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Simple Summary: During breast-conserving surgeries, there is no accurate method available for
evaluating the edges (margins) of breast cancer specimens to determine if the tumor has been removed
completely. As a result, during the pathological examinations after 9% to 36% of breast-conserving
surgeries, it is found that some tumor tissue is present on the margins of the removed tissue. This
potentially leads to additional surgery or boost radiotherapy for these patients. Here, we evaluated
the use of computer-aided delineation of tumor boundaries in ultrasound images in order to predict
positive and close margins (distance from tumor to margin ≤ 2.0 mm). We found that our method has
a sensitivity of 96% and a specificity of 76% for predicting positive and close margins in the pathology
result. These promising results display that computer-aided US evaluation has great potential to be
applied as a margin assessment tool during breast-conserving surgeries.

Abstract: There is an unmet clinical need for an accurate, rapid and reliable tool for margin assessment
during breast-conserving surgeries. Ultrasound offers the potential for a rapid, reproducible, and non-
invasive method to assess margins. However, it is challenged by certain drawbacks, including a low
signal-to-noise ratio, artifacts, and the need for experience with the acquirement and interpretation
of images. A possible solution might be computer-aided ultrasound evaluation. In this study, we
have developed new ensemble approaches for automated breast tumor segmentation. The ensemble
approaches to predict positive and close margins (distance from tumor to margin ≤ 2.0 mm) in the
ultrasound images were based on 8 pre-trained deep neural networks. The best optimum ensemble
approach for segmentation attained a median Dice score of 0.88 on our data set. Furthermore, utilizing
the segmentation results we were able to achieve a sensitivity of 96% and a specificity of 76% for
predicting a close margin when compared to histology results. The promising results demonstrate
the capability of AI-based ultrasound imaging as an intraoperative surgical margin assessment tool
during breast-conserving surgery.

Keywords: ultrasound; breast cancer; deep learning; artificial intelligence; tumor segmentation;
breast surgery; surgical margin

1. Introduction

Worldwide, breast cancer is the most prevalent type of cancer, with an estimation
of 2.3 million new cases in 2020 [1]. Multiple trials have proven that breast-conserving
surgery (BCS) followed by breast irradiation leads to optimal oncologic control, greater
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cosmetic outcome, and overall better quality of life compared to a mastectomy [2–4].
Therefore, breast-conserving therapy has become the preferred treatment method for breast
cancer [3,4]. However, these superior outcomes are based on the achievement of tumor-free
resection margins, considering the more than twofold increased risk for ipsilateral breast
tumor recurrence in patients with positive resection margins [5,6]. The definition of what
exactly constitutes a positive margin remains a worldwide debate. For invasive breast
cancer, a positive margin is generally defined by tumor cells on the inked margin [7]. The
reported rate of positive margins varies from 9% to 36% for invasive breast cancer [7]. In
the case of positive margins, the patient may need additional surgery or boost radiotherapy,
which both have a major impact on morbidity [8,9], cosmetic outcome [10–12], quality of
life [13–15], and health care costs [16,17]. To reduce the number of patients with additional
therapy and its associated risks and disadvantages, there is an unmet need for an accurate
method for intraoperative evaluation of resection margins.

Breast ultrasound (BUS) is a quick, reproducible, non-invasive, inexpensive, highly
feasible, and highly available method to assess margins. Multiple studies have found that
the use of intraoperative BUS as a margin assessment tool reduces the number of positive
margins in BCS patients [18–24]. Furthermore, Volders et al. have shown in a multicenter
randomized controlled trial involving 134 patients, that ultrasound-guided BCS also leads
to a better cosmetic outcome [25]. Despite these promising outcomes, several reasons have
kept physicians from embracing BUS in their daily practice. One of the main reasons is the
need for experience with the acquisition and interpretation of BUS images [26]. Sometimes
the interpretation of BUS images is even more difficult due to a low signal-to-noise ratio
and artifacts [26]. To obviate these shortcomings, efficient computer-aided BUS evaluation
methods are needed to realize a fast, accurate, and operator-independent method for
margin assessment. One of the principal steps in computer-aided BUS evaluation for
margin assessment is the delineation of the lesion boundary based on certain attributes [27].
This process step is more commonly known as image segmentation.

In the domain of breast cancer diagnosis, many studies have been conducted regarding
BUS segmentation [28]. For BUS segmentation, several traditional methods have been
used, including thresholding algorithms [29,30], region growing methods [31], watershed
methods [32,33], graph-based methods [34,35], and deformable models [36,37]. Segmen-
tation methods based on machine learning include clustering [38] and support vector
machines [39]. Recently, deep artificial neural networks have shown application in various
medical image segmentation tasks. Several studies have found that the use of deep convo-
lutional neural networks (CNNs) outperforms the earlier described classical approaches
and conventional machine learning methods when it comes to the segmentation of BUS
images [40–44]. However, many of these studies report promising segmentation results
that are based on CNN models trained and tested on BUS data sets with both benign and
malignant masses [40–42]. There is a lack of data regarding segmentation performance on
data sets purely containing malignant tumors. This is an important issue since malignant
tumors are much more difficult to segment due to irregular contours, speculation, and an-
gular margins, while benign tumors are hyperechogenic and often have a smooth, ellipsoid
shape [45]. On top of that, many studies report training and testing of BUS segmentation
methods on relatively small and nonpublic data sets with distinct properties. These factors
limit the application to a new data set. The few studies that do report segmentation results
on purely malignant images, often report lower performance results [43,44,46]. For instance,
Badawy et al. reported that the best-performing network in their study, the DeepLabV3+
ResNet50 network, had a mean boundary F1-score of 83% on a data set of 200 benign
images, while it had a mean boundary F1 score of 60% on a data set of 200 malignant
images [44].

In light of the aforementioned limitation, Gómez-Flores et al. have evaluated and
published 8 artificial neural network segmentation models pre-trained on an extensive data
set of 3061 BUS images, acquired from seven different US devices [47]. The goal of their
study was to make these models available for other research groups in order to reproduce
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and improve the segmentation performance on new data sets. They included the following
individual models; (1) the fully convolutional network based on AlexNet, (2) the U-Net, the
SegNet architectures based on (3) VGG16 and (4) VGG19, the DeepLabV3+ architectures
based on (5) ResNet18, (6) ResNet50, (7) MobileNet-V2, and (8) Xception. They evaluated
their models using, amongst others, the median Dice Similarity Coefficient (DSC) [47].
DSCs were reported for BUS images of benign tumors and BUS images of malignant
tumors separately. The highest median DSC of an individual network for delineating
benign tumors was 0.92 (ResNet50) [47]. When it came to segmenting malignant tumors,
all networks performed slightly less accurately with the highest median DSC being 0.88
(ResNet 50).

These results are very promising, and raise the question of whether these models
could be used in practice for margin assessment of breast cancer specimens. There are
several factors that should be investigated before these models can be broadly applied for
routine intra-operative resection margin assessment on specimens. The first one is that
the algorithms may perform worse when tested on US images acquired with different US
devices compared to the US images in the training set [28,40]. Even though the authors
used 7 different US devices for data acquisition, the different transducer characteristics
or settings in a new data set could hamper the performance. Furthermore, the used BUS
images were acquired during routine diagnostic breast studies. These images are captured
from the outside of the breast and cover a larger part of the breast compared to BUS images
of BCS specimens. Specimen images display less contextual information of the surrounding
healthy tissue, and the tumor boundaries are more superficial which might cause the
segmentation to be more challenging.

In order to make BUS segmentation clinically applicable for supporting margin as-
sessment, we have taken the opportunity to investigate how we could optimize the tumor
segmentation and margin assessment performance of the pre-trained well-known artificial
neural networks when applied on a new data set of BUS images acquired on BCS specimens.
To our best knowledge, no studies have been conducted yet to investigate this. In this study,
we aim to determine the diagnostic accuracy of ensemble learning techniques for automated
BUS segmentation based on deep learning networks for predicting close margins ≤ 2.0 mm
after validating and improving their segmentation performance. For this purpose, we first
acquired a BUS image data set of only specimens containing biopsy-proven malignant
tumors. Then we used all pre-trained neural networks to segment the tumor in the BUS
images. These segmentation maps formed the basis for the main contributions of this study,
which are listed as follows:

(1) Evaluation of the segmentation performance of eight individual pre-trained artificial
neural network models on an external data set, applied to a new data set of US images
acquired on BCS specimens with invasive carcinoma lesions (BCS-US data set).

(2) Evaluation of the influence of an ensemble framework by combining multiple net-
works on the segmentation performance. Various methods for this ensemble approach
were used, including different forms of voting, and weighted average.

(3) Optimization of the best ensemble approach, in order to predict margin status with
the highest accuracy.

2. Materials and Methods
2.1. Data Acquisition

An overview of the data acquisition method can be found in Figure 1. BCS-US images
were acquired from breast cancer specimens of patients with invasive carcinoma or invasive
carcinoma combined with DCIS or LCIS, who had undergone breast-conserving surgery
at the Netherlands Cancer Institute (Antoni van Leeuwenhoek hospital). According to
the medical research involving human subjects act, no written consent was required. The
images were collected using the Philips CX50 ultrasound device combined with a Philips
L15-7io high-frequency transducer (Philips Research, Eindhoven, The Netherlands). In
order to get more accurate information about the specimen margin and the superficial tumor
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boundary, we used the maximum frequency of 15 MHz (highest superficial resolution).
In this way we could obtain an imaging depth of approximately 3 cm. Per specimen,
1 or 2 images were captured at locations with the shortest radial distance from the edge of
the tumor to the margin, the tumor-margin distance (TMD), based on visual inspection of
the US image. The exact visual distance at these locations in the US image was measured
using the caliper function of the US device. Hereafter, this distance will be referred to
as the TMDObs. Each measured tissue location was marked with black pathology ink.
Afterward, standard pathology processing was applied. The pathology H&E sections of all
measurement locations were digitized and examined by an experienced pathologist, who
annotated all tumor tissue present in the images. The minimum TMD was determined in
all H&E sections from the margin region marked with black ink to the tumor (mm). From
now on this distance will be referred to as the TMDHE.

TMDObs

TMDHE

Ink mark

TMDHE

a) BCS lumpectomy 

specimen

b) US imaging c) Acquired 

ultrasound image

d) Manual tumor margin 

annotation 

f) Marking 

measured location 

g) Specimen slicing h) H&E slice i) H&E tumor margin

e) Manual tumor 

delineation  

Figure 1. Overview of the method for data acquisition on lumpectomy specimens. An US image (b,c)
was captured on a tissue location on the lumpectomy specimen (a) where the shortest margin
(TMDObs) was present (c). In this image, the distance was measured and the location of this distance
was marked with the ultrasound device annotation tool (white crosses in (d)). On the actual margin
of the specimen, this location was marked with black ink to enable correlation with histopathology (f).
After data acquisition, the BCS specimen was further processed according to standard protocol,
including slicing of the tissue (g). The microscopic H&E slices were annotated by a pathologist and
the TMDHE was obtained by measuring the minimum TMD from the marked margin region to
the tumor in the H&E slice (h,i). Additionally, the tumor lesion in the BUS image was manually
delineated by two independent observers (blue shade in (e)).

2.2. Data Labeling

In order to compile a pixel-level ground truth map for each BUS image, the tumor
boundaries were manually outlined by two independent experts. Based on these manual
annotations, all pixels within the boundaries were considered to constitute the tumor



Cancers 2023, 15, 1652 5 of 19

region, while the remaining pixels were considered to be healthy tissue. Then a majority
voting method was applied, where a pixel was labeled as tumorous tissue (1) if at least
one observer annotated it as such, otherwise it was labeled as healthy (0). In this way, we
generated binary, ground truth images.

2.3. Tumor Segmentation Methodology

The pre-trained deep neural network models developed by Gomez-Flores et al. [47]
were used for tumor segmentation in the BCS-US data set. The gray-scale BCS-US images
were cropped and rescaled to a size of 128 × 128 pixels, replicated two times and concate-
nated, to make them suitable for an input layer of 128 × 128 × 3 for the neural network
models. The final output layer of the networks assigns a tumor probability value to each
pixel. These probability values were values between 0 and 1. When multiple networks were
combined, as described below, the probability values were summed up and normalized
to a value between 0 and 1. Eventually, a pixel was classified as tumorous tissue if the
probability value was greater than a certain threshold. Otherwise, it was classified as
healthy tissue.

2.4. Ensemble Learning Framework

First, the segmentation performances of all individual models were tested on all
images of the BCS-US data set. Subsequently, several ensemble approaches were tested.
Figure 2 illustrates the general pipeline for using these ensemble learning methods.

Figure 2. The described framework of ensemble learning for tumor segmentation in BCS-US images,
using 8 models pre-trained on a public breast US data. In the output image, healthy tissue is
highlighted in green, and tumor tissue is highlighted in red.

2.4.1. General Voting Method

Each network had an equal vote on whether a pixel belonged to the class of tumorous
tissue or not. From all votes, three different predictions were formed based on a different
selection of votes, as illustrated in Figure 3. The intersection selection, predicted a pixel to
be tumorous if all models predicted it as such. The majority selection, predicted a pixel to
be tumorous if 50% or more of all models predicted it as such. Lastly, the union selection
predicted a pixel to be tumorous if any model predicted it as such.
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Intersection Majority Union

Figure 3. A schematic overview illustrating the 3 voting approaches. Each circle represents a tumor
segmentation result by one model (3 models in total). Each voting method generates a white area,
which is the predicted healthy area, and a green-shaded area, which is the predicted tumorous area.

2.4.2. Elective Voting Method

An elective voting method was used where all possible combinations of 2 to 8
networks were tested using the union, majority and intersection voting approaches as
described above.

2.4.3. Weighted Average Method

The previously described methods were focused on combining the segmentation maps
of the models using different votes. This meant that some models had an impact on the final
segmentation map, and others did not, depending on the voting system. To balance the
influence of all models, we combined all models while assigning a different level of impact
(weight) to each model on the final segmentation map. In this approach, we combined
the results of the models using different probability thresholds and different weights. In
this way, we conducted an extensive grid search to find the optimum network-threshold-
weight combination (NTWC) yielding the highest mean segmentation performance over
all BCS-US images. For this purpose, weights are assigned to the probability maps of
all individual networks, which are afterward summed up and normalized by the total
sum of weights. In order to obtain the final segmentation results, a threshold value was
applied to the final probability map. The optimal weights and threshold values are obtained
using a grid search optimization technique. The grid search algorithm finds the optimal
parameters by searching exhaustively through the range of a manually specified parameter
which maximizes the output performance. For parameter optimization, weights were
varied over a preset range. One network would be assigned no weight (weight of ’0’), the
other seven networks would have a weight between 0 and 0.98, with an equal step size of
0.14 (1/7 = 0.14). Furthermore, different threshold values between 0 and 1 were used for
the networks, with a step size of 0.02.

For further investigation on the impact of the threshold value and the weight of each
model on segmentation results, the NTWCs with a median segmentation performance
(Dice score) greater than a selected cut-off point of 0.85 were selected. This particular cut-off
point was the minimum segmentation peformance of the individual networks investigated
by Gomez-Flores et al. The average weight of each network among this selection was
determined. Additionally, the frequency of each threshold value was evaluated. The best
NTWC for BCS-US segmentation was selected by choosing the most frequent threshold and
weight combination based on the average weight results of the best-performing NTWCs.

2.5. Tumor Margin Distance Prediction

In the following step, we investigated how we could use an ensemble approach for
BCS-US segmentation to accurately predict the tumor-margin distance. For this, we first
repeated the parameter optimization for achieving the lowest margin error. The model
combination with the highest sensitivity and specificity for detecting a close margin using
the TMDHE as ground truth, was selected as the final segmentation approach. After
applying the final segmentation method on the entire BCS-US images, the extracted tumor
masks are used for predicting the surgical tumor-margin distance. The predicted tumor-
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margin distance, TMDPred, is defined as the shortest distance between the surface of the
lumpectomy (top of US image) to the detected tumor mask.

2.6. Performance Evaluation
2.6.1. Tumor Segmentation

The segmentation performance was evaluated using the median DSC of all tested US
images. The DSC measures the level of similarity between the predicted segmented lesion
and the extracted lesion by the human observer (ground truth map). The DSC score ranges
from 0 indicating no overlap at all, to 1 indicating perfect overlap.

A One-way Analysis of Variance (ANOVA) (Kruskal-Wallis test), a rank-based non-
parametric test, was performed to determine whether there were statistically significant
differences between the segmentation performance of all individual networks. In this
test, a p-value ≤ 0.05 is considered as significant. Additionally, a Kruskal-Wallis test was
performed to find any significant differences between the segmentation performance of the
different ensemble approaches.

Furthermore, to evaluate the robustness of the final tumor segmentation approach,
it was tested on three randomly divided subsets of the existing data. This is to evalu-
ate whether the segmentation performance would be comparable for the whole patient
population, or if there was a lot of influence by outliers. Again, a Kruskal-Wallis test
was performed to determine if there were statistically significant differences between the
performance of the final segmentation approach on each of the three data subsets.

2.6.2. Margin Assessment

The predicted TMDPred was compared to two types of ground truth; (1) margin calcu-
lated based on expert US annotation TMDObs, and (2) margin obtained from microscopic
histology images TMDHE.

Additionally, multiple metrics were measured to evaluate the distance error, including
the mean absolute error (MAE), the normalized root-mean-square-error (NRMSE) and the
Pearson correlation coefficient (PCC).

A two-sample t-test was performed to test whether there was a significant difference
in all metrics between the TMDPred and both ground truths (p < 0.05).

Furthermore, the sensitivity and specificity of diagnosing a close margin were de-
termined, by comparing the predicted results with human annotations and the margin
status documented in the histology report. For this study, we defined a close margin as a
TMD ≤ 2.0 mm.

3. Results
3.1. Tumor and Patient Characteristics

In total, 109 BUS images of malignant tumors were acquired from 86 BCS specimens
originating from 86 different patients. The median age of the patient population was
57 years (SD = 12.4). As far as the pathological diagnosis of the patients, 35 patients (41%)
had an invasive carcinoma of no special type, 43 patients (50%) had an invasive carcinoma
of no special type combined with DCIS, 3 patients (3%) had an invasive lobular carcinoma,
and 5 patients (6%) had an invasive lobular carcinoma combined with lobular carcinoma in
situ. Of all included patients, 16 patients (19%) had received neoadjuvant chemotherapy
and 14 patients (16%) had received neoadjuvant hormonal therapy. An overview of the
tumor and patient characteristics can be found in Table 1.
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Table 1. Tumor and patient characteristics.

Characteristic N = 86

Age (years) (median, SD) 57 (12.4)
Menopausal status
Pre 26 (30%)
Post 60 (70%)
BMI (kg/m2) (median, SD) 25 (4.1)
Lesion diameter (mm) (median, min, max) 1.5 (0.4, 5.5)
Specimen weight (gram) (median, SD) 20 (19)
Histological tumor type
IC NST 35 (41%)
IC NST + DCIS 43 (50%)
ILC 3 (3%)
ILC + LCIS 5 (6%)

T-stage
pT1a 8 (9%)
pT1b 16 (19%)
pT1c 38 (44%)
pT2 23 (27%)
pT3 1 (1%)
Histological tumor grade
1 36 (42%)
2 44 (51%)
3 6 (7%)
Hormonal receptor status
ER+ 81 (94%)
ER- 5 (6%)
PR+ 60 (70%)
PR- 26 (30%)
HER2 status
HER2+ 8 (9%)
HER2- 78 (91%)
Immunohistochemically defined subtype
Luminal A-like 54 (63%)
Luminal B-like/HER2-negative 22 (26%)
Luminal B-like/HER2-positive 7 (8%)
HER2-positive 1 (1%)
TNBC 2 (2%)
Neoadjuvant treatment
Chemotherapy +/− targeted therapy 16 (19%)
Endocrine therapy 14 (16%)
None 56 (65%)

IC NST= invasive carcinoma of no special type, DCIS = ductal carcinoma in situ; ER = estrogen receptor,
PR = progesterone receptor; Luminal A-like (ER- and/or PR-positive, HER2-negative, Ki-67 < 20%); Luminal
B-like/HER2-negative (ER- and/or PR-positive/HER2-negative/Ki-67 ≥ 20%); Luminal B-like/HER2-positive
(ER- and/or PR-positive/HER2-positive/any Ki-67 value); HER2-positive (ER- and PR-negative/HER2-positive);
TNBC = triple negative breast cancer (ER- and PR-negative/HER2-negative).

3.2. Tumor Segmentation
3.2.1. Individual Models

In Figure 4, the boxes display the median, minimum, maximum, first quartile and third
quartile values of the DSCs of all individual models. As stated earlier the DSC measures
the level of similarity between the predicted segmented lesion and the extracted lesion
by the human expert (ground truth map). Notably, two networks attained the highest
median DSC on the BCS-US data set: AlexNet (0.75, IQR: 0.27) and VGG16 (0.75, IQR: 0.23),
while the ResNet50 network attained the lowest median DSC (0.65, IQR: 0.33). A Kruskal-
Wallis test showed no significant differences between the segmentation performance of all
individual networks.
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Figure 4. Boxplots demonstrating the median, minimum, maximum, first quartile, and third quartile
values of the DSC scores for all individual models.

3.2.2. Ensemble Learning (Models Combinations)

The boxes in Figure 5 exhibit the median DSC when applying the described ensemble
approaches in Section 2.4. The first three boxes from left to right display the median DSC
for general intersection (0.39, IQR: 0.52), the general majority (0.77, IQR: 0.24), and general
union voting (0.79, IQR: 0.18), respectively. It is apparent that the general intersection
method has the worst segmentation performance, with the lowest median DSC and the
highest variability in DSC scores among individual BCS-US images. There is an increasing
trend in the median DSC when switching from general intersection, to general majority
to general union voting. The fourth box displays the DSC scores for the elective union
method (0.81, IQR: 0.18), which had the highest median DSC among the elective and
general voting methods. The fifth box visualizes the DSCs of the optimum weighting
average combinations technique with the highest median DSC score. The weighted average
approach achieved a median DSC of 0.88 (IQR: 0.18). A Kruskal-Wallis test showed there
were statistically significant differences p-value < 0.05) in the performance of the general
intersection voting method compared to all other depicted ensemble approaches.
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Figure 5. Boxplots demonstrating the segmentation performance of different ensemble approaches.
The lines with an asterisk indicate a p-value < 0.05.
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3.2.3. Weighting Average Parameters Optimization

An exhaustive grid search method was used to obtain optimal parameters (weights
and threshold) for the weighted average ensemble learning approach. The optimization
was performed two times, once for achieving the maximum Dice score and the second time
to maximize the sensitivity of margin assessment.

Highest Dice Similarity Coefficient
The optimal parameters (threshold value and average weight factors per network) for
the weighted average method are obtained from the best combinations with a median
DSC of higher than 0.85 (Figure 6). Figure 6a displays the frequency of thresholds among
the selected group of model combinations, according to which a threshold of 0.20 or 0.22
seems most optimal. The average weights for each network among the top-performing
combinations are displayed in Figure 6b.

Highest Margin Assessment
The parameter optimization was done in a manner to achieve the highest margin as-
sessment performance for detecting a close margin. The NTWCs capable of achieving a
sensitivity > 95% and a specificity > 75% compared to the TMDHE as ground truth were
further selected and analyzed. Figure 6c displays the frequency of thresholds among this
group, according to which a threshold of 0.22 seems most optimal, similar to the NTWCs
with a high segmentation performance. The mean weight of each network among this
group is displayed in Figure 6d.

The final selected weights and threshold values after the parameter optimization based
on the aforementioned criteria are shown in Table 2.
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Figure 6. (a) Frequency of thresholds among NTWCs with a high segmentation performance,
(b) Average weight of each network in all NTWCs with a high segmentation performance,
(c) Frequency of thresholds among NTWCs with a high margin assessment performance, (d) Average
weight of each network in all NTWCs with a high margin assessment performance,

Furthermore, the segmentation performance of this final segmentation method with
optimal parameters was compared on three randomly selected subsets of BCS-US images
with equal sizes. The median DSC scores of these three subsets are shown in Table 3. A
Kruskall-Wallis test revealed a p-value of 0.47, meaning there is no significant difference
between the medians of all three data subsets. This demonstrates the robustness of the
proposed framework.
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Table 2. Selected weights and thresholds after parameter optimization.

AlexNet MobileNet ResNet18 ResNet50 U-Net VGG16 VGG19 Xception Threshold

Maximizing DSC 0.04 0.25 0 0.18 0.11 0.07 0.14 0.21 0.22
Maximizing TDM sensitivity 0.11 0.14 0.21 0.25 0.04 0 0.07 0.18 0.22

Table 3. Median DSC of the final segmentation method on three different randomly selected subsets.

Median DSC (IQR)

Data subset 1 0.86 (0.15)
Data subset 2 0.85 (0.19)
Data subset 3 0.89 (0.19)

3.3. Margin Assessment

The predicted margins (TMDPred) obtained using the optimized weighted average
ensemble learning method are compared with margins extracted from the images annotated
by the human experts (TMDObs) and margins based on histology images (TMDHE). The
results are shown in Table 4. When comparing the TMDPred to the TMDObs, the MAE
was 0.83 mm, the NRMSE was 0.21, and the PCC was 0.70. A close margin (≤2.0 mm)
could be predicted with a sensitivity of 95% and a specificity of 57%. When comparing the
TMDPred to the TMDHE, the MAE was 0.57 mm, the NRMSE was 0.16, and the PCC was
0.72. In this scenario, a close margin could be predicted with a sensitivity of 96% and a
specificity of 76%.

Table 4. Tumor margin distance errors, margin assessment performance, and p-values of two-sample
t-tests for different comparisons of TMDs.

TMD Error Margin Assessment Performance t-Test
MAE (mm) NRMSE PCC Sensitivity Specificity p-Value

T MDPred vs. T MDHE 0.57 0.16 0.72 96% 76% 0.3736
T MDPred vs. T MDobs 0.83 0.21 0.70 95% 57% 0.0008 *
T MDobs vs. T MDHE 0.73 0.19 0.69 87% 82% 0.0090 *
* indicate a significant difference (p-value ≤ 0.05); TMDPred: automatic predicted tumor margin; TMDHE:
tumor margin based on histology results; TMDObs: extracted tumor margin by an expert ultrasound device
annotation tool.

The Bland-Altman plots in Figure 7 visualize the difference and agreement between
different tumor margin measurement methods by considering one measurement method as
predicted value and the other one as reference (ground truth) value. In these plots, the agree-
ment between the compared TMDs was reported as a bias (average difference) together
with the upper and lower limits of the 95% confidence interval for this average difference.

The agreement between the TMDPred and the TMDHE can be observed in Figure 7a.
There is a mean bias of −0.15 mm (95% CI: −1.68, 1.37), meaning both TMDs are quite
similar. Correspondingly, a two-sample t-test showed no difference in the mean of both
TMDs at the 5% significance level (Table 4). The mean bias refers to the average difference
in measurements between two measurement methods, which could have a positive or
negative value. Positive values indicate general underestimation of the compared method,
while negative values indicate general overestimation of the compared method. This is
different from the the MAE, which refers to the average of all absolute errors, and always
has a positive value.

The agreement between the TMDPred and the TMDObs can be observed in Figure 7b.
It shows a mean bias of −0.56 mm (95% CI: −2.22, 1.10), and the difference between the
mean of both TMDs is significant at the 5% significance level according to a two-sample
t-test (Table 4).

When comparing the TMDObs to the TMDHE, the MAE was 0.73 mm, the NRMSE
was 0.19, and the PCC was 0.69 (Table 4). The agreement between the TMDObs and the
TMDHE can be observed in Figure 7c. It shows a mean bias of 0.41 mm (95% CI: −1.15,
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1.97). Similarly, a two-sample t-test showed a significant difference in the mean of both
TMDs at the 5% significance level (Table 4).
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Figure 7. Bland-Altman plots of the agreement between (a) the TMDPred and the TMDHE as a
reference value, (b) the TMDPred and the TMDObs as a reference value, (c) the TMDObs and the
TMDHE as a reference value. Solid line: mean difference; dashed lines: 95% upper and lower limits
of agreement.

Figure 8 displays a few examples of tumor segmentation on BCS-US images using
the optimal weighted average ensemble technique. The first three rows in this figure
display common examples of specimen US images of malignant lesions with various
hyperechogenicity, which were all segmented quite accurately with high DSC scores.
However, the last two rows show examples of more complex BCS-US images of malignant
tumors, with less accurate segmentation results. The fourth row shows an example of
an US image without complete contact between the US probe and the tissue on the left
side of the image. This causes a segmentation error, leading to a TMDPred that is shorter
than the TMDObs. The last row shows an example of an US image of a large, malignant
lesion accompanied by a hydrogel biopsy site marker on the right side. The marker gets
erroneously segmented as a tumor lesion, leading to a lower DSC score and an inaccurate
TMDPred. Also, the lower boundaries of the tumor were not correctly segmented due to
the acoustic shadowing of the hydrogel.
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US image of ma-
lignant tumor

US image overlaid 
with ground truth map

US image overlaid with 
prediction map

Ground truth map overlaid 
with prediction map

a)

b)

c)

d)

e)

Figure 8. 5 examples of BCS-US segmentation of different invasive carcinoma lesions. (a–c) images of
lesions with high DSC scores and accurate segmentation results, (d) an example of an artifact due
to the absence of contact between the US probe and the tissue surface on the left side of the image,
(e) example of a hydromarker on the right side of the image and an artifact due to acoustic shadowing
beneath the tumor lesion. Blue shade: ground truth based human expert annotations; Red shade:
automatic tumor segmentation using the optimized weighted average ensemble learning method;
Purple shade: the agreement between the human observer and automatic prediction

4. Discussion

There is an unmet clinical need for an accurate, fast and efficient adjunctive tool
for intraoperative margin assessment during breast-conserving surgery. A promising
approach might be the use of ultrasound However, one significant problem is the difficult
interpretation of US images due to a low signal-to-noise ratio, artifacts, and the need for
experience. Our proposed solution is the use of artificial intelligence-based US evaluation
methods. For this purpose, we have introduced a new deep learning framework in order to
combine and optimize the segmentation performance and margin assessment performance
of 8 pre-trained, previously developed artificial neural network models [47], when applied
to a new data set of US images acquired on BCS specimens.

Our first goal was to evaluate the segmentation performance of the 8 individual neural
network models on an independent BCS-US data set acquired in our hospital. The highest
segmentation performance obtained by these pre-trained individual models was a median
DSC score of 0.75 on this data set. In comparison, the original study by Gómez-Flores et
al. reported that the highest median DSC when tested on their data set of BUS images
of malignant lesions, was 0.88. In fact, none of the individual pre-trained models could
achieve the performances reported in the original study, and the median value of the DSCs
of all networks is 21% less compared to the median value of the originally reported scores
(0.68 versus 0.87). The difference in the performances can be explained by the fact that
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the models were originally trained on 1) images acquired with US devices using different
transducer characteristics or settings, 2) images captured from the outside of the breast, with
more contextual tissue information. In our BCS-US data set, a high-resolution transducer
was used and the US images were acquired directly on the surface of the lumpectomy
specimens. The individual networks seem to lack the robustness to adapt to these types of
variations in US images.

In order to mitigate the aforementioned problem, we have introduced a new frame-
work for the purpose of tumor segmentation, combining multiple pre-trained networks
using various ensemble approaches. There was an increasing trend in the segmentation
performance when switching from general voting to elective voting, to the weighted aver-
age technique. The most optimum model combination was obtained using an exhaustive
grid search algorithm (DSC 0.88, IQR 0.18). Further investigation showed that the highest
segmentation performance comprised a threshold of 0.20 or 0.22, and the highest weights
were assigned to all DeepLabV3+ models, except for ResNet18, which had the lowest mean
weight factor. These results shed light on the architectures that contributed the most to
an accurate segmentation result, even though all mean weight factors were quite close to
each other (range 0.08–0.17). Using the most optimum model combination, a median DSC
of 0.88 was attained on the BCS-US data set, which was similar to the value mentioned
by Gómez-Flores et al. [47] on the BUS data set. This suggests that the use of an ensemble
approach is capable of compensating for individual pre-trained models’ lower performance,
which enables the application of these models on a wider variety of US images.

Furthermore, we optimized the ensemble approach in order to achieve the high-
est margin assessment performance. We found that the most optimum NTWC for this
goal comprised a threshold of 0.22, and the highest weights were again assigned to all
DeepLabV3+ architectures, this time also including the Resnet18 model. It is noteworthy to
mention that when it comes to accurate margin assessment, the contribution of DeepLabV3+
architectures is even more important since the mean weight factors of these networks
among the best-performing NTWCs were much higher compared to the other networks
(range 0.01–0.22). It seems that these networks perform better at detecting the upper
boundaries of the tumor, while other networks seem to be only accurate at segmenting
the lesion as a whole. Therefore, when using this ensemble approach for other data sets,
it is important to be aware that the optimum weight distribution for a high segmentation
performance might not be equal to the optimum weight distribution for a high margin
assessment performance.

The TMDPred of the optimum NTWC was compared to two types of ground truth data
(TMDHE and TMDObs). When comparing the TMDPred to the TMDHE, the sensitivity for
predicting a 2 mm-margin was 96%, the specificity was 76%, the NRMSE was 0.16, and the
MAE was 0.57 mm. When looking further at the distribution of the errors in Figure 7a,
there was a small mean bias of −0.15 mm (95% CI: −1.68, 1.37) and there was no significant
difference between the means of both TMDs. On the other hand, when comparing the
TMDPred to the TMDObs, all calculated margin errors were substantially higher. Similarly,
there was a substantial mean bias of −0.56 mm (95% CI: −2.22, 1.10), and the means of
both TMDs were significantly different at the 5% level (p-value 0.0008) (Figure 7c). This
demonstrates that the neural networks are more accurate at predicting the TMDHE than
predicting the TMDObs, which is more valuable, since the margin status is eventually
determined by the outcome of the histopathological examination.

In addition, there was a significant difference between the means of TMDObs and
TMDHE (p-value 0.0090). The sensitivity of the human expert for predicting a close margin
in the H&E section was 87%, and the specificity was 82%. The lower specificity of the
TMDPred (76%) and the TMDObs (82%) when it comes to predicting the TMDHE, might be
due to human error in accurately marking the tumor margin as well as tissue deformation
caused by pathology processing. It is worthwile to note that the TMDPred and the TMDObs
could both be affected by variable tissue compression due to ultrasound probe pressure.
This effect is user-dependent and has not been investigated in this study. However, we
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expect this effect to be quite minimal since lumpectomy specimens are smaller and stiffer
(due to the tumor inside) than the breast. It was evident that the optimized ensemble
approach was quite more accurate at estimating the TMDHE, and had a higher sensitivity
for predicting a close margin compared to the human observed tumor-margin distance.
This demonstrates the potential value of BCS-US segmentation based on an ensemble
approach for margin assessment.

In current surgical practice, several techniques are used for intra-operative resec-
tion margin assessment. These techniques include specimen radiography, intraoperative
frozen section analysis, and intraoperative touch preparation cytology. In a meta-analysis
by Chen Lin et al. based on 20 different studies, it was found that 2D specimen mam-
mography has a pooled weighted sensitivity of 55%, and a pooled weighted specificity
of 85% for detecting a positive resection margin [48]. Furthermore, in a systematic re-
view of Esbona et al. based on 41 different patient cohorts, it was found that imprint
cytology and frozen section analysis has a pooled sensitivity of 72% respectively 83%,
and a pooled specificity of 97% respectively 95% [49]. Our proposed margin assessment
method has a higher sensitivity (96%) compared to all of these currently used techniques,
which is highly essential for a better patient outcome. Furthermore, our proposed method
mitigates logistical issues that hamper broad acceptance, including the complexity, and
time-consuming nature of the currently used techniques, and the workload for pathol-
ogists and/or radiologists. Besides our proposed method, many novel techniques are
being investigated to support margin assessment, including fluorescence imaging [50],
Raman spectroscopy [51,52], optical coherence tomography (OCT) [53–55], radiofrequency
(RF) spectroscopy [56,57], bioimpedance spectroscopy [58], micro-computed tomography
(micro-CT) [59], digital breast tomosynthesis [60], ultraviolet-photoacoustic microscopy
(UV-PAM) [61], microscopy with ultraviolet surface excitation (MUSE) and photoacoustic
tomography [62]. However, these techniques have not been included yet in the surgical
workflow due to various reasons. Some techniques have low diagnostic accuracy, includ-
ing digital breast tomosynthesis (sensitivity of 74%) [60] and RF spectroscopy (sensitivity
of 71%) [63], micro-CT (sensitivity 56%) [59]. Other techniques are too time-consuming,
such as ultraviolet-photoacoustic microscopy (UV-PAM) of which the analysis could take
up several hours. A rapid method for margin assessment is MUSE, which also seems cost-
effective [64]. However, the authors report a sensitivity of 88% which is lower compared
to the sensitivity of CNN-based US evaluation for margin assessment (96%) [64]. Other
techniques including fluorescence spectroscopy, Raman spectroscopy and bioimpedance
spectroscopy have promising results, but the cost-effectiveness and operating speed have
not been investigated yet [65–68]. In contrast to downsides of other novel techniques,
artificial intelligence-based US evaluation seems to be a promising adjunctive tool for
intraoperative margin assessment that fits seamlessly within the surgical workflow.

An important remark is that the growth patterns of breast cancer lesions are highly
different and depend on the histological tumor type, grade and immunohistochemically
defined subtype. The treatment plan including the surgical steps is based on the afore-
mentioned lesion characteristics. For this study, we have not included enough patients to
determine the margin assessment performance for different lesion characteristics. However,
this would be a valuable step for future investigations as described below.

In order to make this technology even more valuable in the future, the used algorithms
could be improved further. Therefore, we are planning to acquire more annotated BCS-US
data, which will allow applying transfer learning to improve segmentation performance.
Additionally, in order to correcly distinguish tumorous lesions from tissue markers and
hematomas, more US images displaying these artifacts should be acquired and used as
training input for the algorithms. Furthermore, US images from healthy breast tissue need
to be acquired for training, since the algorithms were only trained on images with tumor
lesions. Additionally, the level of tissue deformation induced by ultrasound pressure, could
be investigated. Furthermore, the ultrasound device settings including gain, time gain
compensation and focus should be optimized in order to improve the quality of the images
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further. A further prospective clinical in vivo study needs to be conducted to assess the
sensitivity, specificity and accuracy of this new method for real-time predicting a close
margin. Furthermore, after collecting a larger dataset, subanalyses could be performed
to determine the performance values for different histological tumor characteristics (e.g.
tumor type, grade and level of invasiveness), and biological tumor characteristics (e.g.
subtypes based on hormonal receptors. The other purpose of this study would be to
evaluate the implementation of this method in the clinical work routine.

5. Conclusions

In this paper, we have developed and evaluated new ensemble approaches for auto-
mated tumor segmentation in BCS-US images based on 8 pre-trained, public deep learning
models, for the purpose of predicting close margins (≤2.0 mm), in US images of breast
cancer specimens. The most optimum ensemble approach for segmentation yielded a
median DSC of 0.88 on our data set. On the other hand, the most optimum ensemble
approach for margin assessment yielded a sensitivity of 96% and a specificity of 76% for
predicting a close margin (≤2.0 mm) in the H&E section. These results show the potential
of the proposed method for margin assessment. Additional data acquisition to improve the
algorithms, and a large clinical in vivo study to evaluate this new method would be the
next steps towards reaching the ultimate goal of intraoperative margin assessment using
automated BUS segmentation.
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