CT) and ultrafast ultrasound
Doppler imaging (UUDI) [33]. PETRUS simultaneously reads the cellular metabolism
activity alongside the micro-vascular architecture within the tumor, ensuring unimpaired
physiological conditions for both sets of spatially co-registered features [32].
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2.2. Description of Database Formation

Each PETRUS acquisition comprised three image volumes registered in a common
time and space reference frame that defined a multiparametric cube surrounding the animal
tumor. The features describing the metabolic, vascular, and anatomical characteristics of the
tumor were extracted from the PET, UUDI, and CT images, respectively (Table 1). A volume
of interest (VOI) covering the whole tumor was defined on the PET images by segmenting
voxels with an FDG standard uptake value (SUV) greater than 30% of the tumor’s peak
SUV at 50–60 min post-injection [35]. This VOI was used to create a binary mask that was
applied to the three spatiotemporal registered volumes. From the masked PET image, the
following metabolic features were extracted: mean, coefficient of variance, minimum and
maximum of standard uptake values (MeanSUV, CVstdSUV, MinSUV, MaxSuv), and PET
volume (PETVolume). The masked UUDI volume was filtered using a Hessian-based vessel
enhancement filter, and vessels were segmented using predefined thresholds [36] and
skeletonized using an iterative ordered thinning-based skeletonization method [37,38]. The
skeletonized mask of vessels was transformed into a graph of nodes and edges representing
the vascular network of the tumor. Using this graph, the following features describing the
topology of the tumor vascularization were calculated: mean, minimum and maximum
vessel length (MeanVesselsLength, MinVesselsLength, MaxVesselsLength), mean vessels
tortuosity (Tort), which is the shortest distance between nodes divided by the vessel length),
vessels length dispersion (VesselsLength-Disp), which is the standard deviation of the
vessels length divided by the mean of the vessels length, number of nodes (NumNodes),
density of nodes (DensityNodesinUSV), mean vessels diameter (MeanVesselsDiam) and
ultrasound volume (USVolume), which is the number of voxels of the vascular skeleton
multiplied by the voxel volume. The quantification of PETRUS images was performed
using MATLAB version R2021b. The CT volume (CTVolume) was delineated from the fat
pad surrounding the tumor.

Table 1. PET/CT/UUDI extracted features.

Parameter Modality Abbreviation Unit Description

Mean Standardized Uptake
Value PET Mean SUV a.u. Average of the Standardized Uptake of FDG in the VOI

Max Standardized Uptake
Value PET Max SUV a.u. Average of the 5 hottest pixels in the tumor VOI

Min Standardized Uptake
Value PET Min SUV a.u. Minimum Standard Uptake of FDG in the VOI

Standardized Uptake Value
of FDG dispersion PET CVstdSUV a.u. Coefficient of variance of the Standardized Uptake Value

PET volume PET PETvolume mm3 Number of voxels in the VOI × volume of a voxel

Computed Tomography
Volume CT CTVolume mm3 Tumor volume defined by the CT scan

Number of Nodes UUDI NumNodes nodes Sum of all Nodes.

Number of Nodes/Vessels
Volume UUDI DensityNodesinUSV nodes/

mm3 Number of nodes per unit of vessel volume.

Maximum Vessels Length UUDI MaxVesselsLength mm Average of the maximum length of all the vessels

Mean Vessels Length UUDI MeanVesselsLength mm Average of the length of all the vessels

Minimum Vessels Length UUDI MinVesselsLength mm Average of the min length of all the vessels

Length Vessels Dispersion UUDI VesselsLengthDisp a.u. Coefficient of variance of the mean vessel length

Mean Vessels Tortuosity UUDI Tort a.u.
Average of all tortuosities. The tortuosity is the ratio between
the length of a vessel (as an arc) and the straight-line length
between its initial and final points

Mean Vessels Diameter UUDI MeanVesselsDiam mm Average of all mean Diameter

Vessels Volume UUDI USVolume mm3 Tumor blood volume defined by the Ultrasound Doppler
scan
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The working database assembled all 15 features extracted from the imaging modalities,
as well as a unique record number that defined the mouse, the week of the imaging session
(where week zero (W0) is the pre-treatment imaging session and W1-6 is the rest of the
treatment weeks), and the treatment group assignment (CON for sham-treated mice; SUNI
for sunitinib-treated mice). Data were divided into 3 subgroups, (i) Dsuni

training containing the
SUNI mice in the training group, aggregating a total of 54 records (ii) Dcon

training containing

the CON mice from the training group, forming a total of 27 records, and (iii) Dsuni
validat

containing the SUNI mice from the validation group forming a total of 28 records.

2.3. Feature Selection

Feature selection is an important pre-processing step that affects the accuracy and
decreases the training time of any classifier. By removing non-useful or redundant features,
the dimensionality of the feature space can be reduced, an essential step to improve
the performance of a classifier [39]. In order to identify linear correlations between the
different features, we applied a Pearson correlation using a Pearson coefficient |r| > 0.9
(p-value < 0.05) to detect redundant features [40]. In addition, non-informative features
with a low coefficient of variation (CV < 0.1) were removed.

2.4. Unsupervised Classification: Hierarchical Clustering

One of the fundamental objectives of our study was the determination of phenotypi-
cally representative clusters, each cluster being a representative combination of metabolic,
anatomical and vascular features associated with a stage of response to sunitinib. Clusters
were determined by the individual response of the subject, independently of the time of
treatment by assembling all the longitudinal features extracted. HCA, an unsupervised
machine-learning clustering approach [41], was used to stratify the tumor response by
finding common metabolic, anatomical and vascular phenotypic patterns of the image
descriptors selected. The HCA was applied on each of the training datasets separately,
Dsuni

training and Dcon
training, in order to determine whether or not the treatment changes the

time course of tumor evolution. First, the input data were standardized using the z-score.
Then, the interrelationship between individual records was measured by computing the
unweighted average Euclidean distance. This was followed by computing the average
link as a similarity metric to define the closest pair of clusters. Finally, a heat map with
dendrograms was constructed to display the patterns observed and the clusters identi-
fied. The length of the dendrogram branches connecting records and features is inversely
proportional to the similarity of their profiles. Gap statistics [42] was applied in order
to evaluate the optimal number of clusters, and Welch’s t-test was applied to identify
significantly different clusters [43]. The outcome of this analysis provided the optimal
number of clusters corresponding to a particular phenotype identified for each instance in
the data-base. HCA and statistical tests were implemented in MATLAB (version 2021-b)
using the clustergram, ttest2, and evalclusters functions, respectively.

2.5. Supervised Classification: Model Building and Validation

To test the stability of the method, we compared the clustering results applied on
an external population ( Dsuni

validation) to a classification produced as a generalization of the
clustering performed on our initial population (Dsuni

training). More precisely, we considered

the clusters of the initial population (Dsuni
training) as classes of a supervised classification

algorithm to predict the classes expected in the new population (Dsuni
validation).

Because our training dataset has an unbalanced number of instances per class, which
can undermine the predictability of the models, we performed oversampling through
the synthetic minority over-sampling technique (SMOTE), which balances the minority
classes [44]. This technique uses the k-nearest neighbors approach to synthesize new
observations based on the existing records. We applied smote using the four nearest
neighbors to balance each of the four clusters (A, B1, B2, and C).
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The selected features of our Dsuni
training were brought into ten machine learning classifiers,

including decision tree (DT), Gaussian naive Bayes (GNB), kernel naive Bayes (KNB), linear
support vector machine (Linear SVM), quadratic support vector machine (Quadratic SVM),
k-nearest neighbors (KNN), weighted k-nearest neighbors (Weighted KNN), random forest
(RF), narrow neural network (Narrow NN), bilayered neural network (Bilayered NN). The
best-performing model was selected by comparing the area under the receiver operating
characteristic curve (AUC) and accuracy (ACC) values. The control parameters of the best
model were further optimized by Bayesian optimization and five-fold cross-validation to
evaluate the performance of the classifier. All classifiers were trained and validated using
the classification learner application implemented in MATLAB version 2021-b.

In order to check the relative importance of each of the metabolic, vascular, and
morphological features in the classification problem, we used the predictor importance
attribute associated with the RF model. The predictor importance attribute is an implicit
technique performed using the RF model and is evaluated using the Gini impurity criterion
index. This index is based on the principle of impurity reduction to provide the power of
each feature in the classification [45].

2.6. Identification of Trajectories of Treatment Responses

We then tested whether the records assembled within each cluster, corresponding to
a tumor state with specific biomarkers, could represent a chronological stage of tumor
evolution. By referring back to the time point of each record (the week after the beginning
of treatment) in both the CON and SUNI groups, the clusters were ordered chronologically,
and a time-dependent trajectory was obtained for each mouse. We applied an R2 test to
the states at each of the seven time points of the study (classes obtained from the HCA,
considering A = 1, B1 = 2, B2 = 3, and C = 4) to determine if these states indicated temporal
stages of treatment response. Finally, the transitional matrix between clusters was analyzed.

3. Results
3.1. Pearson Correlation

Figure 3 shows the cross-heatmap of the Pearson correlation values (r) of CT, vascular,
and metabolic features. In order to eliminate redundant features, a Pearson significance of
r > 0.9 and p-value < 0.05 were applied to all pairs of features of the four instances. This
reduced the number of vascular features from 11 to 8: MeanVesselsLength was correlated
with MeanVesselsDiameter, Tort, and VesselsLengthDisp; VesselsLengthDisp correlated
with MeanVesselsDiameter and Tort, and Tort correlated with MeanVesselsDiameter. Hence,
MeanVesselsLength, MeanVesselsDiameter and Tort were not considered further. Applying
the same Pearson r and p values reduced the metabolic features from 5 to 4: MeanSuv
correlated with MaxSuv, and MaxSuv was not considered further.

With respect to vascular–metabolic correlations, interestingly, the StdSUV was signifi-
cantly correlated with MeanVesselsDiam and MeanVesselsLength.

In addition, a low coefficient of variation (CV < 0.1) results in a non-informative
dataset from classifiers’ training. Thus, features having a high Pearson correlation and
a low coefficient of variation were not considered further. Overall, 8 features, including
4 vascular features, i.e., USVolume, NumNodes, DensityNodesinUSV, VesselsLengthDisp,
3 metabolic features, i.e., StdSUV, PETVolume, MeanSUV, and the CT volume, were used
for all three curated databases (Dsuni

training, Dcon
training, Dsuni

validat).
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Figure 3. Heatmap summarizing significant Pearson coefficient values for each pair of metabolic
(blue font), vascular (red font) and morphological features (black font) used to exclude redundant
features (*, **, ***, refer to p-value level of significance).

3.2. Hierarchical Clustering Approach
3.2.1. Sham-Treated Training Set (Dcon

training)

Performing the hierarchical clustering on the Dcon
training dataset identified two major

clusters: Clusters Ac and Cc (Figure 4a), where subscript c stands for the control group.
They showed the following characteristics (Table 2):

• Cluster Ac was characterized by significantly low volumes of CT, PET, and UUDI, a
high coefficient variance of the standard deviation of SUV, a low number of nodes,
and a low density of nodes. This corresponds to a small-sized tumor, with low
vascularization and metabolism, and a heterogeneous distribution of FDG uptake.

• Cluster Cc was characterized by high volumes of CT, PET, and UUDI, a significantly
lower coefficient of variation of the standard deviation of SUV, and a high number
of nodes. This cluster corresponds to a stage where the tumor has grown to a large
volume, with high metabolic and vascularization activities but a low heterogeneity in
the distribution of FDG uptake.

Table 2. Metabolic, vascular, and morphological characteristics of the clusters of the Dcon
training dataset.

The average values of each parameter of each cluster are represented. In black, the mean values; in
parenthesis, the standard mean errors; and in blue, the z-score means.

Features CVstd-
SUV

Density
Nodes
inUSV

(1/mm3)

Num-
Nodes

US Volume
(mm3)

PET
Volume
(mm3)

CT Volume
(mm3) Mean SUV

Vessels
Length

Disp
(mm2)

Cluster Ac
45.07 (1.68),

0.42
36.27 (1.85),
−0.27

542.85
(32.84),
−0.81

15.31 (1.02),
0.82

236.43
(27.75),
−0.85

165.06
(23.80),
−0.85

1.96 (0.10),
−0.63

60.06 (1.89),
0.00

Cluster Cc
35.74 (0.89),

0.42
38.79 (1.57),
−0.27

1549.29
(123.44),
−0.81

39.44 (2.50),
0.82

815.28
(69.49),
−0.85

584.29
(51.77),
−0.85

2.66 (0.08),
−0.63

59.60 (1.19),
0.00
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(a)

(b)

Figure 4. Heatmap and hierarchical clustering performed (a) on the Dcon
training dataset and (b) on the

Dsuni
training dataset. Two clusters (Ac, Cc) were identified in (a) and 4 clusters (At, B1t, B2t, and Ct) were

identified in (b).

3.2.2. Sunitinib-Treated Training Set (Dsuni
training)

The same clustering approach applied to the Dsuni
training dataset identified three major

clusters (Figure 4b): Clusters At, Bt, and Ct, where the subscript t stands for the treatment
group. Cluster Bt splitted into two subgroups: B1t and B2t (Table 3).

• Cluster At was characterized by low volumes of CT, PET, and UUDI, a high coefficient
of variation of the standard deviation of SUV, and low vessel length dispersion,
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number of nodes, and density of nodes. This corresponds to a small-sized tumor with
low vascularization and heterogeneous distribution of FDG uptake value, features
that are similar to those of cluster Ac of the control group.

• Cluster Ct was characterized by high volumes of CT, PET, and UUDI, low coefficient
of variation of the standard deviation of SUV, high vessel length dispersion, and very
high number of nodes. This cluster corresponds to a tumor with a large volume, high
metabolism and vascularization, and low heterogeneity in the distribution of FDG
uptake, features that are similar to those of cluster Cc of the control group.

To compare the A and C clusters obtained with the SUNI and CON groups, respectively,
a Kruskal–Wallis test [46] was performed between the At and Ac clusters, and also between
the Ct and Cc clusters. The clusters were statistically similar (p-value < 0.05), indicating that
clusters At and Ac on the one hand, and clusters Ct and Cc on the other hand, correspond
to similar tumor states in the sunitinib-treated and sham-treated groups.

In the sunitinib-treated training set, the HCA algorithm identified two further clusters
not present in the CON group:

• Cluster B1t was characterized by low to moderate volumes of CT, PET, and UUDI,
low coefficient of variation of the standard deviation of the SUV, high vessel length
dispersion, and a very high density of nodes. This corresponds to a small tumor with
a significant but moderate level of vascularization, and medium-to-high heterogeneity
in the distribution of FDG uptake.

• Cluster B2t was characterized by moderate volumes of CT and PET, high UUDI
volume, lower coefficients of variation of the standard deviation of SUV, high vessel
length dispersion, and low density of nodes. This corresponds to a moderate to
high tumor volume and vascularization and low heterogeneity in the distribution of
FDG uptake.

Table 3. Metabolic, vascular, and morphological characteristics of the clusters from the Dsuni
training

dataset. The mean values of each parameter of each cluster are represented. In black, the means; in
parentheses, the standard means error; and in blue, the z-score means.

Features CVstd-
SUV

Density
Nodes
inUSV

(1/mm3)

Num-
Nodes

US
Volume
(mm3)

PET
Volume
(mm3)

Mean SUV
CT

Volume
(mm3)

Vessels
Length

Disp
(mm2)

Cluster At
52.01 (1.17),

0.81
28.99 (1.05),
−0.64

243.15
(18.20),
−0.90

5.58 (0.78),
−0.81

99.61 (9.73),
−0.73

1.73 (0.11),
−0.56

66.90 (8.22),
−0.60

55.68 (0.77),
−0.52

Cluster B1t
47.68 (0.65),

0.12
44.08 (1.84),

1.46
527.4

(50.99), 0.16
11.84 (0.80),
−0.34

195.85
(18.44),
−0.09

1.79 (0.15),
−0.49

100.08
(15.36),
−0.29

57.33 (2.22),
−0.24

Cluster B2t
43.93 (0.72),
−0.64

32.06 (1.02),
−0.07

583.64
(29.78), 0.61

18.11 (0.46),
0.78

228,16
(15.76), 0.50

2.56 (0.22),
−0.35

123.51
(11.52), 0.06

59.46 (1.40),
−0.25

Cluster Ct
41.13 (0.58),
−0.92

31.78 (1.29),
−0.25

790.67
(39.46), 1.13

24.89 (0.73),
1.52

386.45
(29.66), 1.17

2.67 (0.12),
0.60

261.73
(17.84), 1.23

63.93 (2.01),
0.89

3.3. Robustness of Clusterization

An additional validation step was performed in order to ascertain that cluster forma-
tion was reproducible and not a casuistic process. HCA clustering was repeated on subsets
of random instances of the Dsuni

training group, formed by randomly removing one mouse at
a time. The accuracy of each HCA was calculated by considering the clusters obtained
for all mice as ground truth and comparing it with the clusters of the new subset using
the following formula: Accuracy = Number o f correctpredictions

Totalnumbero f Predictions . As shown in Table 4, the total
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accuracy for each of the performed HCAs was greater than 95 percent for the three major
clusters (At, Bt, and Ct).

Table 4. Performance of each of the HCAs for subsets of the Dsuni
training dataset. Data subsets were

obtained by removing all the time points of one mice at a time.

Mice Removed 1 2 3 4 5 6 7 8

Total Accuracy (%) 100 100 95 98 100 100 95 100

3.4. Performance of Supervised Machine Learning Models

All 10 of the ML classifiers explored demonstrated good predictive performance, as
demonstrated by the evaluation indexes of performance presented in Figure 5a. GNB
achieved the best predictive performance (AUC: 100, ACC: 98.7), whereas DT exhibited the
weakest (AUC: 96, ACC: 94.8). The remaining classifiers achieved the following predicted
performance: Quadratic SVM (AUC: 100, ACC: 97.4), KNB (AUC: 98, ACC: 94.8), Linear
SVM (AUC: 100, ACC: 97.4), KNN (AUC: 97, ACC: 98.7), RF (AUC: 100, ACC: 94.8),
Narrow NN (AUC: 100, ACC: 96.1), Bilayered NN (AUC: 98, ACC: 94.8) and Weighted NN
(AUC: 100, ACC: 97.4).

(a)

(b)

Figure 5. Performance of the supervised machine learning models (a) Scatter diagram of machine
learning classifiers prediction performance. The horizontal axis represents accuracy (ACC), the
vertical axis represents the area under the curve (AUC); DT, decision tree; GNB, Gaussian naive
Bayes (Gaussian); Quadratic SVM, support vector machine (Quadratic); KNB, kernel naive Bayes;
Linear SVM, linear support vector machine; KNN, k-nearest neighbors; RF, random forest; NNN,
narrow neural network; Bilayered NN, bilayered neural network; Weighted KNN, weighted k-nearest
neighbors. (b) Contribution of morphological, metabolic, and vascular features in the discrimination
of the 4 clusters of tumor evolution stages identified with RF.

Applying the best classifier to the three records that had not been classified using
HCA, i.e., mouse 1-week 6, mouse 3-week 6, and mouse 8-week 5, allowed to classify these
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records into clusters Ct, Ct, and At, respectively (Table 5). This classification remained
consistent with the previous stages of the sunitinib training set Dsuni

training. The best-trained

model applied to the Dsuni
validat dataset assigned a state for each record and mouse (Table 6)

that was consistent with the states of the Dsuni
training dataset.

Table 5. Evolutionary path of sunitinib-treated mice of the training set. Items marked as * indicate
missing classification due to the absence of corresponding PETRUS data. Clusters that were assigned
by the RF model are underlined.

Mouse Number Baseline Week 1 Week 2 Week 3 Week 4 Week 5 Week 6

mouse 1 At B1t B2t B2t Ct Ct Ct
mouse 2 B2t B2t B1t At At * Ct
mouse 3 B2t B1t B2t B2t Ct Ct Ct
mouse 4 B1t B1t B1t At * B2t Ct
mouse 5 At At At At At B2t B2t
mouse 6 At At At At At At At
mouse 7 B1t At B1t At B2t B2t Ct
mouse 8 At B2t B1t At At Ct B1t

Table 6. Clusterization of the 11 sunitinib mice from the validation group. Items marked as - indicate
that the RF approach was unable to assign the record to one any of the At, B1t, B2t, Ct clusters. Items
marked as * indicate no PETRUS data available.

Mouse Number Baseline Week 1 Week 3 Week 6

mouse 9 At B1t B1t *
mouse 10 At At B1t Ct
mouse 11 At B1t B2t *
mouse 12 At B1t Ct -
mouse 13 At At * Ct
mouse 14 At B2t * *
mouse 15 B1t B1t * *
mouse 16 B1t B1t * *
mouse 17 At At B1t *
mouse 18 B1t At * *
mouse 19 At * * *

Finally, using the RF classifier the relative importance of features used for training
showed that all three types of tumor features, i.e., metabolic, vascular, and anatomical
features, participated in the prediction of the four clusters (Figure 5b). This indicates that
the information provided by each of the three imaging modalities contributed in a balanced
way to define tumor stages for each imaging record.

Clusterization Reveals Tumor Progression

We then tested whether the different clusters would correspond to different time
points during the tumor follow-up, i.e., whether, for any record, there was a correlation
between assignment to one particular cluster and the time point at which imaging had
been performed for that record. Regarding the CON group, all except two records (mouse
3/week 2 and mouse 6/week 2) of cluster Ac corresponded to the baseline or to the
week-1 time point. Conversely, all cluster Cc records corresponded to week-2 or week-3
acquisitions. This confirms that cluster Ac represents an initial stage of the tumor, while
cluster Cc represents an advanced tumor stage.

In contrast, the correspondence between the time-point of acquisition and assignment
to the At or Ct cluster was much looser for the SUNI group than for the CON group. For
example, mouse 6 remained in cluster At at all time points until week 6. Moreover, at
baseline and week 1, a significant number of mice were not assigned to the At cluster but
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either to the B1t cluster (two mice at baseline and three at week 1) or to the B2t cluster
(two at each time point). Conversely, upon reaching the last observation time point (week
6), five mice from the SUNI group were in the Ct cluster, while one was classified in the
B1t cluster, one in the B2t cluster, and one in the At cluster. Examples of trajectories for a
mouse from the sham-treated group and for two mice from the sunitinib-treated group are
shown in Figure 6a.

We then investigated the influence of the vascular and metabolic features on the
clustering results. Removing PET and UUDI features from the SUNI datasets and basing
clustering only on the CT volume led to the co-clustering of [At;B1t] and [B1t;B2t] (see
boxplot in Figure 7a). This indicates that RECIST-like criteria using only CT did not identify
intermediate clusters. When the same algorithm HCA was applied to the SUNI dataset
from which the vascular features obtained by ultrasound imaging had been removed,
i.e., using only the PET metabolic features and the CT volume, only two significantly
different clusters were obtained using gap statistics: clusters APET/CT and BPET/CT . This
indicates that PERCIST-like criteria, using PET-CT only, did not identify intermediate
clusters (Figure 7b). Therefore, the intermediate B stage (Bt) and its two sub-clusters B1t
and B2t, essentially reflect changes concerning the vascular features of tumors under
sunitinib treatment.

(a)

(b)

Figure 6. Maximum intensity projection renderings (MIP) of PGL tumors, (a) mouse 1 from the CON
group, mouse 3 and mouse 6 from the SUNI group. Tumors in the CON group are shown at baseline
and from week 1 to week 3, while tumors from the SUNI group are shown at baseline and at week 1
to week 6. (b) Comparison of PGL tumors at the B1t and B2t stages.

3.5. Clusters Depict Responses to Sunitinib Treatment

To further understand how clusters reflect the response to sunitinib treatment, the
evolutionary trajectories (passage from one cluster to another over successive time points)
were studied individually for each mouse of the SUNI group (Table 5). The progression from
cluster At to Ct of sunitinib-treated mice was not direct as the Ac to Cc in the sham-treated
animals but passed through intermediate Bt clusters. This was confirmed by a correlation
analysis performed on clusters At, Bt and Ct considered stages 1, 2 and 3, resulting in
R2 = 0.84. Calculation of the cluster transition matrix confirmed the relationship between
the clusters and the chronology of tumor evolution. Assuming a progression represented by
states At, Bt, and finally Ct, we obtained 29/46 (65.9%) stable phenotypes, i.e., remaining in
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the same state; 10/46 (22.7%) one progression, i.e., advancing further to the next state; and
5 (11.3%) regressions from Bt to At (Appendix Table A1). Pooling the validation population
and the training population showed an asymmetry between “progression” (n = 15) and
“regression” (n = 6). Finally, Cluster Ct was an irreversible transition deriving essentially
from the B2t state that appeared as a mandatory intermediate stage to reach state Ct, and
the transition from Bt to At occurred only by the intermediary stage B1t, and not by B2t.
States At, B1t, B2t, and Ct are thus ordered in time, suggesting that they are in fact tumor
stages and that there is a progressive evolution of tumor stages from states At to Ct through
Bt, and irreversibly between Ct and the other states.

(a)

(b)

Figure 7. Contribution of the vascular features for cluster discrimination in the SUNI group (a) CTVol-
ume shows no significant difference between At-B1t and B1t-B2t (p_value > 0.05), indicating that
RECIST criteria alone did not identify the intermediate B1 and B2 clusters. (b) Similarly, hierarchical
clustering performed on the Dsuni

training dataset considering only the features derived from PET and CT
scans did not identify the intermediate stages B1t and B2t either.

In summary, multi-feature ML analysis of the sunitinib-treated animals showed that
individual trajectories, defined by the passage from one cluster to another, followed a
discrete number of rules:
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• Irrespective of whether mice received sunitinib or vehicle, no mouse reversed from
the advanced tumor stage (cluster C) to a less advanced stage.

• In the sunitinib group, mice moved from the early tumor stage (cluster At) to either
one of the two intermediate stages (clusters B1t or B2t) but not directly to the advanced
stage (cluster Ct).

• In the sunitinib group, mice moved from cluster B1t to B2t and back, and from cluster
B1t back to cluster At, but no passage from cluster B2t to cluster At was observed.

• In the sunitinib group, all mice reaching the advanced (cluster Ct) stage originated
from cluster B2t.

The robust correlations between clusters and treatment duration, and the transition
matrix between clusters confirm that the A, B, and C clusters correspond to tumor stages.
Interestingly, transitions between sub-clusters B1t and B2t were less correlated with time
than transitions between At and B1t or B2t, and between B2t and Ct. This suggests that the
“reverse” transitions, i.e., B2t to B1t and B1t to At, could reflect the phenotype changes asso-
ciated with a positive response to sunitinib. Figure 8 summarizes the trajectories between
tumor stages in sunitinib-treated mice. There was first an increase in the level of tumor
vascularization (At to B1t transformation), followed by a decrease in the heterogeneity of
FDG distribution in the tumor (B1t to B2t).

Figure 8. Graphical and tabular representations of the trajectories highlighting the major characteristic
features of mice under sunitinib treatment.

4. Discussion

Previous studies used ML to study the correspondence between gene expression and
tumor progression [47,48], including PGL [49]. To the best of our knowledge, this is the first
application of ML based on HCA and supervised ML algorithms to noninvasive multimodal
imaging of PGL. PGL lesions may concern the whole sympathetic and parasympathetic
chains from the base of the skull to the pelvis. Germline mutations in one of the SDHx genes
are responsible for approximately 20% of cases of PGL and also in some other tumors [50,51].
PGL patients carrying SDHx mutations show a higher rate of metastatic disease and a
lower rate of survival than non-SDHx PGL patients. Surgery is not without risk and may be
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impractical for numerous or misplaced lesions. Clinical trials with sunitinib have reported
modest results in SDHB mutation carriers [32,52].

There is an international consensus on the use of repeated non-invasive imaging for
the screening, management and follow-up of PGL patients [53], as well as for asymptomatic
SDHx mutation carriers [54]. Our results show that unsupervised ML of serial noninvasive
and multimodal imaging data can define the phenotypic stages of mouse Sdhb−/− PGL
tumors under anti-angiogenic treatment. The main finding is that, although the records fed
to the ML algorithm had not been time stamped for the duration of treatment, unsupervised
ML applied to multimodal multiparametric imaging features yielded clusters relevant to
disease progression and to the response to sunitinib. In the sham-treated group, all mice
switched, generally in less than three weeks, from cluster Ac, an early stage with small and
poorly developed tumors, low vascularization, and heterogeneous FDG uptake, to cluster
Cc, an advanced stage with large tumors, large vessels, high and relatively homogeneous
FDG uptake, corresponding to an end-stage cancer disease. In the sunitinib-treated group,
a given tumor from a given mouse could, over time, move from one cluster to another,
suggesting that the changes from one cluster to another depicted trajectories of tumor
evolution related to the response or the escape from treatment. Some sunitinib-treated
tumors showed a progression similar to sham-treated tumors, which infers that sunitinib-
treated mice entering the advanced-stage Ct cluster have escaped sunitinib treatment.

Two other clusters, B1t, and B2t, representing intermediate tumor stages, were ob-
served only in the sunitinib-treated group, supporting the view that their phenotypes
represent the effects of sunitinib on PGL tumors. The first one, B1t, encompassed small-
sized tumors with a significant but moderate level of vascularization and heterogeneity
in the distribution of glucose uptake. The second cluster, B2t, encompassed tumors of
moderate volume and vascularization, and low heterogeneity in the distribution of glucose
uptake. ML did not identify these two intermediate stages when the vascular features
derived from ultrafast ultrasound were removed from the analysis. Therefore, the B1t
and B2t intermediate stages identified the effect of sunitinib on tumor vascularization,
likely by inhibition of vascular endothelial growth factors receptors (VEGFRs), the major
pharmacological target of the drug [55]. Previous studies have documented the relationship
between tumor vascular types and the malignancy of PGL or pheochromocytoma, which
is the adrenal form of paraganglioma. In a pioneering study, Favier et al. [56] divided
pheochromocytomas into two groups according to their vascular architecture. Tumors
with short, straight vascular segments distributed regularly over large areas of tumoral
tissue had a vascular density equivalent to that observed in the normal adrenal medulla,
while tumors with longer vascular segments of irregular length and a lower density of
vessels corresponded to the malignant form. These regular and irregular patterns observed
using in vitro stained sections of tumor tissue samples are remarkably similar to the states
that we observed here in vivo, A and C [56]. A few years later, a study attempted to use
“Favier’s criteria” of the vascular patterns on histological sections of pheochromocytomas
and PGL for the prediction of clinical behavior [57]. Again, malignancy was associated
with an irregular vascular pattern; however, in spite of the correct agreement between
observers, sensitivity and specificity were relatively modest and the authors concluded
that vascular patterns, although useful, were not sufficient as “stand-alone [. . . ] prognostic
tool for the distinction between benign and malignant PCC. . . ”. Interestingly, we observed
a difference in vascular morphology reminiscent of regular/irregular patterns under suni-
tinib treatment, tumor vessels being larger in diameter at stage B2t than at stage B1t (see
Figure 6b). Therefore, while the analysis of vascularization may by itself not be sufficient,
and notwithstanding the fact that the morphology of vessels in fixed tissue may not reflect
their in vivo morphology, there is good agreement with changes in vessel morphology and
the response to sunitinib, suggesting that the in vivo exploration of vascular morphology
may be useful for the management of PGL. In addition, the link between FDG heterogeneity
and microvascular density was theorized using a spatiotemporal computational model [58].
Our present results are in agreement with the authors’ conclusion that “as microvascular
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densities increase [. . . ], the spatiotemporal distribution of total FDG uptake by tumor tissue
changes towards a more homogenous distribution [58]”. Therefore, combined imaging of
vascularization and metabolism could be an advantage for the follow-up of PGL patients
under treatment.

Interestingly, all of the three mice that pertained to a B cluster (B1t or B2t) at base-
line ended up in the Ct cluster at the end of the 6-week sunitinib treatment, while only
one of the four mice pertaining to the At cluster at baseline ended up in the Ct cluster.
Although further studies are necessary to determine whether the tumor’s biology prior
to the administration of sunitinib could predict future escape from treatment, this may
indicate that tumors that have already developed a significant vessel network are less
prone to respond to sunitinib therapy. Thus, even though the switch from B1t to B2t was
reversible under sunitinib treatment (B1t to B2t), increased vascularization and decreased
metabolic heterogeneity defining the B2t stage were necessary features for passage to the
Ct stage, in other words, for escape from sunitinib treatment. From a cancer biology point
of view, this suggests that escape from sunitinib treatment involves both a metabolic and a
vascular switch.

From a statistical point of view, the analysis of each record independently without
time stamping allows to extraction of information regarding the rates of tumor evolution in
a small group of eight mice. This would not have been possible with conventional methods
based on time-stamped groups of individuals unless the number of individuals would
have been drastically increased. Considering the necessity to reduce the use of animals in
research, the unsupervised method for the analysis of multimodal imaging presented here
is an attractive alternative for the preclinical exploration of treatments in cancer models.

Moreover, cluster extraction using multiple features could allow gaining a better un-
derstanding of the sequence of events underlying drug response. The fact that cancer is a
multiform disease with multiple intermingled hallmarks has been extensively documented
and reviewed in the classical paper by Hanahan and Weinberg [59]. Therefore, it is unlikely
that assessing only one biomarker, even one that informs on the activity toward the pharma-
cological target, may be sufficient to assess treatment response, and, even less so, to identify
complex escape mechanisms. All in all, our results support the recourse to multimodal
imaging with the careful selection of relevant imaging biomarkers, ideally including one
or several biomarker(s) of the hallmark targeted by the treatment. In this respect, other
tumor variants could also benefit from similar approaches extracting biomarkers specific to
the tumor type and/or treatment. Finally, it may also be interesting to apply a radiomics
analysis in order to compile mathematically defined image features and determine whether
they represent phenotypic states predictive of tumor stage predictive of treatment response.

The main limitation of our study is that it is based on preclinical data. Serial imaging
sessions, even non-invasive, are difficult to envision in clinical settings. However, we
show that comprehensive longitudinal explorations in a patient-relevant animal model can
identify key imaging features leading to sunitinib resistance, and may inspire translational
methods for tumor follow-up in patients. ML analysis of multimodal hybrid imaging could
offer individual monitoring of the vascular and metabolic states of a tumor, thus providing
valuable information for personalized treatment decisions. Our results need to be further
validated on prospective cohorts and extended to the clinical situation.

5. Conclusions

The combination of hierarchical clustering and supervised machine learning algo-
rithms provides remarkable insight into the progression of tumor development in a mouse
model of paraganglioma. Through the incorporation of multi-modal information, includ-
ing the vascular features of the tumor-targeted by sunitinib, our approach is successful
in depicting trajectories of response to treatment. This approach could set a basis for
personalized follow-up of tumors treated by targeted therapies.
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Appendix A

Table A1. Table summarizing sunitinib treatment responses. Yellow boxes correspond to tumor
progression under treatment, n = 10 cases (22.7%), grey boxes correspond to stabilization n = 29 cases
(65.9%), and green boxes to tumor regression n = 5 cases (11.3%).

A B1 B2 C
A 13 (29.5%) 3 (6.8%) 3 (6.8%) 0 (0.0%)
B1 5 (11.4%) 2 (4.5%) 2 (4.5%) 0 (0.0%)
B2 0 (0.0%) 3 (6.8%) 5 (11.4%) 4 (9.0%)
C 0 (0.0%) 0 (0.0%) 0 (0.0%) 4 (9.0%)

A B C
A 13 (29.5%) 6 (13.6%) 0 (0.0%)
B 5 (11.4%) 12 (27.27%) 4 (9.0%)
C 0 (0.0%) 0 (0.0%) 4 (9.0%)

References
1. Tsimberidou, A.M.; Fountzilas, E.; Nikanjam, M.; Kurzrock, R. Review of precision cancer medicine: Evolution of the treatment

paradigm. Cancer Treat. Rev. 2020, 86, 102019. [CrossRef]
2. Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; Sánchez, C.I. A survey on deep learning in medical

image analysis. Med. Image Anal. 2017, 42, 60–88. [CrossRef] [PubMed]
3. Sengupta, S.; Basak, S.; Saikia, P.; Paul, S.; Tsalavoutis, V.; Atiah, F.; Peters, A. A review of deep learning with special emphasis on

architectures, applications and recent trends. Knowl. Based Syst . 2020, 194, 105596. [CrossRef]
4. Hunter, R.; World Health Organization (WHO). Handbook for Reporting Results of Cancer Treatment; WHO: Geneva, Switzerland,

1979.
5. Therasse, P.; Arbuck, S.G.; Eisenhauer, E.A.; Wanders, J.; Kaplan, R.S.; Rubinstein, L.; Gwyther, S.G. New guidelines to evaluate

the response to treatment in solid tumors. J. Natl. Cancer Inst. 2000, 92, 205–216. [CrossRef]
6. Ellenbroek, S.I.; Van Rheenen, J. Imaging hallmarks of cancer in living mice. Nat. Rev. Cancer. 2014, 14, 406–418. [CrossRef]

http://doi.org/10.1016/j.ctrv.2020.102019
http://dx.doi.org/10.1016/j.media.2017.07.005
http://www.ncbi.nlm.nih.gov/pubmed/28778026
http://dx.doi.org/10.1016/j.knosys.2020.105596
http://dx.doi.org/10.1093/jnci/92.3.205
http://dx.doi.org/10.1038/nrc3742


Cancers 2023, 15, 1751 19 of 20

7. Kircher, M.F.; Hricak, H.; Larson, S.M. Molecular imaging for personalized cancer care. Mol. Oncol. 2012, 6, 182–195. [CrossRef]
[PubMed]

8. Garg, P.K.; Deo, S.V.; Kumar, R.; Shukla, N.K.; Thulkar, S.; Gogia, A.; Mathur, S.R. Staging PET–CT scanning provides superior
detection of lymph nodes and distant metastases than traditional imaging in locally advanced breast cancer. World J. Surg. 2016,
40, 2036–2042. [CrossRef]

9. Papp, L.; Spielvogel, C.P.; Rausch, I.; Hacker, M.; Beyer, T. Personalizing medicine through hybrid imaging and medical big data
analysis. Front. Phys. 2018, 6, 51. [CrossRef]

10. Bertsimas, D.; Wiberg, H. Machine learning in oncology: Methods, applications, and challenges. JCO Clin. Cancer Inform. 2020, 4,
885–894. [CrossRef]

11. Tabari, A.; Chan, S.M.; Omar, O.M.F.; Iqbal, S.I.; Gee, M.S.; Daye, D. Role of Machine Learning in Precision Oncology: Applications
in Gastrointestinal Cancers. J. Cancer 2023, 15, 63. [CrossRef]

12. Krajnc, D.; Spielvogel, C.P.; Grahovac, M.; Ecsedi, B.; Rasul, S.; Poetsch, N.; Papp, L. Automated data preparation for in vivo
tumor characterization with machine learning. Front. Oncol. 2022, 12, 1017911. [CrossRef] [PubMed]

13. Mayerhoefer, M.E.; Materka, A.; Langs, G.; Häggström, I.; Szczypiński, P.; Gibbs, P. Introduction to radiomics. J. Nucl. Med. 2020,
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