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Simple Summary: With recent progress in radiation therapy, patients with bone metastases can be
treated curatively, provided precise delineation of metastatic lesions is adequately identified. Tumor
segmentation is a highly active area of research, but only limited studies have been on bone metastasis.
This review aims to investigate methods for differentiating benign from malignant bone lesions and
characterizing malignant bone lesions specifically in the context of bone metastases. While computer
vision techniques have opened new opportunities for quantifying cancer growth with minimal expert
supervision, fully automatic segmentation algorithms still require improvement. This is partly due to
limited contrast between tumors and surrounding tissue and the lack of a widely agreed upon “gold
standard” for defining these boundaries. Additionally, many studies do not provide evidence that
their proposed methods are suitable for use in clinical practice.

Abstract: Purpose: To investigate the segmentation approaches for bone metastases in differentiat-
ing benign from malignant bone lesions and characterizing malignant bone lesions. Method: The
literature search was conducted in Scopus, PubMed, IEEE and MedLine, and Web of Science elec-
tronic databases following the guidelines of Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA). A total of 77 original articles, 24 review articles, and 1 comparison paper
published between January 2010 and March 2022 were included in the review. Results: The results
showed that most studies used neural network-based approaches (58.44%) and CT-based imaging
(50.65%) out of 77 original articles. However, the review highlights the lack of a gold standard for
tumor boundaries and the need for manual correction of the segmentation output, which largely
explains the absence of clinical translation studies. Moreover, only 19 studies (24.67%) specifically
mentioned the feasibility of their proposed methods for use in clinical practice. Conclusion: Develop-
ment of tumor segmentation techniques that combine anatomical information and metabolic activities
is encouraging despite not having an optimal tumor segmentation method for all applications or can
compensate for all the difficulties built into data limitations.

Keywords: bone metastases; computational approaches; deep learning; machine learning; malignant
lesions; radiation therapy

1. Introduction

Bone is one of the most common metastatic sites for cancer, especially in the lung,
breast, and prostate [1]. This type of metastasis is often painful, with a high risk of mortality.
The median survival rate of patients suffering from bone lesions metastasized from breast,
prostate, and renal cancer ranges between 12 and 33 months, while survival is critically low
for patients with primary lung cancer along with bone metastasis, ranging from 9.5% to
12% with one-year survival [1]. The level of bone metastasis is strongly linked with shorter
survival rates [2]. Generally, these patients are treated with palliative chemotherapy and
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radiotherapy in clinical practice [3]. More recently, advances in image-guided radiotherapy
techniques, such as stereotactic body radiotherapy (SBRT), have enabled the delivery
of potentially ablative radiation doses while respecting healthy tissue constraints [4–6].
Furthermore, clinical trials, such as the SABR-COMET trial, have shown the benefits of SBRT
for metastatic disease [7]. Effective treatment methods can improve overall survival and
long-term progression-free survival [8]. Predictions of treatment response and feasibility
can be improved by quantifying the number of metastatic lesions, their location, and the
impact of radiomic biomarkers [9].

In medical image analysis, various modalities, such as positron emission tomography
(PET) [10,11], whole-body Magnetic Resonance Imaging (MRI) [12], and bone scintig-
raphy [13], are used to support diagnoses and clinical follow-up. PET imaging offers
functional details and is commonly used to evaluate cancer [14]. There are many advan-
tages to using computed tomography (CT) in hybrid nuclear medicine equipment, such as
attenuation correction and visual correlation between functional and anatomical images.
Recent literature has shown that segmentation based on both CT and PET can determine
the volume of interest (VOI) based on the anatomical contour [15]. Segmentation involves
identifying the sets of pixels or voxels that form the tissue of interest [16]. Several re-
views have been published reporting medical image segmentation methods, along with
the strengths and weaknesses and discussing the challenges and outcomes [14,17–28]. A
literature review by Sahiner et al. noted that establishing clinical significance is as impor-
tant as establishing statistical significance for the research. Incorporating expert medical
knowledge to optimize methods can provide benefits beyond adding extra layers to a
Convolutional Neural Network (CNN) model and help radiologists accept the use of
models [29]. Similarly, Zhang and Sejdić mentioned that although there are many applica-
tions for machine learning to help radiologists, they still cannot substitute for the clinician’s
role due to existing limitations. One limitation is that many studies in radiology are based
on supervised learning, and algorithms learn specific patterns based on radiologists’ de-
cisions. Very few radiologists made these decisions in segmentation and were subject to
varying degrees of inter-observer variability. Therefore, further investigations are needed
to decide whether a machine can perform alone with 100% accuracy or at least match
inter-observer variability [28]. In a review of deep learning segmentation for radiotherapy,
Samarasinghe et al. noticed that clinical sites mostly used the U-net architecture and mostly
the CT datasets from in-house data sources [30]. Further research contributions are needed
to justify the use of algorithms in clinical decision-making to improve patient outcomes and
translate them into clinical practice. It is difficult to interpret how models make decisions
between input and output due to the significant number of parameters used. Acceptance
of a model is improbable if medical experts cannot validate the approach and understand
the logical bases of the method [19,28].

Faiella et al. [31] investigated the potential role of radiomics as a decision-supporting
tool for predicting bone disease status, distinguishing benign from malignant bone lesions,
and characterizing malignant lesions at the genetic level, considering only CT and MRI
imaging. Their study is the first that we found while reviewing articles on bone metastases
in the radiomics aspect. However, the paper lacks a discussion on segmentation techniques
used in the radiomics approach. To date, no review has presented bone metastasis segmen-
tation approaches and tumor segmentation with PET, CT, or PET/CT in radiation therapy
to our knowledge. The main objective of this review was to present an overview of the
latest research on cancer segmentation and bone metastasis segmentation on radiology
images in the context of radiation therapy planning and to analyze and compare with
state-of-the-art techniques in computer vision.

2. Methods
2.1. Literature Search

The systematic review followed the guidelines of the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses 2020 (PRISMA) [32]. The search was conducted
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in Scopus, PubMed, IEEE and MedLine, and the Web of Science electronic databases for
publication date between 2010 and 2022. In addition, we used a Google search to identify
additional records. The reference list of the included articles was cross-checked to identify
any additional articles. All original studies published in English, with full text available,
reporting bone metastasis segmentation or tumor segmentation for radiotherapy patients
with oligometastatic disease, were included. The studies that contained segmentation as
a part of their work were included. The studies that used CT, PET, and PET/CT were
included. The studies that used bone scans could not be excluded because bone scans are
primarily used to detect metastasis, as they appear as a hotspot on a bone scan. The studies,
including medical implants, virtual clinical trials, image registration, MRI, and PET/MRI
studies, were excluded. The awareness services for each issue of the journal were excluded.
When several versions of the same articles were presented, the latest version was cited.

The databases were searched on 1 April 2022. The query was designed to include
all studies that contained one or more words from four groups, one group comprised of
words associated with bones (bone and bones), the second group comprised with the words
associated with metastasis cancer (metastasis, metastases, metastatic, cancer, cancers, tumor,
tumors, tumour, tumours, oligometastatic disease), the third group comprised with the
words associated with radiotherapy (radiation oncology, radiation therapy, radiotherapy),
and the fourth group with the term segmentation.

The complete search query used in the Scopus database was therefore:
“ALL (“bone and bones” OR “bone” OR “bones”) AND ALL (metastasis OR metastase-

sor AND metastatic OR cancer OR cancers OR tumor OR tumors OR tumour OR tumours
OR “oligometastatic disease”) AND ALL (“radiation oncology” OR “radiation therapy” OR
radiotherapy) AND ALL (segmentation) AND PUBYEAR > 2009 AND PUBYEAR < 2023”.

An equivalent query with the same keywords was used in other databases. We used
the following search query to identify the additional studies using Google search:

“bone metastasis segmentation”.

After excluding duplicate articles and assessing the remaining articles for eligibility based
on their title and abstract, only relevant publications proceeded to full-text screening. The first
author (I.R.P.) performed the screening, and the second author (M.F.) reviewed the screening.

2.2. Data Extraction

The outcomes of interest were the segmentation approaches used for cancerous tumors
and bone metastasis segmentation. Data were extracted with regard to the following:

1. Enrollment period of the patients;
2. Study type: retrospective cohort study or prospective;
3. Study population. Extracted the number of scans or images when patient numbers

were not provided;
4. Training/Validation/testing cohorts;
5. Primary tumor and relevant location;
6. Imaging modality;
7. Methodology;
8. Outcome;
9. Evaluation Metrics;
10. Details of whether the study mentioned the suitability of the approaches for clinical use;
11. Country of the Authors.

3. Results

A flow diagram of the literature selection process is presented in Figure 1. We conducted
a comprehensive literature search, using both databases and Google searches to identify
relevant studies on bone metastasis segmentation. A total of 2513 articles were identified
through the initial database search, with an additional 302 papers found through alternative
sources not included in the initial search. After removing duplicates, 2524 records were
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screened based on their titles and abstracts. Of these, 2367 records were excluded due to
inclusion/exclusion criteria, leaving 157 full-text articles for further inspection.
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After a detailed assessment of the full-text articles, 55 were excluded due to incomplete
information or not meeting the inclusion/exclusion criteria. The most common reasons
for exclusion were articles related to image registration, medical implants, and MRI or
PET/MR studies. Finally, we included 102 full-text articles in our systematic review, with
24 review articles and 1 comparison study article focusing on techniques and technologies
used in medical imaging for image analysis and segmentation. These papers provided
background information for our study, with the remaining 77 original studies being the
focus of our analysis. The categorization of the included articles is summarized in Table 1.

Table 1. Papers Included in the Review.

Area of the Study Purpose of the Study Reference No of
Papers

Reviews/Comparison
of methods

Computerized PET/CT Image Analysis
in the Evaluation of Tumor [11] 1

Machine learning techniques in medical imaging [19,20,22,27–29,33] 7

Segmentation methods for Radiology image (s) [14,16,18,21,23] 5

Radiation therapy treatments for metastases [4–6] 3

Radiation therapy and planning [9,10,12,34,35] 5

Metastases Segmentation [26] 1

Imaging Techniques [17,36] 2

Radiomics in medical imaging [25] 1
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Table 1. Cont.

Area of the Study Purpose of the Study Reference No of
Papers

Segmentation

Metastases [37–54] 18

Tumor [2,55–80] 27

Organ(s)/Organs-at-Risk (OARs) [81–102] 22

Target Volume/OARs + Target Volume [103–106] 4

Classification
Metastases [13,107–109] 4

Tumor [110,111] 2

Total 102

Of these original studies, 18 included segmentation tasks on cancer metastasis, which
accounted for 23.37%. We focused on the segmentation of metastasis and other areas
separately to weigh the effort given to metastasis in past years. The number of studies that
performed segmentation of OARs/organs, tumor, and Target Volumes/OARs, along with
target volumes, were 22, 27, and 4, respectively, yielding 53 studies. The increasing pace of
publications in tumor segmentation was observable in recent years.

Figure 2a shows that most of the papers used CT (50.65%, of 77 original works),
while Figure 2b shows that 58.44% of papers included in our review were based on deep
learning techniques, with the remaining papers using thresholding, classification, clustering,
statistical, atlas-based, and region-based techniques. Figure 2c shows the number of papers
over time, with a dramatic increase in the number of publications in 2020 and 2022.

We found that there was a lack of consistency in performance evaluation metrics, making
cross-evaluation of segmentation approaches difficult (Figure 2d). As shown in Figure 2e,
27.27% (21 articles) of papers had first authors from China, while 16.88% (13 articles) had first
authors from the United States. Collaborative research across multiple countries is crucial for
advancing scientific knowledge and developing effective solutions to global challenges. How-
ever, our analysis of 77 original articles revealed that only a small proportion (18.18%) involved
collaboration among authors from two [37,55,63,65,71,75,78,81,84,85,105] or three [70,91,92]
different countries. This suggests that there is still a lack of international collaboration and
data sharing in the field. It is important to encourage and facilitate such collaborations to
foster the exchange of ideas, resources, and expertise, ultimately leading to more impact-
ful research outcomes. Lung cancer was the most commonly used primary cancer type
in the studies, with 21 articles, followed by prostate cancer at 11 (Figure 2f). However,
15 articles did not report the primary cancer type. This review presents different methods
and approaches for the tumor segmentation problem, but not all of these methods have
been rigorously tested in real-world clinical settings or validated against accepted standards
or benchmarks. As a result, many proposed methods did not present sufficient evidence
to demonstrate their suitability for widespread clinical use. Of 77 original articles, only
19 articles (24.67%) reported the feasibility of using their methods in a clinical setting yet
required further study on the matter. The data were extracted from all original articles
included in Supplementary Table S1.
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4. Discussion

Several review papers in the present literature discussed deep learning, machine
learning, and other techniques separately on PET, CT, PET/CT, or bone scintigraphy
images [19,29]. Some focused only on an imaging type [14,18]. No individual article
focused on a combination of different types of techniques applied to multiple imaging
modalities. Existing reviews of segmentation approaches have focused on the concept of
radiomics and identified some of the promising avenues for the future, both in terms of
applications and technical innovations. However, these studies did not focus on whether
the existing methods were feasible for use in clinical practice. The following sections
discuss the broad approaches used for the segmentation.

4.1. Deep Learning

Most of the papers in the review used either CNN or U-Net (a modification of CNN)
as the strategy for studies conducted with deep learning. CNNs were mostly used for appli-
cations such as identification, diagnosis, classification, and segmentation of bone metasta-
sis [13,24,37,47,52,95,99,107,108], identification of critical regions associated with toxicities



Cancers 2023, 15, 1750 7 of 18

after liver SBRT [92], tumor co-segmentation [74,78], radiation dose calculations [112], and
OAR segmentation [86,106].

Smaller datasets in deep learning can result in overfitting, and high-quality patient
data are crucial to reduce bias in clinical practice. However, there are privacy and ethical
concerns in handling medical data, and a lack of labeled data to train deep learning
algorithms, making manual labeling expensive and requiring expertise from physicians.
This task is also prone to uncertainty when physicians label multiple classes per lesion [56].
As a solution to this, Lin et al. [44] developed a single-photon emission computerized
tomography (SPECT) image annotation system in their work based on the openly available
tool LabelMe released by MIT (http://labelme.csail.mit.edu/Release3.0/) [113] for manual
labeling of SPECT images, which has a low spatial resolution. Apiparakoon et al. [56]
used a semi-supervised learning method, the Ladder Feature Pyramid Network (LFPN),
which incorporates an autoencoder structure in the ladder network to self-train using the
unlabeled data. Even though LFPN achieves a slightly lower F1-score alone than self-
training, models with self-training require twice the training time than the semi-supervised
approach. Some studies have also suggested pretraining the model with unlabeled data
from related datasets to overcome the lack of labeled data [45,114].

Augmentation is another approach to addressing data limitations. Apiparakoon et al. [56]
augmented a dataset by changing the light, contrast, and brightness to ensure consistency
with the physician’s process. Several other augmentation techniques have been employed, in-
cluding rescaling [13,33,39,43–45,54,58–60,98,107], rotation [13,33,39,43–45,54,58–60,77,98,107],
zooming [13,44,107], shifting intensity [58,77], reflecting horizontally [77], translating the
image [39,43,77], cropping [59], applying elastic deformations [45], gamma augmenta-
tion [45], and flipping [13,44,54,59,107]. Da Cruz et al. [60] further applied a proba-
bilistic Gaussian blur and linear contrast filters to augment the dataset. Furthermore,
Zhang et al. [77] used advanced augmentation methods: Mixup data augmentation, ran-
dom erase operation, CutMix, and Mosaic method. Mixup [115] generates additional
samples during the training process by convexly combining random pairs of images and
their associated labels. The authors utilized Mixup to deal with significant memory loss
and the network’s inadequate sensitivity to the symmetry of GANs. A random erase
operation was performed on the data prior to the backbone network to prevent overfitting.
All portions and locations erased are random for each round of training, with the erased
section considered either a blocked or distorted portion processed by filling pixels with
fixed color or filling with the mean of the RGB channel of all pixels. CutMix [116] was used
to cut and paste the lesion areas to other background areas to improve learning of lesion
features and to help learn positive features within unbalanced samples. The Mosaic [117]
method employs several images simultaneously and can enrich the discovered objects’
backgrounds.

Transfer learning is another strategy that authors use to deal with limited data [77,84,108].
Most studies use datasets from the same source(s) for training and testing, so generalizabil-
ity is not well studied. Feng et al. [90] discovered that a DCNN model trained on a public
dataset performed poorly on the institution’s data due to differences in clinical practice.
Retraining with local cases improved performance, with retraining from scratch being
slightly more effective than transfer learning. No advantage was observed in collecting
more training data for poor performance. In contrast, Protonotarios et al. [71] introduced
a dynamic information fusion scheme by applying a few-shot learning (FSL) framework.
The FSL approach built a user-centric model of re-training that constantly improves with
end-user feedback. During deployment, the end user may assess the model’s outputs, and,
if erroneous, they may correct them.

Han, Oh, and Lee [41] proposed two CNN architectures: (1) whole body-based (WB)
and (2) tandem architectures using the whole-body bone scan and local 256 × 512 patches,
followed by a final fully connected deep neural network for integrating global (i.e., whole-
body) and local (i.e., patches) information, named “global-local unified emphasis” (GLUE),
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and both were trained on limited data. Compared with classical 2D CNN models, this
model results in a higher performance on limited data in this case [41].

A limitation of the model-based approaches is potential biases in small datasets, such
as studying gender-biased data [47]. Insufficient data to train the models was an issue in
most of the studies in this review [13,39,44,45,47,65,90,105–107]. Lu et al., 2020 [66] adopted
a strategy of transforming the image segmentation issue into a pixel-wise classification
issue. Each pixel is regarded as an independent training sample during network training,
increasing the sample size significantly. Furthermore, the authors promoted the high ef-
ficiency of network training and reduced overfitting simultaneously by applying Adam
stochastic optimization [118] and batch normalization [119]. In various tasks, initializations
of network weights are usually from models (such as VGG19) trained with the ImageNet
dataset. Sartor et al. [106] indicated that more data and consistently annotated data were
needed for their model to achieve higher CNN overlap and enable future clinical imple-
mentation. Additionally, Lou et al. [111] reported that their study could not account for all
biases due to population heterogeneity in their datasets (due to clinical stage, radiation dose,
CT scanners, and motion management) and the limited size of the independent validation
cohort. Song et al. [50] found that noisy CT images caused false positive classifications of
bone metastasis, and some areas of the lesion could not be detected. The authors suggest
that building a 3D voxel detector may eliminate these issues.

Two papers in this review focused on automatic segmentation for treatment re-
sponse [45] and treatment planning [89] for metastatic lesions. Moreau et al. [45] compared
two methods for bone lesion segmentation in metastatic breast cancer based on the nn-
Unet [120] architecture: (1) use of lesion annotations with PET and CT images as 2-channel
input; (2) use of both the reference bone and lesion masks as ground truth. The use of
bone masks improved precision and slightly improved the Dice score for bone lesion
segmentation. Moreau et al. [45] also proposed two nn-Unet segmentation models to
compute imaging biomarkers for treatment response from baseline and follow-up images.
When manually segmenting or assessing treatment responses, experts usually look at both
baseline and follow-up acquisitions to decide the patients’ responses. Therefore, two input
channels, baseline PET images and lesion segmentation on the baseline PET, were added to
the follow-up network. Four imaging biomarkers were computed from the manual and au-
tomatic segmentations, and these produced promising results for predicting the treatment
response. Improved results can be obtained using multimodal imaging modalities like
PET/CT [36]. Arends et al. [89] showed that automatic vertebral body delineation using
CNN was of high quality, which can save time in a clinical radiotherapy workflow.

Deep neural networks are based on complex, inter-connected hierarchical represen-
tations of the training data; however, interpreting these representations is quite demand-
ing [107]. While interpretability needs to be enhanced, the research community should
further investigate how to measure sensitivity and visualize features. Model transparency
and interpretability are important to explain the model, understand the value, and ensure
the robustness of the findings. For instance, Apiparakoon et al. [56] stated that they ex-
tracted global features from the core network, but the features were not mentioned in the
study. This makes it difficult to detect what the model focuses on and to provide explana-
tions of why the model makes its categorizations. The generalizability of these methods
also requires further evaluation to embed them in clinical decision support systems.

4.2. Thresholding

Thresholding is a simple segmentation technique that focuses on converting a gray-
level image to a binary image by defining all the voxels greater (or lower) than a given value
to be foreground and the remaining to be background [14]. Various types of thresholding
methods, including fixed, iterative, adaptive, and regional, are used by authors for different
applications, such as tumor segmentation, OAR segmentation, detection of increased
uptake regions in bone scintigraphy, quantification of bone metastasis, and detection of
bone lesions. Thresholding-based segmentation on PET/CT images is on the Hounsfield
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Unit (HU) and the Standard Uptake Value (SUV). A CT image voxel is in HU, which has
a scale range between −1000 and approximately 30,000 [121]. DICOM stores the pixel
values of images in 12- to 16-bit formats. CT threshold segmentation can target high-
density regions, such as bone [122]. In contrast, image segmentation on PET scans based on
thresholding employs intensity probabilities using image histograms. SUV is a normalized
semiquantitative parameter that can be derived using the intensity of PET images and
DICOM metadata, including acquisition time and dose of the radiotracer. The SUV is then
used for image segmentation [14].

The thresholding-based papers reviewed in this article were used for detection, segmenta-
tion and quantification of bone, bone metastasis, and bone lesions [40,68,70,82,96,100]. Detec-
tion involves localizing organs, landmarks, or lesions in medical images [19,70,100] whereas
segmentation is aimed at obtaining detailed boundaries of the structures [68,82,96,100]. Quan-
tification of detected lesions or metastasis focuses on extracting features for further anal-
ysis. For example, total bone metastasis was quantified using total bone metastasis vol-
ume, percentage of affected bone tissue, SUVmean, and SUVmax in the affected tissue,
Z-transformed deviation of SUV in the affected tissue from average SUV in nonaffected
tissue, and total metastasis count [40].

Some authors used hybrid methods by combining thresholding with other methods, such
as flood filling algorithms [82] and graph cut algorithms [96]. Fränzle et al. [82] built a fully
automated shape model positioning for bone segmentation in whole-body CT scans using
fixed thresholding for skeleton segmentation and a flood filling algorithm for segmentation of
the medullary cavities inside the skeleton. The proposed method provides all the information
needed for the automatic selection and initialization of a statistical shape model for long
bone segmentation. Nguyen et al. [96] suggested a framework for segmenting spinal marrow
compartments from full-body joint PET/CT scans acquired after bone marrow transplantation.
It included three main components: full body graph cut segmentation, spinal column vertebral
body segmentation, and cancellous region extraction.

The main limitations of studies that use thresholding for PET imaging involve low
resolution with high contrast, the large variability of pathologies, inherent noise, and high
uncertainties in fuzzy object boundaries. There is no consensus on the selection of an
SUV threshold [14]. Tsujimoto et al. [100] showed that improvements can be made in
setting the threshold values, especially by analyzing the feasibility of other thresholding
techniques and threshold derivation algorithms. Hammes et al. [40] found that the HU
threshold had no significant influence, whereas an SUV threshold of 2.5 proved optimal
for automated lesion quantification. Lesions with intense tracer uptake might lead to
errors in estimations of the total affected bone volume because that area might exceed the
true anatomic borders of the lesion, causing overestimation of the affected bone volume.
Moussallem et al. [68] identified that the main difficulty limiting the segmentation of lung
tumors by PET/CT images is respiratory motion. The partial volume effects related to the
resolution of the PET/CT scan and the motion can cause inaccuracies for small lesions. To
increase measurement accuracy, further studies should consider respiratory movements
(using new and more accurate PET/CT devices) and lesion sizes. Nguyen et al. [96] found
a need for interpolation at the boundaries of the segmented marrow compartment to
account for the physical size difference between voxels in the PET and CT modalities.
Clinical practice is limited to a small number of manually delineated ROI in 18F-fluoro-L-
deosythymidine SUV measurement. Moreover, thresholding is not the best method for
detecting the boundaries of these lesions. Therefore, Perk et al. [70] suggested a statistically
optimized regional thresholding (SORT) method for bone lesion detection in 18F-NaF
PET/CT imaging. Some patients appeared to have higher healthy bone uptake levels;
therefore, the false positive rate in such patients may be elevated.

4.3. Clustering/Classification

Classification is a supervised learning technique aimed at partitioning a feature space
derived from an image using labels provided for training. Clustering methods group the
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feature space into regions or proposed classes without labels. These techniques generally
do not incorporate spatial information unless it is included in the feature space deriva-
tion. Examples of classification and clustering methods used to segment tumors include
Random Forest (RF) [2,87,103], Support Vector Machines (SVM) [51,55,63,103,109], fuzzy
clustering [101], Decision Tree (DT) [63,67], K-nearest neighbors (KNN) [67], K-means [73],
parallelepiped classification [38], and Fuzzy C-Mean (FCM) [69].

Two studies derived useful information regarding the classification process and the
ground truth values. Chu et al. [2] developed an RF classifier to segment tumors on bone
scans using intensity and context features aimed at addressing areas prone to false positives
and found that context features played a critical role. Furthermore, their study performed
well in areas where tumors and high-intensity non-tumors were in close proximity, which
could be due to the restrictiveness of a rule-based approach compared to a learning-
based approach. Markel et al. [67] addressed the challenge of determining ground truth
when validating the image segmentation method. They used the simultaneous truth and
performance level estimation (STAPLE) algorithm to combine the GTVs into probabilistic
maps for each patient. The results showed that all of the algorithms they tested performed
better with respect to the test data, as opposed to the training data, which is indicative
of a more reliable ground truth. They also showed that the use of texture features within
PET/CT images was a promising approach for target delineation in radiotherapy of the
lung. Hinzpeter et al. [42] conducted a proof-of-concept study to investigate whether
the radiomics of CT image data enables the differentiation of bone metastases using 68
Ga-PSMA PET imaging as a reference standard. The trained gradient-boosted tree achieved
an accuracy of 0.9 when applied to its original, non-augmented dataset.

Some authors used hybrid methods, such as combining SVM with either wavelet trans-
form, Naïve Bayes, or DT [55,109]. AbuBaker and Ghadi proposed a novel algorithm for
the detection and enhancement of cancerous nodules in CT images using SVM and wavelet
transform. The use of both wavelet and SVM features reduced the predicted false posi-
tive regions in the processed CT images in their study. Hussain et al. [63] presented an
automated lung cancer detection system based on multimodal features, such as texture,
morphological, entropy-based, scale-invariant Fourier transform (SIFT), and Ellipse Fourier
Descriptors (EFDs), using machine learning techniques, such as SVM, Naive Bayes, and DT.
Wiese et al. [51] detected sclerotic bone metastasis in the spine using watershed algorithm
and SVM. Complexity due to the heterogeneity, less isolation, and additional lesions in the
single clinical case was addressed by training SVM on 3D features and imposing additional
constraints (overlap and intensity) during the merge into three dimensions. The proposed
model could increase the sensitivity in the initial detection of sclerotic metastatic lesions in the
spine and in the assessment of bone tumor burden in cases of known sclerotic bone metastasis.

The drawbacks in these studies can be found throughout the segmentation process.
Markel et al. [67] identified that in the preprocessing stage of segmenting lung cancer, a
tumor may present a necrotic core with a low uptake, which resulted in small cavities in the
segmentation. As a solution, they introduced a fill procedure in the post-processing step,
and this worked well in the segmentation, as segmentation is a closed shape. Furthermore,
they suggested incorporating 4D-PET images to better coincide with gated CT images to
reduce motion blurring. Naqiuddin et al. [69] segmented CT images into bone, brain, and
tumor regions using an FCM algorithm. They identified a sample size issue and gender
bias in their dataset. Generally, fuzzy clustering techniques exclude spatial information
when assigning associations to individual data even though it performs well in categorizing
heterogenous data. This can be an issue, as medical images present a high degree of spatial
correlation between tissues and the technique is sensitive to noise. This issue was also
addressed by Slattery [101] using an additional membership function to include spatial
information. In the Wiese et al. [51] model, to detect sclerotic bone metastases, some lesions
were missed due to the weaknesses of the watershed algorithm. The feature filter eliminates
some true detections due to the intensity contrast of the lesion with the surrounding osseous
material. After watershed segmentation, the authors implemented a merging routine as
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a solution to over-segmentation. Polan et al. [87] observed a limitation in segmenting
tissues using RF. The trainable Weka segmentation (TWS) tool limits the optimization of
the algorithm. As a result, the number of trees and leaf size of the classifier ensemble were
not optimized. Further, the creation of voxel features for training and classification in TWS
was limited to the minimum, maximum, mean, and variance of the region of voxels.

4.4. Statistical Methods

Various studies have employed statistical methods such as the Active Shape Model
(ASM) [48], a Bayesian delineation framework [103], gradient based segmentation [57],
geometrical shape model under Bayesian framework [102] and fuzzy Markov random field
(MRF) model [62].

Rachmawati et al. [48] utilized ASM to segment the cancer metastasis of bone scan im-
ages of Indonesian patient data, which resulted in the shape estimation of each predefined
region of the bone scan image. Sheen et al. [123] compared the fixed thresholding-based
method with gradient-based edge detection to compare radiomic signatures and predic-
tion models. The results showed that gradient-based edge detection derived significant
radiomic features for the model.

Both Ninomiya et al. [103] and Guo et al. [62] used Bayesian models. Ninomiya et al. [103]
used an anatomical features-based machine learning technique to develop a Bayesian de-
lineation framework of Clinical Target Volumes (CTV) for prostate cancer. One of the
drawbacks of the Bayesian approaches in this scenario is the localization of the CTV to
place probabilistic atlases (PAs). This Bayesian framework did not work well when the
CTVs were far from the average CTV position. The proposed framework, using anatomical-
features-based machine learning (AF-ML), more accurately extracted the CTVs of prostate
cancer. Additionally, Guo et al. [62] utilized a fuzzy MRF model to segment lung tumors
on PET/CT images. Unlike the traditional fuzzy MRF model method, it utilizes a new joint
posterior probabilistic model, which can effectively take advantage of both CT and PET
image information for the identification and delineation of tumor volume. For lung tumors
located near other tissues with similar intensities in PET and CT images, such as when
they extend into the chest wall or the mediastinum, this method was able to achieve more
effective tumor segmentation.

Geographical bias was an issue in some of the studies in this review. In Rachmawati
et al. [48], training data from non-Indonesian patients improved generalizability. If the
bone geometry of the bone scan image has too many variations across countries, it might
degrade the accuracy of metastasis detection because bone geometry is strongly influenced
by ethnicity [48,124]. In the study by Zhou et al. [109], under the deep learning section,
they demonstrated geographical bias when their study was limited to only Asian patients.

4.5. Atlas-Based Approaches

Segmentation is often limited by the low contrast between adjacent tissues, but prior
knowledge can improve this. A widely used method is to incorporate prior knowledge
from a reference image called an atlas, which provides an estimate of an object’s position
much like a map would describe the components of a geographical area, and it helps to
distinguish adjacent objects of interest with similar features [16].

Some authors utilized multiple atlases [78,125], while others used a combination of
different techniques with a specific atlas [84,91]. Hanaoka et al. [83] utilized multiple
atlases registered to the target unseen volume by a novel landmark-guided diffeomorphic
demons’ algorithm, segmenting the whole spine and pelvis in a CT image. One of the
advantages of this algorithm is the diffeomorphism/invertibility of the deformation field.
Invertibility is required if it is necessary to warp both image(s) and landmark(s). The
deformation field for warping images is not the same as and is the inverted version
of the field for warping landmarks. Furthermore, multi-atlas-based approaches used
by Yusufaly et al. [97] may allow active bone marrow sparing in radiotherapy settings
where PET/CT is unavailable. Although previous experience strongly suggests that active
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bone marrow sparing is causally related to a reduction in hematologic toxicity, more
outcome data are required to conclusively verify the benefits of an atlas-based approach.
Fritscher et al. [91] utilized an atlas-based segmentation approach in combination with label
fusion to initialize a segmentation pipeline employing statistical appearance models and
geodesic active contours. The proposed hybrid approach, Multi Atlas Based Segmentation
(MABS), provided more accurate results within a clinically acceptable amount of time,
even in the presence of noise and low image contrast. However, MABS lacks the ability to
provide anatomically plausible segmentation results and partly also shows less accurate
results near boundaries. Another hybrid approach by Ruiz-España et al. [88] was developed
for the automatic segmentation of the vertebrae from CT images by combining two different
segmentation methods using the level-set method and probabilistic atlas. However, the
generalizability of this method to other structures for which clear anatomical feature points
are less reliable needs to be investigated.

Several limitations were observed in the atlas-based approaches. The test dataset in
the study of Hanaoka et al. [83] only included healthy spines or those with osteoporosis.
Spines with scoliosis, lordosis, postsurgical changes, or bone metastasis were not included.
Another problem is that spines with abnormal numbers of vertebrae were excluded from
the dataset, even though such anatomical anomalies are quite common [78]. A typical prob-
lem for geodesic active contours (GAC) is leaking of the evolving contour into neighboring
structures in the absence of strong boundaries, which can be avoided by combining GAC
with InShape models. The downside of many model-based segmentation approaches is
their susceptibility to local minima. This has been overcome using MABS as an initializa-
tion restricting the final optimization to a local search space where all quantitative tests
were carried out using a leave-one-out cross validation [91]. To improve the accuracy
and efficiency of atlas-based auto-segmentation methods, further implementation of and
investigations into artificial intelligence with deep learning algorithms are needed. Further
investigations into the feasibility of RT plans based on ABAS-generated contours for both
CTV and OAR are also needed [64].

4.6. Region-Based Approaches

Region-based methods can be categorized into region-growing or graph-based meth-
ods, which consider homogeneity when determining the object boundaries [14]. The main
assumption in region growing for segmentation is that the region of interest has nearly
constant or slowly varying intensity values to satisfy the homogeneity requirement. This
method incorporates spatial information along with the intensity, which is an advantage
over thresholding. However, different homogeneity criteria and initial seed locations can
affect the segmentation results and require tuning [14].

Region-growing methods, similar to thresholding, are sensitive to the noise in the
image, and can lead to leakage. The method proposed by Yang et al. [76] addressed this
issue by developing a lung tumor segmentation based on multi-scale template matching
and region growing; however, the sample size limited the evaluation of the technique.
Dong et al. [81] proposed a method combining mathematical morphology based on a
labeling algorithm and Graph Cuts to segment vertebrae in 100 sliced images of 10 patients
with bone metastasis. The proposed method outperforms the conventional graph cut
method. For lung segmentation, Elsayed et al. [61] applied a region-growing technique to
isolate the human body and then a threshold followed by the Hessian method for vascular
tree segmentation. This precisely extracted nodule features. Several classifiers and their
combination were applied to classify malignant or benign nodules.

Meanwhile, Graph Cuts have the advantage of realizing fast and accurate segmen-
tation of the target with little intervention of radiologists, as this method utilizes both
boundary and regional information [81].
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5. Conclusions

This paper analyzed the literature on tumor segmentation approaches, with a focus on
bone metastases. We found that the development of segmentation techniques that combine
anatomical information and metabolic activities (e.g., PET/CT) shows encouraging results.
However, the lack of a gold standard for tumor boundaries is a major hindrance to the
acceptance of fully automatic segmentation. Most algorithms need manual correction of
the segmentation output, which largely explains the absence of clinical translation studies.
AI-based methods may be better suited as an assistant for the clinician to overcome the
repetitive and time-consuming task of identifying and segmenting lesions while providing
a measurement of whole-body tumor burden.

To fully understand the methods and algorithms that can be utilized to deliver proper
treatment planning to individual patients, more comprehensive studies are required that
have limited data biases. When developing AI-based methods, it is crucial to utilize an
appropriate method as a baseline approach. The nn-Unet framework is a state-of-the-art
deep learning method with the capability to automatically set hyper-parameters while
considering factors such as input data features and memory consumption. Utilizing
simple thresholding as a baseline method prior to utilizing more complex methods is also
advisable as it provides an understanding of the images’ features and the ability to conduct
independent experiments.

Open-source software, such as a 3D slicer, can be used for initial visualization and
segmentation tasks, as it is a reliable platform for medical image analysis, visualization,
and clinical support. It is beneficial for the research community to recreate and build upon
previous findings in similar research areas with different datasets. Although researchers
need to make their code available for this to occur, many of the reviewed papers lack readily
available codes. It is recommended that code in future studies be made readily accessible
in open-source formats.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers15061750/s1, Table S1: Extracted data from the original
research articles.

Author Contributions: Conceptualization, I.R.P., D.S., M.F. and M.R.; investigation, I.R.P.; data
curation, I.R.P.; writing—original draft preparation, I.R.P.; writing—review and editing, D.S., M.F.
and M.R.; supervision, D.S., M.F. and M.R. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by the “University Postgraduate Award” and “International
Postgraduate Tuition Award” from the University of Wollongong, Australia and the “National Health
and Medical Research Council program grant 2018–2022” APP1132471 and was partially funded
by the NSW Government through the Cancer Institute NSW Early Career Researcher Fellowship:
2019/ECF004.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Svensson, E.; Christiansen, C.F.; Ulrichsen, S.P.; Rørth, M.R.; Sørensen, H.T. Survival after bone metastasis by primary cancer type:

A Danish population-based cohort study. BMJ Open 2017, 7, e016022. [CrossRef] [PubMed]
2. Chu, G.; Lo, P.; Ramakrishna, B.; Kim, H.; Morris, D.; Goldin, J.; Brown, M. Bone Tumor Segmentation on Bone Scans Using Context

Information and Random Forests; Springer International Publishing: Cham, Switzerland, 2014.
3. Peeters, S.T.H.; Van Limbergen, E.J.; Hendriks, L.E.L.; De Ruysscher, D. Radiation for Oligometastatic Lung Cancer in the Era of

Immunotherapy: What Do We (Need to) Know? Cancers 2021, 13, 2132. [CrossRef]
4. Zeng, K.L.; Tseng, C.L.; Soliman, H.; Weiss, Y.; Sahgal, A.; Myrehaug, S. Stereotactic body radiotherapy (SBRT) for oligometastatic

spine metastases: An overview. Front. Oncol. 2019, 9, 337. [CrossRef]
5. Spencer, K.L.; van der Velden, J.M.; Wong, E.; Seravalli, E.; Sahgal, A.; Chow, E.; Verlaan, J.J.; Verkooijen, H.M.; van der Linden, Y.M.

Systematic Review of the Role of Stereotactic Radiotherapy for Bone Metastases. J. Natl. Cancer Inst. 2019, 111, 1023–1032. [CrossRef]
[PubMed]

https://www.mdpi.com/article/10.3390/cancers15061750/s1
https://www.mdpi.com/article/10.3390/cancers15061750/s1
http://doi.org/10.1136/bmjopen-2017-016022
http://www.ncbi.nlm.nih.gov/pubmed/28893744
http://doi.org/10.3390/cancers13092132
http://doi.org/10.3389/fonc.2019.00337
http://doi.org/10.1093/jnci/djz101
http://www.ncbi.nlm.nih.gov/pubmed/31119273


Cancers 2023, 15, 1750 14 of 18

6. Loi, M.; Nuyttens, J.J.; Desideri, I.; Greto, D.; Livi, L. Single-fraction radiotherapy (SFRT) for bone metastases: Patient selection
and perspectives. Cancer Manag. Res. 2019, 11, 9397–9408. [CrossRef] [PubMed]

7. Palma, D.A.; Olson, R.; Harrow, S.; Gaede, S.; Louie, A.V.; Haasbeek, C.; Mulroy, L.; Lock, M.; Rodrigues, G.B.; Yaremko, B.P.; et al.
Stereotactic Ablative Radiotherapy for the Comprehensive Treatment of Oligometastatic Cancers: Long-Term Results of the SABR-COMET
Phase II Randomized Trial. J. Clin. Oncol. 2020, 38, 2830–2838. [CrossRef] [PubMed]

8. De Ruysscher, D.; Wanders, R.; van Baardwijk, A.; Dingemans, A.M.; Reymen, B.; Houben, R.; Bootsma, G.; Pitz, C.; van Eijsden, L.;
Geraedts, W.; et al. Radical treatment of non-small-cell lung cancer patients with synchronous oligometastases: Long-term results
of a prospective phase II trial (Nct01282450). J. Thorac. Oncol. 2012, 7, 1547–1555. [CrossRef]

9. Dercle, L.; Henry, T.; Carré, A.; Paragios, N.; Deutsch, E.; Robert, C. Reinventing radiation therapy with machine learning and
imaging bio-markers (radiomics): State-of-the-art, challenges and perspectives. Methods 2020, 188, 44–60. [CrossRef]

10. Speirs, C.K.; Grigsby, P.W.; Huang, J.; Thorstad, W.L.; Parikh, P.J.; Robinson, C.G.; Bradley, J.D. PET-based radiation therapy
planning. PET Clin. 2015, 10, 27–44. [CrossRef]

11. Lu, W.; Wang, J.; Zhang, H.H. Computerized PET/CT image analysis in the evaluation of tumour response to therapy. Br. J.
Radiol. 2015, 88, 20140625. [CrossRef]

12. Vergalasova, I.; Cai, J. A modern review of the uncertainties in volumetric imaging of respiratory-induced target motion in lung
radiotherapy. Med. Phys. 2020, 47, e988–e1008. [CrossRef] [PubMed]

13. Papandrianos, N.; Papageorgiou, E.; Anagnostis, A.; Papageorgiou, K. Bone metastasis classification using whole body images
from prostate cancer patients based on convolutional neural networks application. PLoS ONE 2020, 15, e0237213. [CrossRef]
[PubMed]

14. Foster, B.; Bagci, U.; Mansoor, A.; Xu, Z.; Mollura, D.J. A review on segmentation of positron emission tomography images.
Comput. Biol. Med. 2014, 50, 76–96. [CrossRef]

15. Takahashi, M.E.S.; Mosci, C.; Souza, E.M.; Brunetto, S.Q.; de Souza, C.; Pericole, F.V.; Lorand-Metze, I.; Ramos, C.D. Computed
tomography-based skeletal segmentation for quantitative PET metrics of bone involvement in multiple myeloma. Nucl. Med.
Commun. 2020, 41, 377–382. [CrossRef] [PubMed]

16. Bach Cuadra, M.; Favre, J.; Omoumi, P. Quantification in Musculoskeletal Imaging Using Computational Analysis and Machine
Learning: Segmentation and Radiomics. Semin. Musculoskelet. Radiol. 2020, 24, 50–64. [CrossRef] [PubMed]

17. Ambrosini, V.; Nicolini, S.; Caroli, P.; Nanni, C.; Massaro, A.; Marzola, M.C.; Rubello, D.; Fanti, S. PET/CT imaging in different
types of lung cancer: An overview. Eur. J. Radiol. 2012, 81, 988–1001. [CrossRef]

18. Carvalho, L.E.; Sobieranski, A.C.; von Wangenheim, A. 3D Segmentation Algorithms for Computerized Tomographic Imaging:
A Systematic Literature Review. J. Digit. Imaging 2018, 31, 799–850. [CrossRef]

19. Domingues, I.; Pereira, G.; Martins, P.; Duarte, H.; Santos, J.; Abreu, P.H. Using deep learning techniques in medical imaging:
A systematic review of applications on CT and PET. Artif. Intell. Rev. 2020, 53, 4093–4160. [CrossRef]

20. Hesamian, M.H.; Jia, W.; He, X.; Kennedy, P. Deep Learning Techniques for Medical Image Segmentation: Achievements and
Challenges. J. Digit. Imaging 2019, 32, 582–596. [CrossRef]

21. Mansoor, A.; Bagci, U.; Foster, B.; Xu, Z.; Papadakis, G.Z.; Folio, L.R.; Udupa, J.K.; Mollura, D.J. Segmentation and Image Analysis
of Abnormal Lungs at CT: Current Approaches, Challenges, and Future Trends. Radiographics 2015, 35, 1056–1076. [CrossRef]

22. Punn, N.S.; Agarwal, S. Modality specific U-Net variants for biomedical image segmentation: A survey. Artif. Intell. Rev. 2022, 55,
5845–5889. [CrossRef] [PubMed]

23. Saba, T. Recent advancement in cancer detection using machine learning: Systematic survey of decades, comparisons and
challenges. J. Infect. Public Health 2020, 13, 1274–1289. [CrossRef] [PubMed]

24. Trevor Hastie, J.F.; Tibshirani, R. The Elements of Statistical Learning; Springer: New York, NY, USA, 2001. [CrossRef]
25. van Timmeren, J.E.; Cester, D.; Tanadini-Lang, S.; Alkadhi, H.; Baessler, B. Radiomics in medical imaging—“how-to” guide and

critical reflection. Insights Into Imaging 2020, 11, 91. [CrossRef] [PubMed]
26. Wang, H.; Zhou, Z.; Li, Y.; Chen, Z.; Lu, P.; Wang, W.; Liu, W.; Yu, L. Comparison of machine learning methods for classifying

mediastinal lymph node metastasis of non-small cell lung cancer from 18F-FDG PET/CT images. EJNMMI Res. 2017, 7, 11.
[CrossRef]

27. Yousefirizi, F.; Pierre, D.; Amyar, A.; Ruan, S.; Saboury, B.; Rahmim, A. AI-Based Detection, Classification and Predic-
tion/Prognosis in Medical Imaging: Towards Radiophenomics. PET Clin. 2022, 17, 183–212. [CrossRef]
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