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Simple Summary: Genomic amplifications are highly prevalent in cancer and often contribute to
increased proliferation or cell survival upon the administration of anti-cancer drugs. The identification
of those amplified genes at which cancer cells are selectively dependent is crucial for the development
of new targeted therapies. On this matter, CRISPR/Cas9 screens have emerged as a useful tool
to deplete the expression of almost all genes while assessing their consequences for cell survival.
Here, we analyzed data from CRISPR/Cas9 screens in 954 cancer cell lines to identify selective
gene dependencies associated with common cancer genomic amplifications. Our results suggest
that cell lines of different tumor types harboring the same genomic amplification are dependent
almost entirely on the same amplified genes, providing a set of new promising targets specific to each
genomic amplification.

Abstract: The identification of novel therapeutic targets for specific cancer molecular subtypes is
crucial for the development of precision oncology. In the last few years, CRISPR/Cas9 screens
have accelerated the discovery and validation of new targets associated with different tumor types,
mutations, and fusions. However, there are still many cancer vulnerabilities associated with specific
molecular features that remain to be explored. Here, we used data from CRISPR/Cas9 screens
in 954 cancer cell lines to identify gene dependencies associated with 16 common cancer genomic
amplifications. We found that high-copy-number genomic amplifications generate multiple collateral
dependencies within the amplified region in most cases. Further, to prioritize candidate targets for
each chromosomal region amplified, we integrated gene dependency parameters with both drugga-
bility data and subcellular location. Finally, analysis of the relationship between gene expression and
gene dependency led to the identification of genes, the expression of which may constitute predictive
biomarkers of dependency. In conclusion, our study provides a set of druggable targets specific for
each amplification, opening the possibility to specifically target amplified tumors on this basis.

Keywords: cancer; gene amplifications; CRISPR-Cas9 screenings; gene dependencies; drug development

1. Introduction

Focal chromosomal amplifications often drive an increase in the number of copies of
certain oncogenes in malignant tumors [1]. As a consequence, cancer cells often become
“addicted” to the overexpressed oncogenes, increasing their malignancy and resistance
to certain drugs [2]. Over the last 30 years, several studies have been conducted on
assessing the effects of genomic amplifications on tumor prognosis. Overall, genomic
amplifications such as MYC, EGFR, CDK4, or ERBB2 have been correlated with worse
survival rates in different tumors [3–6]. However, it should be noted that, regardless of
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whether genomic amplifications may be a factor of good or poor prognosis, only copy
number in a few amplified genes has been established as a biomarker for targeted therapies
(e.g., ERBB2 amplification and trastuzumab sensitivity) [7]. Nevertheless, as we quantify
copy-number variation for molecular diagnosis in a wide variety of tumors, the relevance
in tumorigenesis of most genes embedded in the amplified regions remains unknown.
Currently, this lack of knowledge hinders the clinical translationality of the molecular
diagnosis towards the discovery and use of new targeted therapies for these patients.
Thus, there is an unmet need to identify specific druggable dependencies associated with
chromosome amplifications recurrently detected in tumors. On this matter, CRISPR/Cas9
dropout screens have emerged as a useful approach to discovering the role played by
multiple proteins as well as identifying new targets for tumors with specific molecular
features [8–10]. Meanwhile, some studies have highlighted the generation of false-positive
hits in CRISPR screens in cancer cell lines harboring genomic amplifications, complicating
the identification of copy-number-associated dependencies [11,12]. During the last few
years, several methods, such as the Chronos algorithm, have been developed to address
some CRISPR screen artifacts simultaneously, including the nonspecific CRISPR-cutting-
induced toxicity observed in those sgRNAs targeting amplified regions [13,14]. Here, we
used CRISPR screen data corrected by the Chronos algorithm to determine those genes on
which cell lines harboring a high copy number of a specific amplification are dependent.
We also integrated gene dependency data with druggability information to particularly
prioritize actionable targets for each chromosomal amplification. Finally, RNA-seq gene
expression data was used to identify those genes in which mRNA levels may constitute
a predictive biomarker of response to their inhibition. Overall, our analysis provides
insights into the importance of a wide range of amplified genes and identifies selective gene
dependencies associated with each chromosomal amplification. These data suggest that
these genes deserve to be further studied in preclinical or clinical settings and reinforce the
idea of exploiting amplification-associated vulnerabilities to selectively target cancer cells.

2. Materials and Methods
2.1. Selection of Copy Number Amplifications in Tumors and Cell Lines

Copy-number data from 10,712 tumor samples were retrieved from a compilation
of 32 TCGA Pan-Cancer Atlas Studies (RRID:SCR_014555) [15,16]. Copy-number data
for 954 cancer cell lines were retrieved from the DepMap dataset Copy Number 21Q4
Public [17] (RRID:SCR_017655). Gene level copy number data available in DepMap were
relative to each cell line ploidy and log2-transformed with a pseudo count of 1 (log2 relative
copy number + 1). To establish which cell lines harbored an amplification in each gene
analyzed, absolute copy numbers (ACN) were calculated from relative copy numbers
(RCN) using the following formula: ACN = cell line ploidy × ((2ˆRCN) − 1). The following
threshold was defined to consider high-copy number amplification: RCN ≥ 2, which is
equal to an ACN ≥ 6 copies in diploid cells. For this study, 16 genomic amplifications
were selected based on their frequency of occurrence in both TCGA tumor samples and
DepMap cancer cell lines. This selection was necessary to ensure a sufficient number of
amplified cell lines to conduct the analysis effectively. Then, well-characterized oncogenes
that exhibit a high frequency of amplification were selected as reference genes for each
amplification (Supplementary Table S1a). Coamplified genes were identified by correlating
copy numbers of the reference genes with copy numbers of the remaining genes in cell
lines. Genes whose copy numbers showed an r value ≥ 0.7 with the reference gene
copy numbers were considered coamplified genes (Supplementary Table S1b). We also
integrated data regarding chromosome location and gene type retrieved from BioMart [18]
(RRID:SCR_002987) and Genecards [19,20] (RRID:SCR_002773). For reference genes located
in adjacent chromosomal bands (e.g., CDK4 and MDM2, located in chromosomes 12q14
and 12q15, respectively), a degree of amplification co-occurrence was detected and taken
into account in further analysis.
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2.2. Overall Survival and Disease-Specific Survival in Tumor Samples

Survival data from 10,712 tumor samples were retrieved from the TCGA Pan-Cancer
Atlas Studies (RRID:SCR_014555). Median overall survival (OS), disease-specific survival
(DSS), and hazard ratios (HR) were calculated to assess the effect of the 16 amplifications
on patient prognosis. Samples bearing amplifications in the reference genes of each region
were compared to samples with none of the amplifications. Stratification was applied
to better understand the significance of each amplification within each tumor type. The
significance between survival probability curves was determined using the log-rank test.

2.3. Comparison of Similarity in Genomic Amplification between Tumors and Cell Lines

To compare amplifications between tumors and cell lines, TCGA tumors (n = 10,712)
and DepMap cell lines (n = 954) were grouped into 25 and 23 lineages, respectively, of
which 21 were shared among them (Supplementary Tables S2a and S2b). Subsequently, the
amplification frequencies in tumors and cell lines for each reference gene and lineage were
correlated. A greater correlation between amplification frequencies in tumors and cell lines
meant a greater similarity among them in terms of gene amplification. Therefore, in relation
to the calculated Pearson’s correlation coefficient (r), three thresholds were established:
high (r ≥ 0.7), moderate (0.7 < r ≥ 0.4), and weak or negligible correlation (r < 0.4).

2.4. Screening of Gene Dependencies Associated with Gene Amplifications

To analyze the dependencies associated with each gene amplification, gene effect
data for 17,385 genes in 954 cell lines were retrieved from the DepMap dataset CRISPR
21Q4 Public+Score, Chronos [13,21,22] (RRID:SCR_017655). Gene effects are estimates
(scores) that measure, in terms of cell survival, the size of the effect of knocking out a
gene. A score of 0 is equivalent to a gene that is not essential; negative scores indicate
that knocking it out will lead to decreased cell survival, whereas positive scores indicate
increased cell survival. Subsequently, the differences in gene effects between those cell
lines harboring each of the 16 amplifications (ACN ≥ 6 copies) with respect to those cell
lines that did not harbor each of them (ACN < 6 copies) were calculated. The significance
between gene effects was determined using a two-tailed Student’s t-test followed by a
Benjamini-Hochberg correction to obtain FDR q-values. Then, for each amplification, we
performed an overlap analysis between those significant dependent genes (query genes,
(k)) and C1 positional gene sets (gene sets, (k)) using MSigDB [23] (RRID:SCR_016863). C1
positional gene sets are a compendium of 299 gene sets accounting for those human genes
annotated on the GCh38.p13 reference chromosome bands. Thus, overlap analysis was
performed to find chromosomal localization overlaps within those significant dependent
genes. The ratio between the number of query genes (k) and the number of genes within
each gene set (K) was plotted on the x-axis, whereas the gene set name was plotted on the
y-axis. The FDR q-value was indicated by a color gradient, and the gene set size by a size
dot gradient. Graphpad Prism 6.01 (RRID:SCR_017655) was used to generate the volcano
plots and overlap plots. In addition, to confirm an enrichment of coamplified genes in
the gene dependencies obtained, for each amplified region we ran a preranked GSEA [24]
(RRID:SCR_003199), comparing the preranked list of dependent genes (ordered by q-value)
with the corresponding gene set of coamplified genes. The following parameters were set:
10,000 permutations, a weighted enrichment statistic, and meandiv as the normalization
mode. Finally, we used the normalized enrichment score (NES) and the associated FDR
q-value to statistically interpret the enrichment plots obtained.

2.5. Prioritization of Candidate Targets for Each Chromosome Amplification

To prioritize candidate targets for each chromosome amplification, we integrated
druggability and subcellular localization data from CanSAR [25] (RRID:SCR_006794) for
the 923 significant gene dependencies identified (corresponding to 770 different genes)
(Supplementary Table S3). Considering that cellular localization is important for target
druggability, proteins secreted or located in the cell membrane were selected from those
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located in other cellular compartments. Then, structure-based ligandability scores, ranked
from low ligandability (−3) to high ligandability (3), were added using a color gradient.
To verify the results obtained in the initial pan-cancer screening, we also compared the
difference in gene effects of those prioritized genes between amplified and non-amplified
cell lines in selected lineages. In the case of SLC26A10 and CALM1P2, as copy number data
was not available, we used as a surrogate marker of amplification B4GALNT1 and EGFR,
respectively, which are genes closely located to both genes of interest. The significance
between gene effects was determined using a two-tailed Student’s t-test. Graphpad Prism
6.01 (RRID:SCR_017655) was used to generate the plots.

2.6. Correlation between Gene Dependencies and Gene Expression

RNA-seq expression data for prioritized genes were retrieved from the DepMap
dataset Expression 21Q4 Public [17] (RRID:SCR_017655). Gene expression data were log2
transformed with a pseudo-count of 1 (log2 TPM + 1). Since the immediate downstream
effect of amplification is overexpression, we first determined which prioritized genes
were overexpressed when amplified. To address that, for each prioritized gene, relative
copy numbers were correlated with gene expression in selected tumor types. In the
case of SLC26A10, we could not perform any correlation as neither copy number nor gene
expression were available. In the case of FKBP9 and CALM1, we correlated their expressions
with FKBP9P1 and CALM1P2 copy numbers, respectively, as FKBP9P1 and CALM1P2 were
found to be amplified but not FKBP9 and CALM1. Then, to determine whether mRNA levels
could be a predictive biomarker of gene dependency, gene expression was correlated with
gene effect data in specific tumor categories because of putative lineage-specific differences
in gene expression. The p-values obtained were corrected using the Benjamini-Hochberg
correction to obtain FDR q-values. Graphpad Prism 6.01 (RRID:SCR_017655) was used to
generate the plots.

3. Results
3.1. Cancer Cell Lines as a Model to Study Tumor Gene Amplifications

Before gene dependency analysis, an initial key question was whether gene amplifica-
tions detected in cell lines reflected those observed in the tumors from which they were
derived or whether particular amplifications had been selected in cell culture, implying an
artifactual genetic bias. Correlations between gene amplification frequencies in tumors and
cell lines showed that gene amplification profiles in cell lines resembled those observed in
same-lineage tumors in most cases (Figure 1a). In particular, we found that amplification
frequencies between tumors and cell lines showed a high correlation in 7/17 (41% of lin-
eages) (breast, cervix, colorectal, ovary, sarcoma, upper aerodigestive, and urinary tract
tumors), a moderate correlation in 6/17 (35% of lineages) (esophagus, liver, lung, pancreas,
skin, and uterus), and a weak/negligible correlation in 4/17 (24% of lineages) (bile duct,
gastric, nervous system, and thyroid) (Supplementary Figure S1a). It was not possible to
correlate gene amplification frequencies in ocular, kidney, lymphoid, and prostate lineages
since in these pathologies gene amplifications were found to be a rare phenomenon. To
clearly visualize the data analyzed, a gene amplification map was generated for cell lines
(Figure 1b) and tumors (Supplementary Figure S1b).
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Figure 1. Cancer cell lines as models to study tumor gene amplifications. (a) Comparison of amplifi-
cation frequencies between TCGA tumors (T) and DepMap cell lines (CL) from 21 lineages. A color
gradient (from white to green) indicates the frequency of each amplification. (b) An amplification
map of the DepMap cell lines (n = 954) used in the study. Cell lines were classified by the lineage of
origin and ordered by the presence (red) or absence (white) of each amplification (≥6 copies).

At this point, we also aimed to study the significance of each gene amplification in
tumor survival by comparing amplified vs. non-amplified tumors. In the pan-cancer
analysis, a decreased probability of overall survival (OS) and disease-specific survival
(DSS) was found in amplified tumors in comparison with non-amplified ones (Supple-
mentary Figure S2a,b), with EGFR, CDK4, MDM2, KRAS, and CCNE1-amplified tumors
being those associated with a worse prognosis (Supplementary Figure S2c,d). Survival
analysis by tumor type revealed that EGFR amplifications in low-grade gliomas and head
and neck cancers, CCNE1 amplifications in ovarian and uterine cancers, and CDK4 ampli-
fications in sarcomas were associated with a low probability of OS, suggesting that only
certain amplifications in particular tumor types are relevant in prognosis (Supplementary
Figure S2e–t).
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3.2. Chromosome Amplifications Generate Collateral Dependencies within the Amplicon

To elucidate the importance of each amplified gene in cell survival, all coamplified
genes within each amplicon were identified. Then, for each amplicon, we found a distinct
number and frequency of genes coamplified with the reference gene (Supplementary
Figure S3a). The gene type (protein-coding genes, RNA genes, or pseudogenes) was
considered since, for some non-coding genes, copy-number data were available but not
CRISPR-Cas9 gene effect data. For this reason, we could not obtain relevant data for
the MYC amplicon (chr8p24), since MYC and POUF5F1B were the only protein-coding
genes coamplified in this region (Supplementary Figure S3b,c). In the remaining 15 regions,
CRISPR-Cas9 gene effects were compared between amplified and non-amplified cells. Thus,
we identified a set of genes whose disruption would impair the survival of cancer cells
bearing each of the amplifications analyzed (Figure 2a–i and Supplementary Figure S3d–i).
In addition, we used MSigDB to find overlapped chromosome localizations within those
gene dependencies that were significant in the analysis (q < 0.05). Interestingly, most
dependent genes were located within the same chromosomal band or, in some cases, in
adjacent chromosomal regions (Figure 2a–i). A preranked GSEA was also performed to
confirm an enrichment of coamplified genes among the most significant gene dependencies
for each region analyzed (Supplementary Figure S4a–i). Of note, not all coamplified genes
showed a collateral gene dependency, thus demonstrating the importance of finding those
amplified genes with a higher influence on cell survival. In particular, CDK4-amplified cell
lines were highly dependent on SLC26A10, TSPAN31, and CPM, all of which are within
12q13-q15 (Figure 2a). MDM2-amplified cell lines, which showed a high co-occurrence with
CDK4 amplification, showed a high dependency towards the same genes as CDK4-amplified
cell lines and, in this case, also to BEST3 (Supplementary Figure S3d). KRAS-amplified
cell lines were especially dependent on CASC1 (Figure 2b), and EGFR-amplified cell lines
were highly dependent on FKBP9 and CALM1. Intriguingly, neither FKBP9 nor CALM1
were located near or within the 7p11 region, but two of their pseudogenes, FKBP9P1
and CALM1P2, were found to be coamplified with EGFR (Figure 2c). CCND1-amplified
cell lines were especially vulnerable to CCND1 depletion, but also to FGF19 and FGF4
depletion, while ERBB2-amplified and CCNE1-amplified cell lines strongly depended
on ERBB2 and CCNE1, respectively (Figure 2d–f). In the case of FRS3-amplified cell
lines, a significant sensitivity to PRICKLE4, FOXP4, and FRS3 depletion was observed,
whereas GNAS-amplified ones strongly depended on TFAP2C and YAP1-amplified cell
lines depended on YAP1 or MMP27 (Figure 2g–i). Additional relevant gene dependencies
associated with amplifications in CDKAL1, ELF5, CRKL, MET, or HNF1B are shown in
Supplementary Figure S3e–i.
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chr12p12; (c) EGFR, chr7p11; (d) CCND1, chr11q13; (e) ERBB2, chr17q11; (f) CCNE1, chr19q12;
(g) FRS3, chr6p21; (h) GNAS, chr20q13; and (i) YAP1, chr11q22. Top: Volcano plots showing the
difference in the CRISPR-Cas9 gene effect between cell lines harboring amplifications (≥6 copies)
or not (<6 copies). Genes were classified as coamplified (C, red dots) and non-coamplified (NC,
grey dots). Statistical significance (q < 0.05) was determined using two-tailed t-tests followed by a
Benjamini-Hochberg correction to obtain FDR q-values. Bottom: MSigDB overlap plots revealed an
enrichment of amplification-associated dependencies in genes located within the same chromosomal
band or in adjacent chromosomal regions. Gene ratio (k/K) refers to the overlap between the number
of query genes (k) and the number of genes within each gene set (K). FDR q-value is indicated by a
color gradient, and gene set size by a size dot gradient.

3.3. Some Collateral Dependencies Generated by Amplification Are Druggable

Once gene dependencies associated with each gene amplification were characterized,
we wondered which ones might be prioritized for their potential as putative new thera-
peutic targets. Prioritization for the significant gene dependencies previously found was
based on both the subcellular localization and druggability score of each particular target
(Figure 3a,b). Dependent genes were classified by the subcellular localization of the encoded
protein, considering that membrane and secreted proteins are more accessible to being
inhibited by small molecules or antibodies. Druggability scores were particularly taken
into consideration for proteins located in the cytoplasm, nucleus, or organelles. Among
dependent genes codifying proteins located in the membrane, we highlighted the following
genes as priority targets: SLC26A10, CPM, TSPAN31, and BEST3 (12q13–15), FGF19 and
FGF4 (11q13), ERBB2 (17q12), FRS3 (6p21), PAMR1 (11p13), and MET (7q31) (Figure 3a,b,
Supplementary Table S3). Regarding dependent genes encoding proteins neither located in
the membrane nor secreted, we prioritized CASC1 (12p12), CALM1 and FKBP9 (FKBP9P1
and CALM1P2 pseudogenes located in 7p11), CCNE1 (19q12), MMP27 (11q12), and CAT
(11p13) (Figure 3a,b, Supplementary Table S3). With the aim of confirming the results
obtained in the initial pan-cancer screening, we also compared the difference in gene effects
of the prioritized genes between amplified and non-amplified cell lines in specific tumor
types (Figure 3c–r). Differences in gene effects between amplified versus non-amplified
cell lines in distinct tumor types were similar, as it was observed in SLC26A10, TSPAN31,
CALM1, FKBP9, ERBB2, or CCNE1, suggesting that the biological consequences derived
from the knockout of these prioritized genes are, in general, lineage-independent. However,
in some tumor types, no differences in gene effect were observed, as exemplified by FGF19
and FGF4 in bladder tumors or MET in gastric tumors.

3.4. mRNA Gene Expression Levels Only Correlate with Gene Dependency in Some Prioritized Genes

Since the most plausible downstream effect of gene amplification is gene overexpres-
sion, we aimed to determine whether gene expression levels could be a predictive biomarker
of gene dependency. To address this issue, we first determined which of the prioritized
amplified genes were overexpressed when amplified in specific tumor categories. For each
prioritized gene, we correlated its relative expression with its relative copy number (Sup-
plementary Figure S5a–o). Our analysis showed that an increase in copy number does not
always result in an increase in gene expression, potentially due to existing negative feed-
back mechanisms to regulate transcription or translation processes. Subsequently, relative
expression was correlated with gene dependency data in cell lines from selected lineages
(Figure 4a–o). Overall, the strongest correlations between expression and dependency were
found in those prioritized genes whose copy number strongly correlated with gene expres-
sion (BEST3, CPM, ERBB2, CCNE1, or TSPAN31) (Figure 4a–e and Supplementary Figure
S5a–e). However, in some cases, such as CALM1, FGF4, FKBP9, PAMR1, or MMP27, there
was no clear correlation between gene amplification and gene overexpression, nor between
gene expression and gene dependence (Figure 4k–o and Supplementary Figure S5k–o).
Therefore, our results highlight, at least in the prioritized genes analyzed, the importance
of taking gene copy number into account as a predictive biomarker of gene dependence
instead of considering only mRNA levels.



Cancers 2023, 15, 1636 9 of 14Cancers 2023, 15, x FOR PEER REVIEW 9 of 16 
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scores (from +3 to −3) were integrated for all significant dependent genes previously identified. A
higher druggability score indicates a higher probability of the codified protein harboring ligandable
pockets within its 3D structure. Dependent genes were classified as (a) genes codifying for membrane
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(c–r) Differences in gene effects of the prioritized genes between amplified (A, red dots) and non-
amplified (NA, grey dots) cell lines from specific tumor types. Results are shown for the following
genes: (c) SLC26A10, (d) TSPAN31, (e) CPM, (f) BEST3, (g) CASC1, (h) CALM1, (i) FKBP9, (j) FGF19,
(k) FGF4, (l) ERBB2, (m) CCNE1, (n) FRS3, (o) MMP27, (p) PAMR1, (q) CAT, and (r) MET. Statistical
significance (p < 0.05) was determined using two-tailed t-tests. STS: soft-tissue sarcoma; NSCLC:
non-small cell lung cancer; GBM: glioblastoma; UPA: upper aerodigestive tumors. * indicates p < 0.05;
** means p < 0.01, *** means p < 0.001, **** means p < 0.0001, and ns means non-significant.
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prioritized genes in cell lines from selected lineages. Cell lines were also classified into amplified
(A, red dots) and non-amplified (NA, grey dots). STS: soft-tissue sarcoma; NSCLC: non-small cell
lung cancer; UPA: upper aerodigestive tumors.

4. Discussion

Over the last few years, several studies focused on assessing the effects of genomic
amplifications on tumor prognosis have been conducted. However, only a few gene
amplifications have been established as biomarkers for targeted therapies. In addition, the
oncogenic relevance of most amplified genes remains unknown, thereby hindering the
potential of molecular diagnosis towards the discovery and use of new targeted therapies
to treat these tumors.

During the last few years, CRISPR-Cas9 loss-of-function screens have emerged as a
powerful tool to identify essential gene dependencies for cancer cell line proliferation and
survival while reducing the number of off-target effects that occur in RNAi screens [26].
However, CRISPR-Cas9 screens exhibit several biases and artifacts that may compromise
the conclusions obtained. Recently, the newly developed algorithm Chronos has been
shown to address various CRISPR screen artifacts simultaneously, thus exhibiting the
lowest copy-number and screen quality bias of all evaluated methods [13]. In this study,
we used Chronos-corrected data from CRISPR-Cas9 screens in 954 pan-cancer cell lines
to reduce possible biases in the identification of gene dependencies associated with 16
common genomic amplifications detected in tumors.

Interestingly, correlations between gene amplification frequencies in tumors and cell
lines showed that gene amplification profiles in cell lines resembled those observed in
same-lineage tumors, enabling the translation of the findings in cell lines to human tumors
(Figure 1a). Moreover, gene dependency analysis revealed a greater dependence among
coamplified genes within each of the regions analyzed with respect to non-coamplified
genes, thereby suggesting that some coamplified genes with previously unknown functions
in tumor malignancy confer a higher survival capacity to cancer cells harboring each amplifi-
cation (Figure 2a–i, Supplementary Figures S3d–i and S4a–i). In addition, we also integrated
druggability data and subcellular localization to better select those gene dependencies that
might be prioritized for further research and drug targeting (Figure 3a,b). Interestingly,
differences in gene effects of prioritized genes between amplified and non-amplified cell
lines were largely maintained when considering specific tumor types, suggesting that
these amplification-associated dependencies are common among amplified cell lines inde-
pendently of the tumor subtype (Figure 3c–r). These results are in concordance with the
current knowledge that amplified tumors from distinct tumor types respond to targeted
therapies directed at the amplification, as occurs with ERBB2/HER2 or MET-amplified
tumors [27,28]. Beyond the well-known ERBB2/HER2 or MET amplification-associated
dependencies (Figure 2e and Supplementary Figure S3h), there are other gene dependen-
cies identified in the analysis that show promising results in selected tumor types. For
example, inhibition of FGF19 in CCND1-amplified tumors (11q13 amplification) using anti-
FGF19 antibodies has been shown to be an effective therapy for hepatocellular carcinoma
(HCC), and the blockage of its FGFR receptors has shown promising clinical results in
FGF19/FGF4+ HCC [29–31]. Other vulnerabilities, such as CDK2 and PKMYT1 dependen-
cies in CCNE1-amplified tumors, are currently under study, and selective CDK2 inhibitors
are starting to enter clinical development [32]. This part of the analysis provides a broad list
of new potential druggable vulnerabilities associated with the most common amplifications
detected in tumors, which may have a strong impact on the development of new targeted
therapies. However, further in vitro/in vivo experimental validation will be required upon
this initial screening.

Finally, another key point of our analyses was to determine whether mRNA levels
could be used as predictive biomarkers of amplification-associated dependencies in all
cases. It is well known that increases in gene copy numbers due to amplifications are often
associated with concomitant increases in gene expression, which in turn can be observed in
the mRNA levels of the amplified gene. However, there are several factors, such as negative
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feedback elements in transcriptional (or post-transcriptional) regulation, that may influence
the mRNA levels of amplified genes. Interestingly, correlations between copy number and
mRNA levels identified certain amplification-associated dependencies in which an increase
in copy number did not result in a corresponding increase at mRNA level, such as CALM1,
FGF4, FKBP9, PAMR1, or MMP27 (Supplementary Figure S5k–o). For the particular case of
these genes, mRNA may not be a reliable biomarker of dependence, and the focus should
be on the copy number of the gene. These results indicate that some gene amplifications are
not associated with increased mRNA levels despite showing a remarkable amplification-
associated dependency. Conversely, for those genes whose copy number and mRNA levels
correlate positively, such as BEST3, CPM, ERBB2, CCNE1, or TSPAN31 (Figure 4a–e and
Supplementary Figure S5a–e), both mRNA and copy number may be used as predictive
biomarkers of their dependency. Further studies to assess protein levels would be necessary
to better understand how the amplification of these genes contributes to their oncogenic
potential.

We believe that these results could be reproduced and extended to almost all chromo-
somal amplifications detected in tumors, but a representative subset of cell lines harboring
these particular amplifications would be required. Moreover, it would also be of utmost
interest to analyze the effects derived from depleting ncRNA genes, especially those located
in amplified regions that present a low frequency of protein-coding genes, such as the MYC
amplicon, to obtain additional selective amplification-associated dependencies.

5. Conclusions

Our analyses identified new potential druggable vulnerabilities associated with re-
current chromosome amplifications detected in tumors. Some of these new amplification-
associated dependencies included SLC26A10, TSPAN31, CPM, and BEST3 for 12q13–15
amplifications; CASC1 for 12p12 amplifications; FKBP9 and CALM1 for 7p11 amplifications;
and FRS3 for 6p21 amplifications, among others. In addition, our results supported previ-
ous findings on targeting amplification-associated dependencies in particular tumor types,
such as ERBB2/HER2 in 17q12 amplified breast cancer, FGF19/FGF4 in 11q13 amplified
liver cancer, or MET in 7q31 amplified lung cancer, and suggested its extension to other
tumors. Finally, gene expression analysis underscores the importance of considering copy
numbers as a predictive biomarker of gene dependency instead of relying only on mRNA
levels. In summary, we believe that the discovery of new vulnerabilities associated with re-
current amplifications detected in tumors might entail a major advance in the development
of new therapies against cancer, thus contributing to the progress of precision medicine.
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