
Citation: Yago Ruiz, Á.;

Cavagnaro, M.; Crocco, L.

Hyperthermia Treatment Monitoring

via Deep Learning Enhanced

Microwave Imaging: A Numerical

Assessment. Cancers 2023, 15, 1717.

https://doi.org/10.3390/

cancers15061717

Academic Editors: Elizabeth Repasky,

Hans Crezee and Holger Grüll

Received: 15 February 2023

Revised: 8 March 2023

Accepted: 9 March 2023

Published: 11 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Article

Hyperthermia Treatment Monitoring via Deep Learning
Enhanced Microwave Imaging: A Numerical Assessment
Álvaro Yago Ruiz 1,2,* , Marta Cavagnaro 2,† and Lorenzo Crocco 1,*

1 CNR-IREA National Research Council of Italy, Institute for Electromagnetic Sensing of the Environment,
80124 Naples, Italy

2 Department of Information Engineering, Electronics, and Telecommunications, University of Rome
“La Sapienza”, 00184 Rome, Italy

* Correspondence: yago.a@irea.cnr.it (Á.Y.R.); crocco.l@irea.cnr.it (L.C.)
† Prof. Cavagnaro is also with CNR-IREA as an associate researcher.

Simple Summary: Non-invasive temperature monitoring during hyperthermia cancer treatment
is of paramount importance. It allows physicians to verify the therapeutic temperature is reached
in the treated area. Currently, only superficial or invasive thermometry is performed on a clinical
level. Magnetic resonance thermometry has been proposed as a a non-invasive alternative but its
applicability is limited. Conversely, microwave imaging based thermometry is a potential low cost
candidate for non-invasive temperature monitoring. This works presents a computational study in
which the use of deep learning is proposed to face the challenges related to the use of microwave
imaging in hyperthermia monitoring.

Abstract: The paper deals with the problem of monitoring temperature during hyperthermia treat-
ments in the whole domain of interest. In particular, a physics-assisted deep learning computational
framework is proposed to provide an objective assessment of the temperature in the target tissue
to be treated and in the healthy one to be preserved, based on the measurements performed by a
microwave imaging device. The proposed concept is assessed in-silico for the case of neck tumors
achieving an accuracy above 90%. The paper results show the potential of the proposed approach
and support further studies aimed at its experimental validation.

Keywords: deep learning; microwave imaging; hyperthermia treatment; temperature monitoring

1. Introduction

Hyperthermia treatment (HT) is an adjunctive cancer therapy in which cancerous
tissues are heated up to 40–43 ºC to help damage malignant cells. This is achieved by
sensitizing the cells to radiation in radiotherapy (RT) or increasing the permeability of
the cell membrane to drugs in chemotherapy [1]. The HT synergistic effect inhibits DNA
damage repair and increases blood flow (thereby enhancing oxygenation). In particular,
RT is more cytotoxic in normal oxygenation conditions than in hypoxic environments. In
this regard, HT may act as a complementary treatment of RT in cases of tumor hypoxia
by sensitizing the cells to heat in low-oxygen conditions [2]. Additionally, HT induces the
activation of heat shock proteins and a tumor-specific immune response.

Local, regional, and whole-body HT may be considered depending on the size and
location of the treatment area. HT consists of a heating applicator that is able to supply
heat to the treatment area. However, heat transfer is not easily applied in a localized
manner. Tracking the temperature during the HT is needed to verify that the therapeutic
temperature is reached in the target tissue and that the surrounding healthy tissue is not
heated (and, thus, not damaged) giving rise to the so-called hot spots. In clinical practice,
this task is performed by means of superficial thermometry or by directly inserting thermal
sensors into the tissue, such as thermocouples or optical fibers. However, these approaches
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are limited to superficial HT or are invasive (due to the need for inserting the probes),
respectively. Furthermore, since probes are sensitive to temperature in the insertion location,
invasive thermometry is limited to local measurements. Patient feedback is also taken into
consideration during HT, but it is subject to individual patient perception.

Considering the above reasons, there is increasing interest in the development of
fully non-invasive temperature monitoring approaches capable of overcoming the above
issues. To this end, magnetic resonance (MR) thermometry [3] has been proposed based
on temperature-sensitive parameters involved in MR, such as proton resonance frequency,
diffusion coefficient, T1 and T2 relaxation times, magnetization transfer, and proton density.
However, MR thermometry is only feasible in 15% of the treatments, mainly when the
treatment area is in the limbs or the HT device fits inside the bore of the MR system [4,5].
Moreover, HT-MR has a high cost and its outcomes are affected by the inaccuracies in-
troduced by movements (e.g., breathing, bowels, blood vessels). Finally, standard HT
applicators may not be suitable for operation in the presence of electromagnetic (EM) fields
generated by an MR machine due to EM compatibility issues, and thus, they must be
redesigned accordingly.

Microwave imaging (MWI) [6] is an emerging medical imaging modality, which may
represent a potential candidate technology for non-invasive temperature monitoring in HT.
MWI is based on the scattering phenomenon that occurs when an EM field interacts with
an object. Such an interaction perturbs the field according to the morphological properties
of the target and its EM properties, i.e., dielectric permittivity and electric conductivity.
By processing the perturbed field, known as the interrogating one, it is possible to build
an image of the investigated scenario in terms of a map of the spatial distribution of the
EM properties in the region under test. In the field of medical imaging, MWI is applicable
thanks to the different EM properties that characterize human tissues, as well as the
different statuses (healthy vs. pathological) of certain tissues, due to the non-ionizing
nature and low power of the EM fields involved, as well as the low cost of the underlying
components, MWI has garnered significant research attention in recent years, particularly in
the development of devices for the early diagnosis of breast cancer [7] and cerebrovascular
diseases [8].

As there is a known relationship between temperature and tissue EM properties [9],
MWI can also be used to monitor temperature during HT. This was suggested by Bolomey
and colleagues many years ago [10]. Notably, unlike MR thermometry, MWI-based ther-
mometry would rely on portable, cost-effective devices, and would not pose significant
issues in terms of EM compatibility when integrated with HT systems. On the other hand,
the mathematical nature of the problem underlying MWI poses a non-trivial challenge in
the practical implementation of the technique. MWI involves solving an inverse scattering
problem (ISP) [6,11], which is known to be nonlinear and ill-posed, leading to instabili-
ties in the solution process. As such, inaccurate estimations of the EM properties (and,
hence, their temperature) may negatively impact the reliability of the treatment monitoring
technique. For this reason, while the use of MWI to monitor the temperature in HT has
been investigated by several authors [12–15], the possibility of quantitatively sensing and
tracking the changes in the EM properties occurring due to thermal treatment via MWI is
still an open issue.

Recently, there has been increasing attention given to the use of machine learning tools
to address the difficulties associated with solving the ISP in MWI [16]. In particular, the
ability of deep learning (DL) algorithms to solve complex nonlinear regression problems
has been explored, especially in the development of physics-driven solution frameworks.
In the latter, DL architectures are combined with standard MWI approaches that supply
the neural network with domain knowledge that either makes the training of the network
easier or its predictions more efficient [17,18]. However, to the best of our knowledge,
the use of these powerful tools to provide a robust solution to ISP in the framework of
temperature monitoring via MWI has never been explored.
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According to the above, this paper describes a physics-driven DL framework to
perform reliable, quantitative, and robust MWI-based monitoring and tracking of the
temperature evolution during HT. The basic assumption of the proposed approach is that
accurate knowledge of the treated region (in terms of tissue segmentation) is available
thanks to the treatment planning stage routinely performed before the actual treatment.
Prior knowledge about the changes in EM properties within the temperature range of
HT allows for the ISP to be formulated as a linear inverse problem, with remarkable
simplification. However, the problem remains ill-posed and may result in inaccurate or
unstable estimations, which can be addressed by exploiting DL. In particular, the proposed
approach consists of a first stage in which the MWI raw data are processed by means
of a linearized inversion algorithm based on the distorted Born approximation [6], in
which the stability of the solution is supplied by adopting the truncated singular value
decomposition [19]. This step focuses on an (approximated) estimation of the EM properties
in the regions of interest, i.e., the tumor to be treated and some surrounding regions to be
protected. In the second step, the MWI imaging results are supplied to a convolutional
neural network (CNN), trained in such a way as to classify the incoming results according
to their temperature. The output of the CNN is a set of classification labels, which provides
immediate information on the heated or unheated status of the region of interest.

In the following sections, we provide a detailed description of the proposed approach
and present a simulated example of monitoring an HT treatment of neck tumors to provide
an initial proof of concept.

2. Material and Methods
2.1. Electromagnetic Properties of Tissue

The goal of a general MWI system consists of the characterization of the target in
terms of its morphological features, such as shape and position, and its electromagnetic
properties, namely, dielectric permittivity, electric conductivity, and magnetic permeability.

Some materials, including biological tissues, are non-magnetic, meaning they have
free space permeability µ = µ0 = 4π × 10−7 H/m or relative permeability µr = µ/µ0 = 1.
Consequently, permittivity and conductivity are usually the quantities of interest. Exploit-
ing the formulation for time-harmonic waves [20], they can be conveniently incorporated
into the relative complex permittivity, defined as

εr = ε′r − jε′′r , (1)

where j stands for the imaginary unit.
In (1), the real and imaginary parts of εr encode dielectric and conductive phenomena

depending on the specific features of the media at hand. Biological tissues present disper-
sive behaviors, meaning that their EM properties depend on the operating frequency f .
Moreover, and more important to our purposes here, their EM properties exhibit a depen-
dence on temperature [9], which lays the basis for the feasibility of MWI-based monitoring
of temperature in HT treatments.

Accordingly, the EM behavior of tissues may be modeled using a temperature depen-
dent Cole–Cole model [9]:

εr(ω, T) = ε∞(T) +
∆ε1(T)

1 + (jωτ1(T))
1−α1

+
∆ε2(T)

1 + (jωτ2(T))
1−α2

+
σ(T)
jωε0

(2)

where ω = 2π f is the angular frequency of the time-harmonic field, T is the temperature,
ε∞ is the permittivity at very high frequencies, ∆ε1 and ∆ε2 are the dispersion amplitudes
with their corresponding relaxation times τ1, τ2, and σ is the conductivity, measured in
[S/m]. α1 and α2 are dispersion-broadening parameters and ε0 = 8.858× 10−12 F/m is the
dielectric permittivity in the vacuum.
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2.2. The Microwave Imaging Problem

The main challenge in MWI is solving the ISP, which is addressed in this paper as a 2D
problem. Specifically, the MWI procedure is applied to a single slice of the body, as depicted
in Figure 1. In a typical MWI setting, let Ω denote the selected imaging domain (i.e., the slice
under treatment) enclosing a cross-section Σ of a collection of tissues, which are assumed to
be elongated bodies that extend to infinity. Such a circumstance implies that the (unknown)
properties of the tissues do not change across the longitudinal z-axis, ∂/∂z = 0 (2D
problem). Thus, changes only happen in the transverse plane ∇ = ∇trans =

(
x ∂

∂x + y ∂
∂y

)
.

Additionally, such tissues are probed with time-harmonic incident fields Einc radiating
in a transverse magnetic (TM) mode under the time convention ejωt. In TM-polarization,
the magnetic field is transverse to the z-axis, (Hx, Hy), while the electric field only has
the longitudinal component, Ez. As the magnetic and electric fields are uniquely linked
through the Maxwell equations for any fixed scenario, in these conditions the ISP can be
cast as a scalar problem by considering only the electric field.

Figure 1. Typical MWI setup configuration. A number of transmitting T[v]
x and receiving R[m]

x

antennas surround the imaging domain Ω.

The interrogating process begins with the incident fields impinging the imaging
domain. Such fields are radiated from a set v = 1, . . ., Nv of transmitting antennas T[v]

x ,
located outside Ω, on a curve Γ enclosing it. For the generic transmitter positioned in
rv ∈ Γ, the interaction between Einc and the tissues gives rise to a scattered field ES,
which can be measured by a set m = 1, . . ., Nm of receiving antennas R[m]

x , positioned in
rm ∈ Γ. More precisely, the actual field measurements at R[m]

x correspond to a total field
Etot, which is a superposition of both incident and scattered fields Etot = Einc + ES. The
interactions between the interrogating fields and the tissues are governed by the state and
data equations:

Etot(r, rv) = Einc(r, rv) + k2
b

∫
Ω

g(r, r′)χ(r′)Etot(r′, rv)dr′ (3)

ES(rm, rv) = k2
b

∫
Ω

g(rm, r′)χ(r′)Etot(r′, rv)dr′ (4)

where for a given angular frequency ω, kb = ω
√

µ0ε0εrb is the wavenumber of the back-
ground medium in which the probing antennas are located, whose relative complex per-
mittivity is εrb. g denotes the scalar Green’s function, i.e., the impulsive response in the
background medium, and χ = εr/εrb − 1 is the contrast function, which encodes the EM
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properties of the targeted tissues. The retrieval of χ from (3) and (4) is the goal of the ISP
underlying MWI.

2.3. Deep Learning Microwave Imaging Framework for HT Temperature Monitoring

During HT, physicians aim to monitor the temperature to determine whether certain
areas are exceeding a defined maximum temperature safety threshold (in addition to patient
feedback), while ensuring that the temperature in the tumor is within the therapeutic range
and not too hot, which could lead to ablation, and, thus, other protocols should be used [1].

In this respect, the devised DL-MWI monitoring system could support the physician
acting as a cooperative safety system which confirms the achievement of the treatment
endpoint in the tumor and points out hazardous heating in temperature sensitive regions.

This approach can be naturally turned into a classification problem in which a cat-
egorical label is assigned to each region of interest (ROI), i.e., the tumor region or/and
the surrounding healthy tissues, according to the temperature. In particular, in the tumor
region, the expected outcome reaches the therapeutic temperature, whereas, in the healthy
tissue, the goal is to avoid hot spots.

As illustrated in Figure 2, such an application can be conveniently cast in terms of a
physics-assisted DL-MWI framework involving the processing of the raw data measured
by the MWI device through a suitable MWI algorithm, in order to obtain an image of the
treatment area, followed by a deep learning architecture in charge of classifying the in-
coming images into their corresponding temperature labels. Obviously, some surrounding
tissues of the tumor tolerate heat better than others. In fact, hot spots in nervous tissue may
be more dangerous to the patient than those happening in other areas given the known heat
sensitivity of this type of tissue [1]. For this reason, the proposed framework is conceived
not as a general hot spot detection framework but rather as a monitoring framework of the
tumor as well as temperature-sensitive ROIs.

Figure 2. The basic ingredients of the proposed DL-MWI framework for temperature monitoring
during HT treatments.

2.3.1. Microwave Imaging Processing

The proposed DL-MWI framework uses a MWI algorithm to process the measured raw
data and provide a 2D image of the treated region. From this image, the DL architecture
derives the temperature status of the tumor and the healthy tissue to be protected. Due
to the small perturbations of the EM properties in the treated tissue corresponding to
temperature increases ∆T during HT [9], a linear approximation of the EM scattering
phenomenon, namely the distorted-wave Born approximation (DWBA) [21], can be utilized.

To introduce the DWBA formulation, let us denote with t0 the starting time of the
treatment and with ts the generic time instant during the treatment, and with χ[0] and χ[s]

the corresponding contrast functions. The differential contrast

δχ = χ[s] − χ[0] (5)

provides information on the variation of the tissue EM properties during the treatment,
which in turn reflects the temperature changes within the tissue. As these changes are
small, it follows that |δχ| << |χ[s]|, |δχ| << |χ[0]|. Accordingly, E[s]

tot ≈ E[0]
tot, where E[0]

tot
is the field in the ROI at the starting stage of the treatment, i.e., when all of the tissues
are at physiological temperatures and E[s]

tot is the field at ts. Notably, considering that HT
treatments are preceded by a treatment planning stage that involves using MR followed by
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accurate segmentation of the tissues in the treatment area [1], it is possible to compute the
field E[0]

tot via EM simulations.
For the small perturbation regime underlying the DWBA, and assuming δχ as the

unknown of the MWI problem, (3) and (4) reduce to a single linear equation, which reads:

∆ES(rm, rv) = k2
b

∫
Ω

E[0]
tot(r

′, rm)E[0]
tot(r

′, rv)δχ(r′)dr′ = LΩδχ (6)

where LΩ is a short notation for the linear and compact integral operator appearing in
the intermediate term and ∆ES = E[s]

S − E[0]
S is the differential scattered field obtained by

subtracting the scattered field measured by the MWI system in the unheated conditions,
E[0]

S , from the one at the time ts of the treatment E[s]
S . Note that the role of Green’s function

in Equation (6) is played by E[0]
tot(r

′, rm) since the unheated condition is considered as the
reference scenario.

The linear ill-posed problem cast via the DWBA Equation (6) can then be solved in a
regularized form via the truncated singular value decomposition (TSVD) [6] to provide a
stable reconstruction. The TSVD inversion of Equation (6) reads:

δχ =
Pcut

∑
p=1

1
λp

(
νpuH

p ∆ES

)
(7)

where λp stands for the p-th singular value of LΩ and up, νp for its left and right p-th singu-
lar vectors, respectively. Pcut is the regularization parameter that truncates the summation
in (7). It is worth noting that the estimation of the differential contrast provided by (7) can
be achieved in real time since its computationally intensive part (the evaluation of the SVD
of LΩ) is done offline before the processing of the measured data.

The above DWBA inverse formula refers to the evaluation of the differential contrast
over the entire treated region Ω. However, the dimensions and positions of the tumor
and the healthy tissue to be preserved are a priori known from the treatment planning
stage. Hence, it can be convenient to restrict the ISP to the sole identification of the contrast
perturbations at those locations, say Ω1 and Ω2, which are the ones of actual clinical interest.
In doing so, a further simplification is introduced by the fact that, since the DWBA holds,
the scattering phenomenon is localized and the mutual interaction between the two ROIs
are negligible. Hence, the imaging of the two ROIs can be handled separately by computing
the TSVD images for the operators LΩ1 and LΩ2 , obtained by restricting LΩ to the relevant
ROIs. The resulting estimated differential contrasts δχ1 and δχ2 represent the input of the
DL architecture.

2.3.2. Deep Learning Architecture for Classification

Once the MWI processing has generated the two images of the tumor and the healthy
tissue to be protected, two independent DL architectures can be trained—one in charge
of monitoring the temperature in Ω1 and one in charge of monitoring the temperature in
Ω2. Among the possible choices, here, two convolutional neural networks (CNNs), both
with identical structures, are used. CNNs are broadly applied in classification tasks, given
their superior performances as compared to traditional algorithms. Their most important
characteristic involves the use of concatenated convolutional layers, where K kernels are
convoluted over incoming images to provide a solution [22]. The internal structure of one
of the two CNNs is shown in Figure 3.

The heating statuses of the two ROIs can be presented as categorical labels derived
from CNN classifiers. However, there is a difference between the expected outcomes of the
two cases. The tumor is expected to stay in the therapeutic regime between two thresholds;
therefore, the tumor CNN has to work with Nc = 3 classes: {unheated, therapeutic, hot}.
The healthy tissue must remain unheated during the whole treatment. Therefore, Nc = 2
classes are required to handle its case: {unheated, hot}.



Cancers 2023, 15, 1717 7 of 14

Figure 3. Convolutional neural network diagram for classification problems.

The parametersW of the two CNNs must be optimized based on a loss function. For
categorical labels, the categorical cross-entropy is typically used:

Le(W) = − 1
NNc

N

∑
n=1

Nc

∑
c=1
C [n]c · log Ĉ [n]c (W) (8)

where N corresponds to the dataset size, C is the ground truth label that should be retrieved
and only supplied during the training, and Ĉ is the output prediction.

Since hot spots may appear in any of the tissues surrounding the tumor, monitoring
more than two regions could be needed. Notably, this does not require substantial changes
to the proposed approach. More precisely, the overall DL-MWI framework would be
the same, while only the number of TSVD images and CNNs would have to be changed.
Accordingly, without loss of generality, the following proof of concept is discussed for the
case of two regions. However, the proposed approach is not limited to such regions.

2.4. Assessment of the DL-MWI Framework for Temperature Monitoring in Neck
Tumor Hyperthermia

In the following, the above-described DL-MWI framework is developed and numeri-
cally assessed for the case of neck tumors. More precisely, in this case, the objective is the
simultaneous monitoring of the tumor and the spinal cord heating status. A scheme of the
whole framework is illustrated in Figure 4.

Figure 4. DL-MWI framework for monitoring temperature in neck tumor HT. Two separate CNNs
simultaneously check the temperature status of the treated tumor and the spinal cord. In the figure,
Ω1 denotes the tumor region and Ω2 is the spinal cord to be preserved.
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2.4.1. Anatomical Model

To perform the simulated study aimed at assessing the proposed approach, a numerical
phantom of the neck was built. According to the assumed 2D geometry, a neck slice
was extracted from the Ella anatomical model [23], which has been broadly adopted for
numerical studies involving interactions between EM waves and the human body. Then,
a target with a circular cross-section and a radius of 4.5 mm (with the EM properties of a
nodular tumor [24]) was added to the thyroid gland to simulate the pathological condition.
The tissue segmentation and electromagnetic properties of the resulting phantom are
shown in Figure 5. The EM behaviors of all tissues were modeled using the Cole–Cole
model Equation (2) with the parameters obtained from a publicly available database [25].
However, for the pathological tissues, the parameters were taken as those of a nodular
goiter tumor [26].

Figure 5. The phantom adopted for the numerical study. Tissue segmentation (left) and electromag-
netic properties (right).

2.4.2. MWI Simulations

To simulate the measurements generating the MWI raw data, the interactions between
the phantom described above and the MWI antennas were computed by numerically
solving the scattering Equations (3) and (4). To this end, proprietary software based on
the method of moments (MoM) [27,28] and the conjugate gradient fast Fourier transform
(CG-FFT) [29] was exploited.

In the simulations, the antennas used to generate the MWI data are modeled as point
sources and their arrangements around the neck are depicted on the left side of Figure 4.
As can be noted, the Nv = Nm = 12 antennas are not evenly spaced, so there are gaps
to accommodate the antennas of the HT applicator and those of the MWI system. In
particular, assuming that the HT applicator is made of three antennas, one at the front
of the neck and the other two at its sides, the MWI antennas are positioned in groups of
three at each side of the HT antenna placed in front of the tumor, whereas the remaining
six were positioned behind the neck. In order to compensate for the limited number of
measurements, frequency diversity was exploited by simulating the measurements of
the data at N f = 10 frequencies evenly spaced in the f = [0.9, 1.0, . . ., 1.8]GHz range.
Such range of frequencies, as well as the EM properties of the water mixture used as the
background medium were chosen in accordance with previous studies [30].

To simulate the changes in the tissue EM properties during the treatment, the MWI
simulations were repeated for several conditions. For the tumor, 10 different values of the EM
properties were considered, corresponding to the temperatures in the T = [37–46] ◦C range,
whereas for the spinal cord, the selected temperature range was narrower, T = [37–40] ◦C, as
the goal was to detect the switch between two conditions (heated–unheated). For both tissues,
the Cole–Cole parameters were modified according to the model in [9]. The differential data
∆ES and the MWI raw data were computed for each of the considered temperature conditions,
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and the scattered fields resulting from the simulations were corrupted with additive white
Gaussian noise (SNR = 30 dB) to mimic the unavoidable presence of the measurement noise.

2.4.3. MWI Imaging Results

For each set of multi-frequency MWI raw data, two TSVD images were computed—
one for the tumor and one for the spinal cord. To this end, the two operators, LΩ1 and
LΩ2 , were built from the knowledge of the total field inside the ROIs at the beginning of

the treatment, E[0]
tot, and of the morphology of the tumor and the spinal cord, respectively.

Note that, for the sake of simplicity but without loss of generality, in this study, Ω1 and Ω2
were taken as square domains enclosing the anatomical site of interest. The whole imaging
domain had Nx = Ny = 128 pixel dimensions, from which the two ROIs were cropped
around the pixels belonging to the tumor and the spinal cord, leaving Nx = Ny = 5 and
Nx = Ny = 6, respectively. Finally, the TSVD images were computed using Equation (7)
with Pcut = 1 for both cases.

2.4.4. CNN Implementation: Categorical Labels

For the considered temperature ranges, the ground truth classes in C were set as:

C1(∆T) =


0 if ∆T < 3 ◦C
1 if 3 ≤ ∆T < 7 ◦C
2 if 7 ≤ ∆T ◦C

(9)

corresponding to {0, 1, 2}={unheated, therapeutic, hot}. Note that the typical HT treatment
therapeutic regime was T = [40, 43] ◦C, i.e., ∆T = [3, 6] ◦C.

Similarly, for the spinal cord,

C2(∆T) =

{
0 if ∆T < 2 ◦C
1 if 2 ≤ ∆T ◦C

(10)

with {0, 1}={unheated, hot}. Here, ∆T = 1 ◦C was considered unheated for the purposes of
these experiments. In clinical practice, a more stringent threshold could be used.

2.4.5. CNN Implementation: Training

The necessary datasets for training the two CNNs were built by performing a number
of simulations in the conditions described above. Each simulation provides an instance of
the training set made by a pair δχ, Cc, i.e., the differential contrast estimated via TSVD in
the relevant ROI and the corresponding categorical label.

In total, N1 = 3000 samples for the tumor CNN and N2 = 2000 samples for the spinal
cord CNN were simulated. Each sample was built by randomly varying the EM properties
of all tissues within a ±0.2-wide interval around their average values. For each tissue, this
corresponds to modeling the real and imaginary parts of the complex dielectric permittivity
as two normally distributed variables, ε′r ∼ N (ε′r, 0.12) and ε′′r ∼ N (ε′′r , 0.12). Modeling
tissues with higher standard deviations than 0.1 is possible, but would possibly require
increasing the number of samples N1 and N2 to obtain performances comparable to those
reported in Section 3.

For implementation purposes, images had to be fed into the CNNs as real-valued
quantities; therefore, the real and imaginary parts of the TSVD images had to be split and
fed as stacks of images with Nchan = 2 channels, such as δχ ∈ RNx×Ny×Nchan . In Figure 4,
two pairs of TSVD images (one for each CNN) are shown as examples of the input data.

The training was carried out using a K-fold cross-validation scheme [22], where some
instances from the two datasets N1 and N2 were removed for each training iteration. In
K-fold cross-validation, a dataset was split into N f old sub-datasets of equal sizes Nval to
carry out N f old training. In each iteration, one of the sub-datasets was removed from the
dataset, leaving N − Nval instances for training and Nval instances for validation of the
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model’s performance. Once the N f old training was concluded, the performance could
be assessed by averaging the results across folds. In this work, N f old = 10 was for both
datasets (tumor, spinal cord). The validation split was Nval = 300 for the CNN whose duty
was to monitor the temperature status of the tumor, whereas Nval = 200 for the CNN in
charge of monitoring the temperature status of the spinal cord. The Adam optimizer [31]
was used with a learning rate η = 10−4 and a batch size of Nb = 16. The trainings were run
for a maximum of Nt = 300 epochs with an automatic stopping criterion of 10 consecutive
epochs without improving the validation loss. Note that an epoch of t corresponds to a
complete pass of all the instances in a given fold.

2.4.6. Performance Assessment Metrics

Metrics to evaluate the performances of the classification problems involving cate-
gorical labels are based on the positive (P)/negative (N) count, such as the Dice similarity
coefficient (DSC) [32]:

DSC =
2 · TP

2 · TP + FP + FN
(11)

where TP, FP, and FN correspond to the true positive, false positive, and false negative
count, respectively. More precisely, TP corresponds to the statistical count of correctly
labeled instances into one of the temperature status categories. In contrast, FP and FN
correspond to the mistakes incurred by the CNNs when labeling the instances. For example,
a TP would be a variation of ∆T = 4 ◦C, correctly labeled as therapeutic when considering
the tumor CNN. Additionally, a second metric called the Matthews correlation coefficient
(MCC) [33] was calculated as well:

MCC =
TP · TN − FP · FN√

DM
(12)

where DM = (TP + FP)(TP + FN)(TN + FP)(TN + FN). As opposed to DSC, MCC
employs a true negative count, TN, i.e., the statistical count of the correctly labeled instances
as not belonging to a category. In general, MCC tends to show lower values than DSC and,
therefore, provides a more conservative performance evaluation. Both metrics achieve their
highest values at 1.00.

3. Results

After the CNN training is carried out on all the folds, the performance are assessed
using the selected metrics (DSC and MCC). The metrics are computed class-wise on the
validation split of each fold. Then, the final result for each class is obtained by averaging
among all the obtained values. Table 1 and Table 2 report the metrics for the tumor CNN
and for the spinal cord CNN, respectively.

Table 1. DL-MWI Tumor CNN performance assessment.

Class DSC MCC
Unheated 0.953 0.928

Therapeutic 0.932 0.887
Hot 0.912 0.878

Table 2. DL-MWI Spinal cord CNN performance assessment.

Class DSC MCC
Unheated 0.920 0.855

Hot 0.907 0.855
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4. Discussion

Concerning the tumor CNN, in agreement with the expectations, MCC tends to report
lower values than DSC (see Table 1). Nevertheless, the achieved values are comparable
between the two metrics for all classes. Moreover, there are no major differences in the
performance of any specific class over the rest, only a slightly superior performance of
the unheated class over the other two. More in detail, the overall number of misclassified
samples is 26, which corresponds to about 8.5% of the whole validation split. In particular,
for 2 samples (0.6%) the CNN predicted that the temperature was above the therapeutic
one of 42o, while it was not. Of these, only 1 (0.3%) was above the therapeutic range. For
another 15 samples (5.0%), the CNN predicted that the therapeutic regime was not reached,
while instead it was. For 9 (3.0%) overheated samples, the CNN erroneously attributed
the therapeutic label. These results are summarized in the confusion matrix reported in
Figure 6.

Figure 6. Confusion matrix for the validation samples of the tumor CNN.

For the spinal cord CNN, the performance scores are on average slightly worse than
those of the previous case (see Table 2). This suggests that the task of classifying the spinal
cord temperature status is more challenging, even though less classes were considered in
this case. Such an outcome may be explained by two aspects. The first one is the further
distance of the spinal cord from the antennas in the selected setup configuration (see
Figure 4) as compared to the rather superficial location of the tumor. The second aspect is
the smaller temperature range which is considered. Both these aspects result in scattered
fields which are possibly more corrupted by noise and thus in less accurate TSVD images.
Going more into detail, the reported metrics correspond to 16 misclassified samples, i.e.,
8% of the validation set, evenly distributed between the two classes. Interestingly, 6 out of
the 8 cases in which the spinal cord was erroneously labeled as unheated correspond to
cases in which the temperature of the sample was 39o. From a practical perspective, this
suggests that the network performs better when the spinal cord temperature is above 39o

and thus that, even with some delay with respect to actual moment in which the hot spot
occurs, it would eventually reveal it.

To figure out how to further improve the performance of the proposed framework, it
is worth to analyze the behaviour of the categorical cross-entropy in the training and in the
validation. Figure 7, reports the categorical cross-entropy of the fold whose performance
was closest to the average in each dataset for the tumor CNN and the spinal cord one. Both
plots confirm that the training is not affected by overfitting and hence that the adopted
training is suitable to optimize the CNNs. In addition, the validation losses are on average
always below the corresponding training losses across epochs, which is consistent. On the



Cancers 2023, 15, 1717 12 of 14

other hand, the cross-entropy for the validation splits exhibits an increasingly oscillating
behavior with the epochs, especially for the spinal cord CNN. This suggests that the
considered number of epochs is sufficient (if not redundant) and that there is room for
performance improvements if the datasets get increased beyond N1 = 3000 and N2 = 2000.

Figure 7. Categorical cross-entropy optimization of the considered CNNs versus the number
of epochs.

5. Conclusions

The exploitation of a DL-MWI approach for HT monitoring was proposed and initially
validated in silico for the case of neck tumors. The proposed approach is a physics-assisted
DL-MWI framework, in which an image generated via MWI is input to a CNN that classifies
it into one of several predefined categories. In particular, since tissue EM properties exhibit
very small variations in the temperature range of HT, the ISP can be cast in terms of a
linear inverse problem, whose solution can be reliably and efficiently built using the TSVD
algorithm. In addition, this allows for achieving two separate images, i.e., one for the
region of the tumor to be treated and one for the healthy tissue to be protected. Accordingly,
two CNNs are exploited to provide a classification of hyperthermia measurements into
labels reporting the temperature status in the different ROIs. The approach assumes prior
knowledge of the morphology and tissue segmentation of the treated region, based on the
fact that such information can be obtained from the treatment planning stage routinely
performed in clinical HT.

The compelling results shown by the proposed approach on the validation samples
provide a good basis to progress toward the experimental demonstration. To this end, a
more realistic numerical scenario could be used to validate the approach, which includes
representing realistic antennas, evaluating the temperature distribution using the bio-heat
equation or other models proposed in the literature [34], taking into account additional
information on the dependence of EM properties on the physiological changes of the tissue
during the hyperthermia treatment, and extending the framework to the 3D geometry.
Notably, all of these aspects only imply increased computational complexity but do not
require changing the overall architecture of the approach. In addition, to better integrate
the proposed approach in the clinical flow, an interesting development could be that of
linking the classification labels to the usual HT monitoring parameter. For instance, the
way in which the classification labels are designed has a strong connection with T90 since
the therapeutic regime is only assigned when all of the pixels belonging to the tumor ROI
reach the lower boundary of the relevant permittivity range.

Our final comment concerns the extent to which motion artifacts, which are critical
for MR thermometry, impact the performance of the proposed framework. In MWI, in-
accuracies introduced by movements can be modeled as additional sources of noise on
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the measured data. Since MW data acquisition can be performed very fast (faster than the
breath rate), several measurements can be acquired and then averaged in such a way as to
remove noise and achieve reliable imaging results. On the other hand, the movements of
the ROI affect the co-registration of the treatment-planning image needed to implement the
kernel of the inversion algorithm. However, MWI has a lower resolution than MR, which
in this case turns into a sort of advantage as “small” enough motion shifts are basically not
seen by the MWI device.
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