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Simple Summary: Immune-checkpoint inhibitors (ICIs) are increasingly used in the treatment of
cancer, but they cause immune-related adverse events (irAEs) in around 40% of patients treated.
Identifying biomarkers predictive of irAEs has become a priority for the optimal management of
patients on ICIs. Herein, we review the state of the art regarding the most relevant biomarkers for
predicting irAEs, distinguishing between biomarkers already clinically available and those under
investigation. Although none of these biomarkers has been validated in prospective studies, there
is growing evidence supporting their use for irAE prediction and clinical characterization, which
depend on cancer type, ICI agent and organ affected by the toxicity. A better understanding of the
pathogenic mechanisms underlying irAEs and the combination of different emerging biomarkers
would allow us to improve the risk-benefit balance for patients who are candidates for ICI therapy.

Abstract: Immune-checkpoint inhibitors (ICIs) are antagonists of inhibitory receptors in the immune
system, such as the cytotoxic T-lymphocyte-associated antigen-4, the programmed cell death protein-
1 and its ligand PD-L1, and they are increasingly used in cancer treatment. By blocking certain
suppressive pathways, ICIs promote T-cell activation and antitumor activity but may induce so-called
immune-related adverse events (irAEs), which mimic traditional autoimmune disorders. With the
approval of more ICIs, irAE prediction has become a key factor in improving patient survival and
quality of life. Several biomarkers have been described as potential irAE predictors, some of them are
already available for clinical use and others are under development; examples include circulating
blood cell counts and ratios, T-cell expansion and diversification, cytokines, autoantibodies and
autoantigens, serum and other biological fluid proteins, human leucocyte antigen genotypes, genetic
variations and gene profiles, microRNAs, and the gastrointestinal microbiome. Nevertheless, it is
difficult to generalize the application of irAE biomarkers based on the current evidence because most
studies have been retrospective, time-limited and restricted to a specific type of cancer, irAE or ICI.
Long-term prospective cohorts and real-life studies are needed to assess the predictive capacity of
different potential irAE biomarkers, regardless of the ICI type, organ involved or cancer site.

Keywords: immune-related adverse events; immune-checkpoint inhibitors; biomarkers; prediction;
diagnosis
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1. Introduction

In recent years, treatment with immune checkpoint inhibitors (ICIs) has led to a
paradigm shift in the treatment of various types of cancer [1,2]. The mechanism of action of
ICIs consists of blocking certain inhibitory receptors in the immune system, such as the
cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), programmed death cell protein
1 (PD-1), and PD ligand 1 (PD-L1). By blocking these inhibitory pathways, ICIs induce
an enhanced T-cell-mediated response aimed at eliminating tumor cells. As a result of
this immune overactivation, ICIs may also trigger a wide range of toxic effects known as
immune-related adverse events (irAEs) [3], which mimic traditional autoimmune disorders.
In practical terms, an irAE can be defined as any symptom, sign, syndrome, or disease
caused or exacerbated by an immune-activating mechanism during the administration of
an ICI once other causes such as infectious diseases or tumor progression have been ruled
out [4]. The burden of irAEs is high because they are common and, not infrequently, severe
complications impact the quality of life and prognosis of patients receiving ICIs [5]. Fur-
thermore, it remains unclear how best to manage irAEs without interfering with ICI-related
antitumor response and long-term patient survival [6]. Indeed, patients who develop irAEs
have a better cancer-related prognosis [7–9]. Therefore, it is of great interest to assess the
individual risk of toxicity in advance, allowing earlier management of irAEs, which would
help maintain ICIs in these patients susceptible to immune-mediated complications but
who, paradoxically, benefit more from therapy.

With the progressive expansion of ICI use in the oncology field, there is an increasing
need for reliable and validated biomarkers able to predict irAEs [10]. In accordance
with FDA guidelines, a biomarker is “a defined characteristic that is measured as an
indicator of normal biological processes, pathogenic processes or responses to an exposure
or intervention” [11]. In line with this, a predictive biomarker can be defined as a factor
that is “used to identify individuals who are more likely than similar individuals without
the biomarker to experience a favorable or unfavorable effect from exposure to a medical
product or an environmental agent” [12]. Recent years have seen a proliferation of studies
on predictive biomarkers for irAEs. Nonetheless, the clinical benefit of reported biomarkers
still needs to be confirmed by long-term prospective studies, preferably within randomized
clinical trials or real-life studies.

To date, most research on irAE biomarkers has had similar shortcomings: a short
follow-up time, retrospective design, and a restricted focus on specific types of irAE, ICI
or cancer. That is, there is a lack of long-term, multicenter, and prospective studies en-
compassing pan-tumor cohorts of patients treated with different ICI agents. Moreover, a
cross-sectional use of generic predictors aimed at different tumors, irAEs and ICIs is not
feasible because each organ or system damaged by immune toxicity is related to a specific
biomarker. For instance, it is well known that the risk of developing nivolumab-induced
destructive thyroiditis is higher in patients with antithyroid antibodies pre-treatment [13].
Strikingly, some studies have suggested that certain specific autoantibodies, such as an-
tithyroid antibodies, may herald the risk of irAEs at other anatomic sites [14]. Overall,
current knowledge gaps on the pathogenesis of irAEs prevent us from estimating indi-
vidual patients’ risk of ICI-mediated toxicity and motivate us to search for more effective
predictive biomarkers.

Among the wide range of potentially useful biomarkers, we can distinguish between
biomarkers that, though not validated, are available for routine clinical use and investi-
gational biomarkers [15]. The aim of this paper is to review the literature on predictive
biomarkers for irAEs from a practical approach, differentiating between biomarkers already
available for use in daily practice and those still at the research stage.

2. Material and Methods

The search strategy is detailed in Supplementary Materials (Figure S1).
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3. Results

First, it should be noted that no biomarkers have yet been validated as an irAE predic-
tor in asymptomatic patients treated with ICIs [16]. Taking a pragmatic, clinically based
approach, we have classified potentially predictive irAE biomarkers as those currently avail-
able for clinical use and those still under investigation (Figure 1). Within this classification,
clinically available biomarkers would be easily accessible to attending physicians if vali-
dated for this purpose, while those still under investigation would require implementation
in clinical practice in addition to validation.
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Figure 1. Graphical representation of different families of predictive biomarkers for immune-related
adverse events in patients receiving immune-checkpoint inhibitors. Abbreviations in alphabet-
ical order: Abs, antibodies; AEC, absolute eosinophil count; ALC, absolute lymphocyte count;
AMC, absolute monocyte count; ANC, absolute neutrophil count; Ang-1, angiopoietin-1; APC,
absolute platelet count; CD40, cluster of differentiation 40; CRP, C-reactive protein; CTLA4, cy-
totoxic T-lymphocyte-associated antigen 4; CXCL, chemokine ligand; dNLR, derived neutrophil-
to-lymphocyte ratio; GM-CSF, granulocyte-macrophage colony-stimulating factor; gro-1, growth-
regulated oncogene-1; HLA, human leucocyte antigen; IL, interleukin; irAE, immune-related adverse
event; LMR, lymphocyte-to-monocyte ratio; miR, micro-RNA; MLR, monocyte-to-lymphocyte ratio;
NLR, neutrophil-to-lymphocyte ratio; PC, platelet count; PDCD1, programmed cell death protein 1;
PLR, platelet-to-lymphocyte ratio; REC, relative eosinophil count; RLC, relative lymphocyte count;
sCD163, soluble cluster of differentiation 163; SNP, single nucleotide polymorphism; TNF-α, tumor
necrosis factor-alpha; WBC, white blood cell.

3.1. Biomarkers Available for Clinical Use
3.1.1. Autoantibodies

The potential use of autoantibodies as predictive biomarkers of irAEs has become an
expanding field of research [17,18]. Currently, guidelines do not recommend testing every
patient for autoantibodies before ICI initiation as this indicator has not been validated
for irAE screening [19]. The association between autoantibodies and irAEs is, however,
well documented in the case of organ-specific irAEs and the autoantibodies related to
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such events [20–22]. For instance, the risk of suffering ICI-induced thyroiditis is higher
in patients with pre-existing antithyroid antibodies [13,23,24]. That is, on the one hand,
some organ-specific autoantibodies are only useful for organ-specific irAEs, although not
all reported irAEs have been paired with a specific autoantibody. On the other, generic and
routinely available autoantibodies, such as antinuclear antibodies (ANA) or rheumatoid
factor, may be useful in screening for any type of irAE, regardless of the tissue involved [25].
Furthermore, even certain organ-specific autoantibodies such as antithyroid antibodies,
traditionally linked to the prognosis of immunogenic tumors [26], could also be useful
in predicting irAEs at any site, indicating a marked overlap between generic and specific
autoantibodies [14,25]. Nevertheless, the clinical heterogeneity and complex and diverse
pathogenesis, as well as the generally low rates of autoantibody seropositivity associated
with these events, mean that current autoantibody panels are not applicable to all patients
developing ICI-related toxicity.

In recent years, research on autoantibodies as irAE indicators has moved from retro-
spective towards prospective methods (Table 1) [14,25,27–39]. While testing positive for
autoantibodies at baseline was considered a risk factor for irAE development in preliminary
studies, the most recent reports have provided greater insight into changes in antibody
levels over time. For example, a retrospective study by Toi et al. suggested that patients
with pre-treatment ANAs, rheumatoid factor or antithyroid antibodies were at increased
risk of developing irAEs [27]. De Moel et al. showed an association between seroconversion
of any autoantibody included in a battery of 23 autoantibodies and irAEs during follow-up,
especially when focusing on specific irAEs related to the battery under study; however,
the presence of autoantibodies before ICI initiation was not associated with irAEs [30].
The value of autoantibody seroconversion was also highlighted by Giannicola et al., who
found a higher risk of irAEs in patients who became positive for ANAs, anti-extractable
nuclear antigens antibodies or anti-smooth muscle antibodies after starting nivolumab
administration [31].
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Table 1. Summary of studies on the clinical use of autoantibodies as predictive biomarkers for immune-related adverse events regardless of the specific organ-
autoantibody pairing.

Type of Parameter Design
(No. Patients)

Type of
Tumor Type of irAE Main Findings Reference

ANA, RF and ATA
(detected before ICI initiation)

Retrospective
(n = 137) NSCLC All types

Autoantibodies were associated with
a higher risk of irAEs (OR 3.25, p = 0.001)

Toi Y.
JAMA Oncol 2019 [27]

ANA
(detected before ICI initiation)

Retrospective
(n = 83) NSCLC All types

ANA were not associated with irAEs, though the risk of
irAEs tended to be higher with higher titers of ANAs

Yoneshima Y.
Lung Cancer 2019 [28]

ANA
(detected before ICI initiation)

Retrospective
(n = 191) Pan-tumor All types ANA were not associated with irAEs, except for colitis (22%

vs. 1.6%, p = 0.002)
Sakakida T.

Clin Transl Oncol 2020 [29]

ANA, anti-dsDNA antibody,
ENA *, RF, ACPA, ASMA, AMA,

anti-LKM antibody and ATA
(developing after ICI initiation)

Retrospective
(n = 133) Melanoma All types

The association between irAEs and seroconversions was
nonsignificant considering all irAEs and any autoantibody

(OR 2.92, p = 0.12), but became significant when focusing on
irAEs related to the autoantibodies tested (OR 3.64, p = 0.04)

de Moel EC.
Cancer Immunol Res 2019 [30]

ANA, ENA and ASMA
(developing after ICI initiation,

within 30 days)

Retrospective
(n = 92) NSCLC All types Early detection of autoantibodies was associated with a

higher risk of irAEs (HR not available, p = 0.002)
Giannicola R.

Mol Clin Oncol 2019 [31]

ATA
(titer increase from baseline)

Prospective
(n = 78) Pan-tumor All types

Increases in anti-Tg and anti-TPO titers ≥ 1.5 from baseline
were associated with irAE occurrence

(OR 17.4, p = 0.015; OR 6.1, p = 0.035; respectively)

Music M.
F1000Res 2020 [14]

ANA, RF, ATA and ANCA
(before and after ICI initiation)

Retrospective
(n = 69) Pan-tumor All types Positivity for any autoantibody was associated with

a higher risk of irAEs (OR 46.61, p = 0.010)
Les I.

Ann Med 2021 [25]

ANA
(detected before ICI initiation)

Retrospective
(n = 68)

Urothelial
carcinoma All types Patients with ANA positivity at a titer >1:160 developed

irAEs more frequently (p = 0.029) and earlier (p = 0.052)
Castel-Ajgal Z.

Clin Genitourin Cancer 2022 [32]

ANA, ENA **, RF, ACPA,
autoimmune hepatopathy profile

# and myopathy profile †

(detected before ICI initiation)

Prospective
(n = 44) Pan-cancer All types

The frequency of irAEs did not differ as a function of
positivity for any autoantibody (OR 0.62, p = 0.480) or ANA

titers (OR 0.79, p = 0.529)

Barth DA.
Cancer Med 2022 [33]

ANA and ATA
(detected before ICI initiation)

Retrospective
(n = 159) NSCLC All types

ANA titer ≥ 1:320 was related to irAEs (OR 4.9, p = 0.01),
especially to skin subtypes (9.7% in patients with ANA
<1:320 vs. 32% in patients with ANA ≥ 1:320, p = 0.003)

Zhang D.
Transl Lung Cancer Res 2022 [34]



Cancers 2023, 15, 1629 6 of 35

Table 1. Cont.

Type of Parameter Design
(No. Patients)

Type of
Tumor Type of irAE Main Findings Reference

ANA, anti-Ro52 and ATA
(detected before ICI initiation)

Retrospective
(n = 177) Pan-tumor All types

ANA and anti-Ro52 positivity was not associated with a
higher risk of irAEs. ATA positivity was more common in

patients with than without thyroiditis (75% vs. 13.8%,
p < 0.001)

Tang H.
Front Immunol 2022 [35]

ANA, ATA, AGAD, AChR and
PA-IgG

(detected before ICI initiation)

Retrospective
(n = 275) Pan-tumor All types

There were no associations between autoantibodies and
irAEs, except between ATA and thyroiditis (39.5% in

anti-Tg-positive vs. 12.5% in anti-Tg-negative patients,
p < 0.01)

Izawa N.
ESMO 2022 [36]

ANA
(detected before ICI initiation)

Retrospective
(n = 266) NSCLC All types

There were no significant differences in the frequency of
irAEs between positive and negative ANA patients and

between high and low ANA titers

Mouri A.
Front Oncol 2021 [37]

ANA
(before and after ICI initiation)

Prospective
(n = 152) Pan-tumor All types

There was no association between irAEs and ANA at
baseline or developing. Patients who became ANA-positive
during follow-up were more likely to have severe irAEs than
those who were ANA-positive at baseline and ANA-negative

patients (42.8% vs. 26.1% vs. 9.1%, p = 0.05)

Alserawan L.
Int J Mol Sci 2022 [38]

ANA, RF and ACPA
(before and 6 weeks after ICI

initiation)

Prospective
(n = 60) Melanoma All types

There was no association between baseline seropositivity for
ANA/RF/ACPA and time to first irAE (p = 0.39).

ANA/RF/ACPA-negative patients experienced more thyroid
irAEs than ANA/RF/ACPA-positive patients (p = 0.006)

Gosh N.
J Immunother Cancer 2022 [39]

* Included anti-U1RNP, anti-SS-A/Ro, anti-SS-B/La, anti-centromere protein B, anti-Scl-70, anti-Jo-1, and anti-Sm. ** Included anti-centromere protein B, anti-double strand DNA,
anti-SS-B/La, anti-PM100, anti-PM75, anti-RNP70, anti-SS-A/Ro, anti-Scl-70, and anti-U1RNP. # Included anti-GP210, anti-LKM1, anti-M2, anti-SP100, anti-SLA-LP, anti-LC1, and
anti-F-Actin. † Included anti-EJ, anti-Jo-1, anti-Ku, anti-MDA5, anti-MI2a, anti-MI2b, anti-NXP2, anti-Oj, anti-PL-12, anti-PL-7, anti-SAE, anti-SRP, and anti-TIF-1γ. Abbreviations
in alphabetical order: ACPA, anti-citrullinated peptide antibody; AGAD, anti-glutamic acid decarboxylase antibody; AChR, anti-acetylcholinesterase receptor antibody; ALKM,
anti-liver-kidney microsomal; AMA, anti-mitochondrial antibody; ANA, antinuclear antibody; ANCA, antineutrophil cytoplasmic antibody; ASMA, anti-smooth muscle antibody; ATA,
antithyroid antibody; dsDNA, double-stranded DNA antibody; ENA, extractable nuclear antigen antibody; HR, hazard ratio; ICI, immune-checkpoint inhibitor; irAE, immune-related
adverse event; NSCLC, non-small lung cancer; OR, odds ratio; PA-Ig, platelet-associated immunoglobulin G; RF, rheumatoid factor; Tg, thyroglobulin; TPO, thyroid peroxidase.
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Confirming the significance of dynamic changes in autoantibody titer, a sub-study
from a phase II clinical trial identified a low autoantibody titer at baseline and greater fold
change in autoantibody titer after ICI initiation as independent risk factors for irAEs [39],
in contrast with the pre-formed autoantibody theory. Moreover, Alsewaran et al. demon-
strated that pre-treatment ANA positivity was not associated with irAE development. On
the contrary, patients experiencing seroconversion to ANA positivity after ICI initiation
developed more severe irAEs than patients who remained ANA-negative and patients
who were ANA-positive before ICI initiation. This humoral response in the form of ANA
seroconversion could be related to early B-cell changes induced by ICIs, namely a decline
in circulating B cells and an increase in CD21 B cells and plasmablasts, which have been
associated with a higher frequency of irAEs [40]. Furthermore, in up to 83% of patients
with severe irAEs, modifications in ANA patterns preceded irAE onset [38]. In addition
to ANA positivity, ANA patterns determined by immunofluorescence may be useful for
discriminating between primary autoimmune diseases and irAEs. Although no studies
designed to compare autoantibody profiles have yet been reported, patients who develop
irAEs may be less likely to express disease-specific ANA patterns than patients with the
corresponding classical autoimmune disease. In contrast, a nuclear speckled pattern may
be more indicative of immune-related toxicity [38].

3.1.2. Blood Cell Counts and Ratios

The use of blood cell counts for the early detection of irAEs may be of great interest
to clinicians due to their wide availability, low cost, and easy interpretation. Although
not completely consistent, there is supportive evidence suggesting that baseline absolute
neutrophil, lymphocyte, monocyte, eosinophil and basophil counts, platelet counts, and
increases in white blood cell, lymphocyte and eosinophil counts during follow-up are
associated with a higher risk of irAEs (Table 2) [41–60]. In addition, several blood cell ratios,
the most common being the neutrophil-to-lymphocyte ratio (NLR) and derived NLR (cal-
culated as absolute neutrophil count/[white blood cell count–absolute neutrophil count]),
could help to predict irAEs before and after ICI initiation. In a systematic review and
meta-analysis including 6696 patients on ICIs from 25 studies, a high NLR was identified
as an independent risk factor for developing irAEs [51]. In a prospective study including
1187 patients, an elevated NLR at the beginning of ICI therapy was predictive of very
severe irAEs (grades 4 and 5) [42].
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Table 2. Summary of studies on the clinical use of blood cell counts and ratios as predictive biomarkers for immune-related adverse events.

At Baseline (Before Immune-Checkpoint Inhibitor Initiation)

Type of
Parameter

Study Design
(No. Patients) Type of Tumor Type of irAE Main Findings Reference

ALC Retrospective
(n = 167) Pan-tumor All types Grade ≥ 2 irAEs were associated with ALC > 2000/µL

(OR 1.996, p < 0.05)
Diehl A.

Oncotarget 2017 [41]

AEC Retrospective
(n = 45) Melanoma Endocrine

irAEs
irAEs were associated with AEC > 240/µL

(OR 1.601, p = 0.045)
Nakamura Y.

Jpn J Clin Oncol 2019 [42]

AEC Retrospective
(n = 95) Pan-tumor All types AEC > 0.045 × 109/L was predictive of irAEs

(OR 4.114, p = 0.014)
Ma Y.

World J Surg Oncol 2022 [43]

NLR Prospective
(n = 1187)

Pan-tumor (blood and
solid organ cancers) All types NLR > 4.78 was predictive of grade 4 and 5 irAEs

(OR not available, p = 0.0137) *
Ruste V.

Eur J Cancer 2021 [44]

NLR and PLR Retrospective
(n = 184) NSCLC All types PLR < 180 was the only independent predictor of irAEs

(OR 2.3, p = 0.017)
Pavan A.

Oncologist 2019 [45]

dNLR Retrospective
(n = 391) Pan-tumor All types dNLR ≥ 3 was protective against irAEs

(OR 0.37, p = 0.012)
Eun Y.

Sci Rep 2019 [46]

ANC, PC, NLR and PLR Retrospective
(n = 150) NSCLC All types

Grade 3–4 irAEs were associated with ANC
(p = 0.009), PC (p = 0.023), NLR (p= 0.023) and PLR (p = 0.0016) *

(cut-off values and ORs not provided)

Liu W.
Cancer Manag Res 2021 [47]

RLC and AEC Retrospective
(n = 105) Pan-tumor All types irAEs were associated with RLC < 28.5% (OR 3.60, p = 0.027) and

AEC > 0.175 × 109/L (OR 3.44, p = 0.020)
Bai R.

Cancer Biol Med 2021 [48]

NLR Retrospective
(n = 115) NSCLC All types irAEs were associated with NLR < 2.86

(OR 2.69, p = 0.016)
Fujimoto A.

Thorac Cancer 2021 [49]

ALC, AMC, APC, NLR,
MLR and PLR

Retrospective
(n = 470) Pan-tumor All types

irAEs were associated with ALC > 2.6 K/µL (aOR 4.3, p = 0.002),
AMC > 0.29 K/µL (aOR 2.34, p = 0.03), PC > 145 K/µL (aOR 2.23,
p = 0.03), NLR ≤ 5.3 (aOR 2.07, p = 0.01), MLR ≤ 0.76 (aOR 2.96,

p = 0.01) and PLR ≤ 534 (aOR 5.05, p = 0.04) **

Michailidou D.
Sci Rep 2021 [50]

NLR Metanalysis #

(n = 6696)
NSCLC All types irAEs were associated with NLR ≥ 5

(OR = 1.046, p = 0.026)

Suazo-Zepeda E.
Cancer Immunol Immunother

2021 [51]
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Table 2. Cont.

At Baseline (Before Immune-Checkpoint Inhibitor Initiation)

Type of
Parameter

Study Design
(No. Patients) Type of Tumor Type of irAE Main Findings Reference

ALC, LMR, NLR and PLR Retrospective
(n = 92) NSCLC All types

ALC > 1450/mm3 (aOR 0.24, p = 0.003) and LMR > 1.6 (OR 0.12,
p = 0.004) were associated with a lower risk of irAEs.

NLR > 2.3 (aOR 5.99, p = 0.005) and PLR > 165 (OR = 2.87,
p = 0.022) were associated with a higher risk of irAEs †

Egami S.
J Cancer 2021 [52]

ALC Retrospective
(n = 667) NSCLC All types ALC was positively associated with irAE risk

(OR 2.556, p = 0.001; ALC cut-off value not provided)
Xu H.

Exp Cell Res 2022 [53]

NLR Retrospective
(n = 147) Pan-tumor All types NLR < 3 was associated with a higher rate of irAE

(aOR 2.27, p = 0.034)
Lee PY.

Cancers (Basel) 2021 [54]

AEC Retrospective
(n = 300) NSCLC Pneumonitis Pneumonitis was associated with AEC ≥ 0.125 × 109/L

(HR 2.825, p < 0.001)
Chu X.

Lung Cancer 2020 [55]

ALC Retrospective
(n = 110) Pan-tumor Myocarditis ALC 1.6 K/µL in myocarditis group vs. 1.3 K/µL in

non-myocarditis group (p = 0.02) *
Drobni ZD.

J Am Heart Assoc 2020 [56]

NLR Retrospective
(n = 73)

Gastric and renal
cancers

Grade 3 and 4
irAEs

NLR < 4.3 was associated with lower risk of grade 3–4 irAEs
(OR 0.024, p = 0.014)

Takada S.
Asian Pac J Cancer Prev 2022 [57]

During Follow-Up (After Immune-Checkpoint Inhibitor Initiation)

Type of
Parameter Study Design Type of Tumor Type of irAE Main Findings Reference

WBC
RLC

(on the day of irAE
detection)

Retrospective
(n =101) Melanoma

Lung and gas-
trointestinal

irAEs

59.1% increase in WBC (OR = 6.04, p = 0.014) and
32.3% decrease in RLC (OR = 5.01, p = 0.012) were

predictive of irAEs

Fujisawa Y.
J Dermatol Sci 2017 [58]

ALC at 1 month Retrospective
(n = 167) Pan-tumor All types Grade ≥ 2 irAEs were associated with ALC > 2000/µL

(OR = 1.813, p < 0.05)
Diehl A.

Oncotarget 2017 [41]

REC at 1 month
WBC at 1 month

Retrospective
(n = 45) Melanoma

Endocrine
irAEs and

vitiligo

REC > 3.2% was predictive of irAEs (OR = 5.111, p = 0.025) *.
A summative increase in WBC by 100 was protective against

vitiligo (OR = 0.823, p = 0.0023).

Nakamura Y.
Jpn J Clin Oncol 2019 [42]
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Table 2. Cont.

At Baseline (Before Immune-Checkpoint Inhibitor Initiation)

Type of
Parameter

Study Design
(No. Patients) Type of Tumor Type of irAE Main Findings Reference

ANC
NLR
PLR

(treatment cycle before
onset of the irAE)

Retrospective
(n = 150) NSCLC All types

Multiple univariate associations were described, namely,
between *:

1.91 × 109/L decrease in ANC and grade 1–2 irAEs (p = 0.013)
1.11 × 109/L decrease in ANC and grade 3–4 irAEs (p = 0.003)

0.62 decrease in NLR and grade 1–2 irAEs (p = 0.013)
0.76 decrease in NLR and grade 3–4 irAEs (p = 0.011)
89.26 decrease in PLR and grade 1–2 irAEs (p = 0.011)

(comparative data between baseline and pre-irAE cycle)

Liu W.
Cancer Manag Res 2021 [47]

ALC at 2 weeks Retrospective
(n = 171) NSCLC All types Early onset of irAEs was associated with ALC > 820/mm3

(aOR = 3.58, p = 0.07) †
Egami S.

Front Oncol 2021 [59]

NLR at second course (2
to 3 weeks after the

first dose)

Retrospective
(n = 243)

Esophageal, gastric and
colon cancer All types irAEs (any grade) were associated with NLR < 3

(OR = 0.894, p= 0.044)
Zhang Z.

Cancers (Basel) 2022 [60]

ALC
NLR

(from baseline to last ICI
dose; and from baseline to

myocarditis onset)

Retrospective
(n = 110) Pan-tumor Myocarditis

irAEs were associated with
a decrease in ALC (1.6 K/µL to 1.4 K/µL to 1.1 K/µL, p < 0.001)

and an increase in NLR (3.5 to 4.1 to 6.6, p < 0.001) *

Drobni ZD.
J Am Heart Assoc 2020 [56]

NLR (at the onset of
the irAE)

Retrospective
(n = 73)

Gastric and renal
cancers

Grade 3 and 4
irAEs

∆NLR >120% was associated with increased risk of irAEs
(OR = 10.48, p = 0.033)

Takada S.
Asian Pac J Cancer Prev 2022 [57]

* Only in the univariate analysis. ** All odds ratios adjusted for age, sex, smoking history, cancer type (hematological malignancy vs. solid tumor), Eastern Cooperative Oncology Group
performance status, concomitant systemic therapy, personal or family history of autoimmune disease, personal history of chronic infection, systemic steroid treatment at the time of ICI
initiation. # Including randomized controlled trials, cohort and case-control studies. Abbreviations in alphabetical order: AEC: absolute eosinophil count; ALC: absolute lymphocyte
count; AMC: absolute monocyte count; ANC: absolute neutrophil count; APC: absolute platelet count; dNLR (calculated as absolute neutrophil count/[white blood cell count–absolute
neutrophil count]): derived neutrophil-to-lymphocyte ratio; LMR: lymphocyte-to-monocyte ratio; MLR: monocyte-to-lymphocyte ratio; NLR: neutrophil-to-lymphocyte ratio; NSCLC,
non-small cell lung cancer; PC: platelet count; PLR: platelet-to-lymphocyte ratio; REC: relative eosinophil count; RLC: relative lymphocyte count; WBC: white blood cell. † All odds ratios
adjusted for age and PD-L1 expression (≥50%). ∆: rate of change.
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Similarly, it has been reported that peripheral CD8 T-cell expansion and diversifi-
cation after ipilimumab initiation, as surrogate markers of autoreactivity against tissue
self-antigens at the systemic level, allows us to predict irAE onset with very high sen-
sitivity [61]. This diversification occurs early in follow-up, within the first two weeks
after ICI administration [62]. Furthermore, patients experiencing ipilimumab-induced
colitis showed higher absolute counts of peripheral CD4+ T cells and lower percentages
of regulatory T cells at baseline [63]. Likewise, it has been suggested that changes in the
percentage of peripheral CD4+ CD25+ Foxp3+ regulatory T cells, a cell subset in charge
of maintaining immune tolerance in the tumor microenvironment, may be predictive of
irAEs [64]. Recently, elevated levels of circulating low-density neutrophils, a myeloid
subpopulation with immunosuppressive properties, have been associated with a poor
response to pembrolizumab mediated by T-cell cytotoxicity down-regulation in patients
with non-small cell lung cancer [65]. As in tumor response, different subpopulations may
play a role in the pathogenesis of ICI toxicity.

Despite these promising findings, most published studies on blood cell counts and
ratios have been retrospective, time-limited (usually considering only baseline data or short
follow-up periods) and constrained to either a specific type of cancer, irAE or ICI agent
(Table 2). Notably, to date, few prospective studies have assessed the clinical value of blood
cell count fluctuations for predicting irAEs in the long term.

3.1.3. Serum and Other Biological Fluid Proteins

Baseline levels of thyroid-stimulating hormone in serum have been shown to predict
immune-related thyroiditis before ICI initiation [66–68]. Likewise, thyroid stimulating hor-
mone is the most efficient biomarker for monitoring thyroid dysfunction in patients on ICI
therapy [6]. Similarly, serial measurements of serum brain natriuretic peptide and troponin,
together with new-onset electrocardiographic abnormalities, help anticipate cardiovascular
irAEs [69]. Fecal lactoferrin and calprotectin are commonly used as screening tools for
ICI-induced colitis [70], calprotectin being a good non-invasive indicator for assessing
treatment response and avoiding repetitive endoscopic procedures [71].

Among generic biomarkers, raised C-reactive protein levels correlate well with the
risk of developing irAEs [51], in parallel with serum interleukin-6 (IL-6) levels [72]. With
different cut-offs, high serum albumin levels have also been associated with irAEs [48,73].
In addition, elevated blood lactate dehydrogenase levels predispose patients to irAEs [74],
especially high-severity events (grade ≥ 3) [48]. In contrast, a decrease in serum leptin
levels at four weeks from ICI initiation was more common in patients who experienced
irAEs than in irAE-free patients [75]. Levels of these generic proteins, which are acute-
phase reactants or tumor burden-related markers, are relatively easy to interpret in patients
with an indication for adjuvant treatment. In contrast, it may be less appropriate to use
them as irAE biomarkers in patients with metastatic disease since cancer, especially in
progressive phases, may alter protein levels. Interestingly, a reduction over time in the
level of certain serum tumor markers, such as the melanoma-inhibitory activity protein,
could help discriminate between toxicity and progression in patients with metastatic
melanoma [72,76].

3.1.4. Cytokine Profiles and Dynamics

In recent years, the interest in cytokines to predict irAE susceptibility has grown
steadily [77]. Certain cytokine profiles at baseline and dynamic fluctuations in cytokine
levels over time have been associated with a higher risk of developing irAEs and better
treatment outcomes [78]. Moreover, the uncoupled effect achieved by some anti-cytokine
drugs in preclinical studies, consisting of decreased ICI-induced toxicity without sacrificing
antitumor activity, makes it a priority to improve our understanding of the pathogenic
role of cytokines [79,80]. Unfortunately, not all cytokines are currently assessed in clinical
practice for diagnostic purposes. In addition, the cytokines involved in a particular irAE



Cancers 2023, 15, 1629 12 of 35

can differ from the corresponding autoimmune manifestation and with the ICI agent
administered [81].

Tumor necrosis factor-α (TNF-α) is one of the most studied biomarkers in the field of
irAE research [82]. Low baseline TNF-α levels may predispose patients to better antitumor
immunity [83], while it is unknown whether fluctuations in TNF-α levels over time can
anticipate irAE onset. In any case, various TNF-α blockers, such as infliximab, etanercept,
adalimumab and certolizumab, have been used as rescue therapy for steroid-refractory
cases of ICI-induced colitis, arthritis and pneumonitis [84–87]. Two concerns arising from
TNF-α antagonism are the attenuation of antitumor immunity and promotion of tumorige-
nesis by anti-TNF-α drugs [88], which may depend on the dose and duration of treatment.
Indeed, it is accepted that short courses of TNF-α inhibitors given at regular doses are
safe for patients undergoing ICI therapy [89]. Moreover, preclinical data suggesting an
antitumor benefit in mice combining ICIs and TNF-α inhibitors warrant the undertaking of
clinical trials assessing this hypothesis (NCT03293784) [90,91].

Considered a “usual suspect”, IL-6 is a proinflammatory cytokine that is potentially
involved in the pathogenesis of several immune-mediated disorders [92]. Low baseline
levels of IL-6 were strongly associated with irAEs [93,94]. Combined with C-reactive
protein, IL-6 has also been proposed as an early biomarker for irAE detection during follow-
up [72,83]. Even in patients with elevated C-reactive protein, regardless of serum IL-6
levels, IL-6 blockade with tocilizumab has been tested as a therapeutic and pre-emptive
drug for irAEs [95]. Recently, an uncoupled effect on induced toxicity and antitumor
immunity exerted by immunotherapy has been achieved by the blockade of IL-6 in a
murine model [96], which has warranted the launching of a phase II clinical trial to assess
the efficacy of tocilizumab in patients receiving ICIs (NCT04940299). The favorable safety
profile of tocilizumab and other anti-IL-6 agents, widely available in the clinical setting due
to the SARS-CoV-2 pandemic, makes IL-6 a promising therapeutic target [97].

Interleukin-17 (IL-17) is another pro-inflammatory cytokine involved in the pathogen-
esis of inflammatory bowel disease, psoriasis, psoriatic arthritis, other types of spondy-
loarthritis, and even interstitial lung disease [98,99]. Unlike TNF-α and IL-6, high serum
levels of IL-17 at baseline have been associated with severe colitis in patients on ipili-
mumab [100]. An increase in serum IL-17 levels was demonstrated following CTLA-4
blockade with ipilimumab in patients developing colitis, consistent with CTLA-4 inhibiting
the production of IL-17 by type 17 T helper (Th17) cells [101,102]. These findings support
the central role of IL-17 in the pathogenesis of irAEs involving Th17 cell-enriched tissues,
such as colitis, psoriasiform dermatitis, pneumonitis and neuroendocrine toxicity [103–105].
Correspondingly, IL-17 antagonists have shown a clinical benefit in IL-17-dependent irAEs,
opening the door to targeted anti-cytokine therapies [106].

The case of IL-1 is revealing and may represent a new therapeutic target. There
is evidence suggesting that baseline elevated levels of IL-1β are related to thyroid dys-
function [107]. In a retrospective series, IL-1α was significantly elevated in patients who
developed ICI-induced myositis [108]. Notably, patients treated with a combination of
anti-CTLA-4 and anti-PD-1 drugs who developed ICI-induced colitis overexpressed mu-
cosal IL-1β (as well as IL-17), but not TNF-α, with a higher abundance of Bacteroides
intestinalis [109]. Moreover, fecal microbiota transplant of large numbers of Bacteroides
intestinalis bacteria to mice induced overexpression of IL-1β after ICI administration [5].
These findings on the role of IL-1 regardless of TNF-α activity in immune-mediated colitis
could be related to the subgroup of patients with inflammatory bowel disease who are
refractory to standard therapy with TNF-α blockers [110]. In addition, IL-1β has been
identified as an independent risk factor for irAEs in patients on PD-(L)1 inhibitors [111].

The pro-inflammatory interleukins IL-12 and IL-23 belong to the IL-12 family and are
characterized by sharing a p40 subunit. Blocking both IL-12 and IL-23 with ustekinumab
has been shown to be effective in ICI-induced refractory colitis [112]. On the other hand, in-
terfering with the IL-12-dependent pathway may alter the antitumor effect associated with
ICI therapy [113,114]. The use of guselkumab, a specific anti-IL-23 agent, has been proposed
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as a way of inhibiting both the pro-tumor and pro-inflammatory effects attributed to IL-23
without affecting the IL-12 pathway, although this hypothesis needs further testing [115].

Regarding IL-10, an anti-inflammatory interleukin with homeostatic properties [116],
a retrospective study revealed that high baseline IL-10 levels and increases in these levels
after the first cycle of ICI were the only independent factors predicting irAEs among a
broad battery of cytokines [117]. Further insight is required into the mechanisms by which
IL-10 may promote immune tolerance and their relationship with toxicity modulation [118].

Other potential cytokine-related biomarkers are being studied, such as the serum
soluble IL-2 receptor, a biomarker of hyper-inflammatory status available in daily clinical
practice [119]. In addition, low baseline values and decreases in interferon-γ release,
commonly used for the detection of Mycobacterium tuberculosis (latent) infection, have been
associated with ICI-induced pneumonitis [120].

3.2. Biomarkers under Investigation
3.2.1. Other Cytokines and Serum Proteins under Development

The chemokine ligand 15 (CXCL15) and the soluble protein cluster of differentiation
163 (sCD163), as surrogate indicators of Th17 cell and tumor-associated macrophage acti-
vation, respectively, have been proposed as biomarkers for irAE prediction [121]. Lower
levels of CXCL9, CXCL10, CXCL11 and CXCL19 at baseline and greater increases in
CXCL9 and CXCL10 levels have been reported in patients who experienced irAEs [122].
Other biomarkers under investigation are angiopoietin-1 (Ang-1) and CD40 ligand, whose
baseline high levels have been related to dermatitis [78]. Early decreases in granulocyte
colony-stimulating factor have been associated with several irAEs, while lower baseline
levels of this growth factor may predispose patients to colitis [78,107]. High baseline
growth-regulated oncogene-1 and granulocyte macrophage colony-stimulating factor lev-
els have been associated with generic irAEs and specifically with thyroid dysfunction and
dermatitis, respectively [75,107]. Other organ-specific irAEs were associated with stem cell
factor (colitis), leukemia inhibitory factor and placental growth factor (both with myositis),
and B and T-lymphocyte attenuator (dermatitis) [108].

In addition, the pathogenic role and predictive value of other cytokines such as IL-2,
IL-4, IL-5, IL-15, IL-27, IL-35, and interferon-α remain to be clarified [107,108,123,124].

Overall, the incorporation of several cytokines, both those available routinely and those
under development, into already-designed toxicity risk scores such as the CYTOX score
might provide a useful tool for irAE prediction [125]. We are currently witnessing a surge
in precision medicine approaches based on personalized cytokine profiles depending on
individual, pharmacologic and tissue-related factors, without undermining the antitumor
response. Such molecular-focused strategies yield therapies focused on specific cytokine
signatures rather than the targeted organ [126].

3.2.2. Genetic Variations and Gene Expression Profiling

Monogenic mutations leading to autoimmune diseases have been identified for
years [127]. For instance, we know about the existence of cases of systemic lupus ery-
thematosus caused by monogenic mutations in the C1qA, B, C, C1R, DNASE1, DNASE1L3,
and ACP5 genes [128], among many other predisposing genetic variations [129]. Further-
more, certain germline CTLA4 and PDCD1 (encoding for PD-1 protein) gene polymor-
phisms have been associated with both the development of autoimmune diseases and
susceptibility to ICI-induced endocrine irAEs [130] (Table 3) [131–144]. In the same vein,
two different PDCD1 gene single-nucleotide polymorphisms (SNPs), namely rs2227981
and rs10204525, have been identified as protective and susceptibility biomarkers for irAEs,
respectively [135,136]; these apparently paradoxical findings are explained by the poly-
morphism in question, which determines the level of PD-1 expression (low in the case of
rs2227981 and high in the case of rs10204525). In a comprehensive study, Abdel-Wahab
et al. described as many as 30 SNPs related to irAEs, of which twelve led to a higher irAE
risk, eighteen to a lower irAE risk, and nine involved genes associated with autoimmune
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or inflammatory diseases (GABRP, DSC2, BAZ2B, SEMA5A, ANKRD42, PACRG, FAR2,
ROBO1 and GLIS3) [132]. These SNPs add to others previously described as isolated risk
factors for irAEs or combined predictors of irAEs and autoimmune diseases [133,145].

In addition, genetic alterations other than SNPs such as small sequence variations
and copy number variations (namely, duplications and depletions) have been detected
in 16 genes (AIRE, TERT, SH2B3, LRRK2, IKZF1, SMAD3, JAK2, PRDM1, CTLA4, TSHR,
FAN1, SLCO1B1, PDCD1, IL1RN, CD274, and UNG) and linked to irAEs affecting different
organs and systems [131]. Moreover, patients showing modifications of CEBPA, FGFR4,
MET or KMT2B genes detected in circulating tumor DNA before ICI initiation are at higher
risk of experiencing irAEs [134].

Another gene-related biomarker for ICI-mediated toxicity is the expression of specific
gene signatures. For example, Friedlander et al. proposed a 16-gene signature (involving
CARD12, CCL3, CCR3, CXCL1, F5, FAM210B, GADD45A, IL18bp, IL2RA, IL5, IL8, MMP9,
PTGS2, SOCS3, TLR9 and UBE2c genes) to discriminate between low- and high-grade
tremelimumab-induced diarrhea [139]. Clinically relevant pathways, such as those of
the inflammasome in ICI-induced myocarditis or the neutrophil activation cascade in
gastrointestinal irAEs, have been identified through the overexpression of type 5 and 6
guanylate binding proteins and CD177 and CEACAM1 genes, respectively [140,141]. More
specifically, IFI27 gene expression, related to the interferon-α pathway, has allowed ICI-
associated T cell-mediated rejection to be distinguished from ICI-associated acute interstitial
nephritis in kidney transplant patients [142].

With the assistance of pharmacovigilance, other over-represented genes in patients
with irAEs have been identified through integrated bioinformatic analysis [143], molecular
multi-omics data [144], and transcriptomic information of messenger RNA and alternative
splicing features [146,147] (Table 3). Again, further studies are needed to validate these
promising results in clinical practice.

3.2.3. Human Leucocyte Antigen Genotyping

Among the genes most influential in irAEs are those in the major histocompatibility
complex, also known as the human leucocyte antigen (HLA) system, which is a group
of genes encoding for surface glycoproteins involved in antigen presentation that has
been widely related to susceptibility to immune-mediated diseases and cancer [148,149].
Although clinically available, the use of HLA genotyping for diagnostic purposes is con-
strained to specific disorders such as celiac disease or axial spondyloarthritis [150,151].
Despite other confirmed genotypic-phenotypic associations, testing is not recommended
for entities with more reliable diagnostic methods, because HLA variants indicate a genetic
susceptibility rather than a diagnosis of certainty.

The potential association between certain HLA genotypes and polymorphisms and the
risk of immune-related toxicity has been mainly assessed in the context of endocrinologic
irAEs, such as ICI-induced diabetes (overall, the irAE most studied from the point of view
of the HLA system) [152], thyroid dysfunction and hypophysitis [13,153]. For instance,
the development of ICI-induced type 1 diabetes mellitus [154,155], thyroiditis [156] and
even autoimmune polyglandular syndrome type 2 [157] was observed in patients with
HLA-DR4 more often than in patients with another HLA haplotype. Notably, Delivanis
et al. demonstrated that ICI therapy can increase HLA-DR surface expression in activated
monocytes leading to pembrolizumab-induced thyroiditis [158].

Other relevant associations of HLA alleles or proteins with irAEs previously reported
are those of HLA-DRB1*04:05 with inflammatory arthritis [159], HLA-B27*05 with autoim-
mune encephalitis [160], HLA-Cw12 with hypophysitis [153,161], HLA-DQB1*03:01 with
colitis [162], HLA-DRB3*01:01 with thrombocytopenia [163], HLA-A03 with pneumoni-
tis [164], and HLA DRB*04:01, HLA-DRB1*15:01 and HLA-DQB1*06:02 with hepatitis [165]
(Table 3) [74,131,152–157,159–162,164–169]. By contrast, some studies have reached nega-
tive results regarding the connection between irAEs and the HLA system [170,171].
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Due to its growing availability, HLA genotyping could be considered an irAE biomarker
on the boundary between clinical and investigational.

3.2.4. Micro-RNAs

A micro-RNA (miR) is a non-coding molecule of single-stranded RNA containing
between 20 and 25 nucleotides, which can regulate the post-transcriptional expression
of genes by blocking translation of targeted messenger RNA through a process known
as ribo-interference [172]. Like CTLA-4 and PD-1, certain miRs, such as miR-146a, pro-
mote down-regulation of both innate and adaptive immune responses and may impact
ICI-related survival [173], in part by counteracting cell escape mechanisms in the tumor
microenvironment [174]. Indeed, the first phase 1 clinical trial which evaluated a liposomal
mimic of miR-34a was halted early due to severe irAEs in participating patients [175].

Among the most relevant miRs (Table 3) [176–178], miR-146a is a miR family whose
modified expression has been involved in the pathogenesis of several autoimmune diseases,
including rheumatoid arthritis, psoriasis, and laboratory-induced colitis [179–181]. More-
over, specific miR-146a SNPs, such as rs2910164, predispose patients on ICIs to a higher
risk of developing severe irAEs and reduced progression-free survival [177]. By contrast,
exogenous administration of a miR-146a mimic may mitigate irAE intensity assessed by
histopathologic criteria in mice [176].
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Table 3. Summary of studies on reported associations between immune-related adverse events and HLA system antigens, genetic variants and signatures
and micro-RNAs.

Genetic Variants and Gene Expression Profiles

Reference Study Design
(No. Patients)

Type of
Tumor Type of irAE Associations

Wölffer M. [131]
Prospective

(n = 95) Melanoma All types

VARs on SMAD3 gene Pancreatitis

CNVs on IL1RN and deletions on PRDM1 genes Higher risk of irAEs

Duplications on CD274 and CNVs on SLCO1B1 genes Hepatitis

CNVs on PRDM1 and CD274 genes Encephalitis

CNVs on PRDM1, CD274, TSHR and FAN1 genes Myositis

Abdel-Wahab N. [132] Retrospective Melanoma All types Several SNPs on GABRP, DSC2, BAZ2B, SEMA5A, OSBPL6, AGPS
and LOC102724355, and near CFAP65 and LOC100129175 genes Higher risk of irAEs

(n = 89) Several SNPs on LOC105377125, RGMA, ANKRD42, PACRG, FAR2,
LOC105374140, ROBO1, GLIS3, PVT1, PACRG and PREX2 genes Lower risk of irAEs

Refae S. [133] Retrospective
(n = 94) Pan-tumor All types Several SNPs on UNG, IFNW1, PD-L1, IFBL4 and CTLA-4 genes Higher risk of irAEs

Jin Y. [134] Retrospective
(n = 46) Gastric cancer All types Alterations in CEBPA, FGFR4, MET or KMT2B genes # Higher risk of irAEs

Bins S. [135] Retrospective
(n = 322) NSCLC All types Homozygous 804C > T (rs2227981) SNP on PDCD1 gene Lower risk of

any grade of irAEs

Kobayashi M. [136] Retrospective
(n = 106)

Renal cell
cancer All types PD-1.6 SNP (G allele) on PDCD1 gene (rs10204525) Higher risk of severe and

multiple irAEs

Khan Z. [137] Retrospective
(n = 479) Bladder cancer Skin irAEs Genetic variants related to vitiligo and psoriasis,

assessed by a polygenic risk score
Higher risk of irAEs
and better survival

Khan Z. [138] Retrospective
(n = 6075) Pan-tumor Thyroid

dysfunction
Genetic variants related to autoimmune hypothyroidism,

assessed by a polygenic risk score
Higher risk of irAEs and better

survival

Friedlander P. [139] Prospective
(n = 150) Melanoma Diarrhea/colitis

Gene signature composed of 16 inflammation-related genes
(CARD12, CCL3, CCR3, CXCL1, F5, FAM210B, GADD45A, IL18bp,

IL2RA, IL5, IL8, MMP9, PTGS2, SOCS3, TLR9, UBE2C)

Differentiation between grade 0–1
and grade 2–4 diarrhea
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Table 3. Cont.

Genetic Variants and Gene Expression Profiles

Reference Study Design
(No. Patients)

Type of
Tumor Type of irAE Associations

Sahabi V. [140] Prospective
(n = 162) Melanoma Gastrointestinal

irAEs

Increase in expression of CD177, CEACAM1 and
immunoglobulin-related genes (IGHA1, IGHA2, IGHG1, and

IGHV4–31)
Higher risk of gastrointestinal irAEs

Finke D. [141] Retrospective
(n = 19) All types Myocarditis Upregulation of 3784 genes with overexpression of interferon-γ and

inflammasome-regulating proteins (GBP5 and 6) Higher risk of myocarditis

Adam BA. [142] Retrospective
(n = 75) * All types AIN Overexpression of IFI27 gene (related to interferon-α) Discrimination between AIN and

TCMR

Zhang Y. [143] Preclinical study
(n not applicable)

Not applicable Thyroid
dysfunction

Overexpression of ALB, MAPK1, SPP1, PPARG and MIF genes Hypothyroidism

Overexpression of ALB, FCGR2B, CD44, LCN2, and CD74 genes Hyperthyroidism

Jing Y. [144] Retrospective
(n = 18,706)

Pan-tumor
(26 types) General irAEs Overexpression of LCP1 and ADPGK genes Higher risk of irAEs

HLA Antigens

Reference Study Design
(No. Patients) Type of Tumor Type of irAE Associations

Kobayashi T. [161] Retrospective
(n = 62)

All types Endocrine
irAEs HLA-Cw12, HLA DR-15, HLA-DQ7 and HLA DPw9 ACTH deficiency

HLA-Cw12 and HLA-DR15 Hypophysitis

HLA-DRB3*01:01 Thrombocytopenia

Jiang N. [163] Retrospective
(n = 530) Pan-tumor All types HLA-DPB1*04:02 Hypokalemia, hyponatremia,

leukopenia and anemia

HLA-A*26:01 Hyperbilirubinemia

Capelli LC. [159] Retrospective
(n = 26) Pan-tumor Articular

irAEs HLA-DRB1*04:05 Inflammatory arthritis

Correale P. [166]

Retrospective
(n = 256,
29 with

pneumonitis)

Pan-tumor Lung irAEs HLA-B*35 and HLA-DRB1*11 Pneumonitis



Cancers 2023, 15, 1629 18 of 35

Table 3. Cont.

Genetic Variants and Gene Expression Profiles

Reference Study Design
(No. Patients)

Type of
Tumor Type of irAE Associations

Wölffer M. [131] Prospective
(n = 95) Melanoma All types HLA class I homozygosity Hepatitis

Stamatouli AM. [154] Retrospective
(n = 27) Pan-tumor Endocrine

irAEs HLA-DR4 T1DM

Lo Preiato V. [155] Retrospective **
(n =200) Pan-tumor All types HLA-DR4 T1DM

Inaba H. [167] Retrospective
(n = 25) Pan-tumor All types HLA-B*46:01, HLA-C*14:02, HLA-DPA1*0103

and HLA-DPB1*02:01 Higher risk of thyroid dysfunction

HLA-DPB1*05:01 Lower risk of thyroid dysfunction

Inaba H. [168]
Retrospective

(n = 871, 7 with
T1DM)

Pan-tumor T1DM HLA-DPA1*02:02, HLA-DPB1*05:01 and HLA-DRB1*04:05 T1DM

Shi Y. [157] Retrospective **
(n = 26) Pan-tumor APST2 HLA-DR4 APST2

Chang H. [160]
Prospective

(n = 290, 7 with
encephalitis)

Breast and
bladder cancer Encephalitis HLA-B*27:05 Encephalitis

Yano S. [153] Retrospective
(n = 11) Pan-tumor Pituitary irAEs HLA-DR15, HLA-B52 and HLA-Cw12 Hypophysitis

Abed A. [164] Retrospective
(n = 179) NSCLC All types HLA class I (but not class II) homozygosity Lower risk of irAEs, especially

pneumonitis

HLA-A03 Higher risk of irAEs

Hasan Ali O. [162] Prospective
(n = 102)

NSCLC
Melanoma All types HLA-DRB1*11:01 Pruritus

HLA-DQB1*03:01 Colitis
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Table 3. Cont.

Genetic Variants and Gene Expression Profiles

Reference Study Design
(No. Patients)

Type of
Tumor Type of irAE Associations

Kotwal A. [156] Prospective
(n = 10) Pan-tumor Endocrine

irAEs HLA-DR4-DR53 and HLA-DR15 Thyroiditis

Purde MT. [165]
Prospective
(n = 131, 11
hepatitis)

NSCLC
Melanoma Hepatitis HLA- DRB1*04:01 and HLA- DRB1*15:01-DQB1*06:02 Hepatitis

Clotman K. [152] Retrospective **
(n = 42) Pan-tumor T1DM HLA-DR3-DQ2, HLA-DRB1*04, HLA-DQB1*03:02,

HLA-DR4, HLA-A2 and HLA-DR3DQ3, among others T1DM

Magis Q. [169]
Retrospective

(n = 163, 5 with
T1DM)

Not available T1DM HLA-DRB01*03 or HLA-DRB01*04 T1DM

Micro-RNAs

Reference Study Design
(Sample Size) Type of Tumor Type of irAE Associations

Marschner D. [176] Prospective
(n = 179) Pan-tumor All types Underexpression of miR-146a

by SNP on MIR146A gene (rs2910164) Higher risk of severe irAEs

Ivanova E. [177] Prospective
(n = 86) ccRCC All types Underexpression of miR-146a

by SNP on MIR146A gene (rs2910164) Higher risk of severe irAEs

Xia W. [178] Mouse model Not applicable Myocarditis Overexpression of miR-34a-5p induced by PD-1 inhibitor-treated
macrophages led to cardiac senescence Higher risk of myocarditis

* The study included 75 kidney biopsies. ** The study consisted of a literature review. # All of them with a p = 0.09. Abbreviations in alphabetical order (except for gene designations):
ACTH, adrenocorticotropic hormone; AIN, acute interstitial nephritis; APST2, autoimmune polyglandular syndrome type 2; ccRCC, clear cell renal cell carcinoma; CNV, copy number
variation; GBP5, guanylate binding protein 5; GBP6, guanylate binding protein 6; HLA, human leukocyte antigen; irAE, immune-related adverse event; miR, micro-RNA; No, number;
NSCLC, non-small cell lung cancer; SNP, single nucleotide polymorphism; TCMR, T cell-mediated rejection; T1DM, type 1 diabetes mellitus; VARs, small variations.
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Another micro-RNA called miR-34a-5p, related to cardiac injury by doxorubicin and
cardiac senescence [182], was found to be involved in ICI-induced cardiotoxicity in an
animal model [178]. Interestingly, miR-34a-5p has been shown to modulate the response
of M1 macrophages, CD4+ and CD8+ T cells by downregulation of chemokine signaling,
specifically of CXCR3 and its ligands CXCL10 and CXCL11 [183].

3.2.5. Gastrointestinal Microbiome

The term gastrointestinal, or gut, microbiome refers to a complex system of microor-
ganisms, mainly bacteria, that inhabit the intestine establishing a symbiotic relationship
with the host and participating in several homeostatic processes that contribute to the host’s
health [184]. Already known to be involved in the pathogenesis of several immune-based
disorders, especially those related to inflammatory bowel diseases [185–187], the gut micro-
biome has also been shown to modulate both intestinal and non-intestinal irAEs [188]. Gut
dysbiosis, characterized by a reduction in microbiome diversity and resulting dominance
of certain bacteria in the gut, may increase or decrease the anti-tumoral response and the
risk of developing irAEs induced by ICIs [189]. As with other irAEs, patients experiencing
ICI-induced colitis appear to have better antitumor responses and cancer-related prog-
nosis [190]. An abundance of Bacteroidetes phylum has long been known to be a feature
of colitis-resistant patients [191], while a microbiome rich in Faecalibacterium and other
members of Firmicutes is associated with an elevated risk of ICI-related colitis [63]. Recently,
a well-designed cohort study has confirmed the impact of specific microbial signatures, en-
riched with Lachnospiraceae spp. and Streptococcaceae spp., on certain irAEs [192]. In another
prospective cohort study, Chau et al. found that the gut microbiome of patients not devel-
oping irAEs was relatively enriched with Bifidobacterium and Desulfovibrio species [193].
Indeed, over recent years, the collection of intestinal commensal micro-organisms poten-
tially related to irAEs has expanded (Table 4) [63,109,186,188–204].
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Table 4. Summary of gut microbiome members related to the risk of developing immune-related adverse events.

Type of Taxonomic Category or Microorganism Type of Effect Type of irAE Assessed Related References

Bacteroidetes phylum * Protective factor Colitis

Dubin K. Nat Commun 2016 [191]
Chaput N. Ann Oncol 2019 [63]

Liu T. Immunotherapy 2019 [194]
Sakai K. Front Oncol 2021 [186]

Liu W. Front Immunol 2021 [195]

Bacteroidetes phylum Protective factor Pancreatic irAEs Tan B. Thorac Cancer 2021 [196]

Bacteroides dorei
Bacteroides vulgatus

Risk factor
Protective factor General irAEs Usyk M. Genome Med 2021 [197]

Bacteroides fragilis
Bacteroides thetaiotaomicron Protective factor Colitis (in mice) Vétizou M. Science 2015 [198]

Bacteroides thetaiotaomicron
Bacteroides faecis Risk factor Myocarditis Gil-Cruz C. Science 2019 [199]

Bacteroides intestinalis Risk factor General irAEs
(grade ≥ 3) Andrews MC. Nat Med 2021 [109]

Prevotellamassilia timonensis (from Bacteroidetes phylum) Risk factor Severe colitis Mao J. J Immunother Cancer 2021 [190]

Firmicutes phylum ** Risk factor Colitis

Dubin K. Nat Commun 2016 [191]
Chaput N. Ann Oncol 2019 [63]

Gopalakrishnan V. Science 2018 [188]
Liu T. Immunotherapy 2019 [194]

Firmicutes phylum Risk factor Pancreatic irAEs Tan B. Thorac Cancer 2021 [196]

Phascolarctobacterium genus (from Firmicutes phylum) Protective factor Colitis Liu T. Immunotherapy 2019 [194]

Faecalibacterium genus (from Firmicutes phylum) Protective factor Absent or
grade 0–2 colitis Liu W. Front Immunol 2021 [195]

Bifidobacterium
Bifidobacterium breve # Protective factor Colitis (in mice) Wang F. Proc Natl Acad Sci USA 2018 [200]

Sun S. Proc Natl Acad Sci USA 2020 [201]

Bifidobacterium Protective factor General irAEs Chau J. J Clin Oncol 2021 [193]

Lactobacillus rhamnosum Protective factor Colitis (in mice) Sun S. Proc Natl Acad Sci USA 2020 [201]
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Table 4. Cont.

Type of Taxonomic Category or Microorganism Type of Effect Type of irAE Assessed Related References

Lactobacillaceae family
Raoultella genus

Akkermansia species
Agathobacter genus

Protective factor
Protective factor
Protective factor

Risk factor

Low-grade irAEs
Low-grade irAEs
Low-grade irAEs
High-grade irAEs

Hakozaki T. Cancer Immunol Res 2020 [202]

Enterobacteriaceae family † Protective factor
(remission of colitis) Colitis Sakurai T. Mol Oncol 2022 [189]

Intestinibacter barlettii
Anaerotignum lactatifermentans

Dorea formicigenerans

Risk factor
Protective factor
Protective factor

General irAEs
(grade ≥ 3) Andrews MC. Nat Med 2021 [109]

Streptococcus genus
Paecalibacterium genus

Stenotrophomonas genus
Risk factor General irAEs

(grade ≥ 3) Liu W. Front Immunol 2021 [195]

Lachnospiraceae species
Streptococcaceae species Risk factor General irAEs McCulloch JA. Nat Med 2022 [192]

Akkermansia muciniphila Protective factor Colitis Wang L. Gut 2020 [203]

Alispides genus Protective factor Pancreatic irAEs Tan B. Thorac Cancer 2021 [196]

Lachnospiraceae genus Risk factor Pancreatic irAEs Tan B. Thorac Cancer 2021 [196]

Burkholderia cepacia Protective factor Colitis in mice Vétizou M. Science 2015 [198]

Proteobacteria phylum

Desulfovibrio Protective factor General irAEs Chau J. J Clin Oncol 2021 [193]

Veillonela Risk factor Colitis Liu T. Immunotherapy 2019 [194]

Staphylococcus epidermidis Risk factor Dermatitis (in mice) Hu ZI. Proc Natl Acad Sci USA 2022 [204]

* Including Bacteroidaceae, Rikenellaceae and Barnesiellaceae families. ** Including Ruminococcaceae, Clostridium cluster XIVa, Blautia, and Faecalibacterium. # Only for Bifidobacterium
breve, but not for other Bifidobacterium strains. † Including operational taxonomic units classified as Shigella flexneri, Citrobacter, Klebsiella pneumoniae, Enterobacter cloacae, and
other unclassified Enterobacteriaceae. Abbreviations in alphabetical order: irAE, immune-related adverse event.
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There are many hypothetical underlying mechanisms, likely interconnected, explain-
ing the contribution of the gut microbiome to immune-related toxicity: dysregulation
between pro-inflammatory (i.e., IL-6) and anti-inflammatory (i.e., IL-10) interleukins at
local and distant tissues [198]; differentiation, expansion and migration of gut mucosal
Th17 cells; inactivation of gut-associated regulatory T cells leading to exacerbation of
T-cell effector activities [205]; a role of microbiome metabolites such as short-chain fatty
acids [205], polyamine transport system and group B vitamins [181], and microbial frag-
ments such as polysaccharide A [206]. As already mentioned in the “Cytokine” section,
overexpression of IL-1β and IL-17, but not of TNF-α, has been demonstrated by two in-
dependent groups in samples from patients with ICI-induced colitis [5,109]. All these
findings open the door to gut microbiota manipulation using various strategies, such as the
administration of antibiotics [86], prebiotics, probiotics, or postbiotics [196,201], or fecal
microbiota transplantation [200,207–210], as well as cytokine-targeted therapies for specific
irAEs [211]. Nonetheless, many questions remain unanswered in the complex phenomenon
of interaction between the gut microbiome and ICI-related toxicity.

3.2.6. Upcoming Biomarkers for irAE Prediction

Neoantigens are immunogenic peptides derived from tumor-specific genetic alter-
ations and presented to T cells only on the malignant cell surface in the presence of the HLA
system [212]. Nowadays, the detection of neoantigens, which are tumor and individual-
specific, is being used as a way to design targeted therapies based on T-cell-mediated
cytotoxicity with a low incidence of irAEs [213]. One of these neoantigens, namely, napsin
A, has already been identified as a lung tumor self-antigen present in both lung malignant
cells and ICI-induced inflammatory lung lesions [214]. Furthermore, Tahir et al. conducted
a serological analysis of recombinant cDNA expression, a technique designed to identify
tumor antigens, resulting in the detection of specific anti-CD74 autoantibodies related to
pneumonitis, and anti-GNAL and anti-ITM2B autoantibodies related to hypophysitis [215].

In addition, autoantibody signatures profiled using the HuProt human proteome
microarray system, which tests a massive number of proteins, may become a prominent
tool for predicting toxicity [216], or even efficacy and toxicity simultaneously [217], in the
short-to-medium term. Likewise, by means of a microarray autoantigen panel including
120 autoantibodies, Ghosh et al. showed that patients most likely to experience irAEs had
lower baseline autoantibody titers and larger increases in these titers over time [39].

Given the complex nature of irAEs and the difficulty of predicting their onset, an
approach based on the combination of different omics disciplines, including radiomics [218],
together with real-time big data exploitation is on the horizon [219].

4. Conclusions

The field of ICI-related toxicity is evolving rapidly [220]. Nowadays, we are witnessing
rapid growth in publications on potentially predictive irAE biomarkers [208]. Despite this
boom in research, no biomarkers have yet been validated for clinical use. Except for routine
laboratory testing, such as complete blood cell count with differential, glucose, renal and
liver function tests and thyroid-stimulating hormone measurements, analysis of other
laboratory parameters is not recommended before starting ICI therapy [221,222].

Hence, the first question is, Are any known biomarkers capable of predicting toxicity?
and the answer is no, at least for most patients. In certain clinical scenarios, we can use some
biomarkers for decision-making. Specifically, in the case of patients with a pre-existing au-
toimmune disease who would benefit from an ICI, measurement of autoantibodies known
to be useful in assessing autoimmune disease activity may be indicated [19]. For instance,
a high titer of anti-double-stranded DNA antibodies could represent a risk factor for de-
veloping a flare in a patient diagnosed with lupus before starting ICI therapy. Likewise, a
progressive increase in anti-double-stranded DNA antibody titers could anticipate a lupus
flare once an ICI has been initiated.
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The identification of versatile biomarkers is also made more complex by the pathogenic
mechanisms involved in irAEs, which are diverse and heterogeneous [223]. Hence, not all
biomarkers under study are equally applicable to all patients. A pragmatic approach would
be to design risk toxicity scores that are cross-sectionally applicable to different settings and
include accessible and understandable biomarkers [125,217]. To our knowledge, there are
currently no multi-factor prediction models combining baseline patient characteristics with
autoantibody titers, blood cell counts or ratios, and levels of easily measurable cytokines.
Besides static predictive models, longitudinal data on biomarker fluctuations, such as
blood cell counts, autoantibodies, and cytokines, may provide a more reliable approach
to assessing the individual risk of experiencing irAEs. Moreover, incorporation into stan-
dard practice of more sophisticated but increasingly widespread diagnostic tools, such as
HLA genotyping, and measurement of micro-RNA expression, genetic variation and gene
expression, and gut microbiome signatures, will depend on their future validation and
availability. In this regard, results from emerging research based on artificial intelligence,
big data and machine learning as methods for creating predictive models of toxicity are
particularly promising [219,224,225].

From a practical point of view, another question that arises is, Once toxicity appears
in a particular patient treated with ICIs, would any of these potential biomarkers be
reliable for categorizing this toxicity as immune-mediated? If that were to be the case,
biomarkers could be recommended as a support tool for the differential diagnosis of a
particular complication. In this clinical situation, certain hormone profiles already represent
a valuable test for the identification of immune-related endocrinopathies in routine practice.
In addition, some biomarkers such as fecal lactoferrin and calprotectin might suggest
an immune-mediated process underlies new-onset diarrhea and reduce the number of
endoscopic procedures, especially during the recovery phase from colitis. In a more general
sense, the elevation of acute phase reactants, such as C-reactive protein, could also point
to an immune-related etiology when faced with a nonspecific clinical picture without a
clear diagnosis. Nonetheless, such generic biomarkers of inflammation can be difficult to
interpret in the context of advanced cancer or concomitant infection.

In conclusion, a better understanding of the pathogenic mechanisms linked to immune-
mediated toxicity and the implementation of long-term, prospective, and real-life studies
on irAEs are needed to confirm the validity of numerous biomarkers under investigation
and enable their adoption in practice in a wide range of clinical scenarios.
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