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Simple Summary: Breast cancer treatment has long been a problem plaguing women’s health. In
order to explore whether sodium new houttuyfonate (SNH) has a potential therapeutic effect on breast
cancer, this study jointly demonstrated that SNH has a significant apoptotic effect on breast cancer
through biogenic analysis and research trials. This effect is achieved by promoting the excessive
accumulation of reactive oxygen species (ROS), inducing mitochondrial damage, regulating the
aggregation of apoptotic proteins near mitochondria, and targeting the PDK1-AKT-GSK3β pathway.
This study demonstrated the potential therapeutic effect of SNH and provided a reference for the
application of SNH in breast cancer.

Abstract: Background: Sodium new houttuyfonate (SNH) has been reported to have anti-inflammatory,
anti-fungal, and anti-cancer effects. However, few studies have investigated the effect of SNH on
breast cancer. The aim of this study was to investigate whether SNH has therapeutic potential for
targeting breast cancer. Methods: Immunohistochemistry and Western blot analysis were used to
examine the expression of proteins, flow cytometry was used to detect cell apoptosis and ROS levels,
and transmission electron microscopy was used to observe mitochondria. Results: Differentially
expressed genes (DEGs) between breast cancer-related gene expression profiles (GSE139038 and
GSE109169) from GEO DataSets were mainly involved in the immune signaling pathway and the
apoptotic signaling pathway. According to in vitro experiments, SNH significantly inhibited the
proliferation, migration, and invasiveness of MCF-7 (human cells) and CMT-1211 (canine cells) and
promoted apoptosis. To explore the reason for the above cellular changes, it was found that SNH
induced the excessive production of ROS, resulting in mitochondrial impairment, and then promoted
apoptosis by inhibiting the activation of the PDK1-AKT-GSK3β pathway. Tumor growth, as well as
lung and liver metastases, were suppressed under SNH treatment in a mouse breast tumor model.
Conclusions: SNH significantly inhibited the proliferation and invasiveness of breast cancer cells and
may have significant therapeutic potential in breast cancer.

Keywords: breast cancer; sodium new houttuyfonate; ROS; apoptosis

1. Introduction

Breast cancer is a focus of global attention because of its high incidence and high
mortality rates. According to the 2020 report from the International Agency for Research
on Cancer (IRAC), breast cancer has surpassed lung cancer as the most common cancer
worldwide, with an incidence rate of 11.7% [1]. Breast cancer has great clinical heterogene-
ity, and patients with different subtypes of the disease have varying clinical prognoses.
Canine mammary tumors are frequently regarded as models for the study of human breast
cancer because of their similarities in pathology, histology, and shape [2]. Additionally,
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phosphatidylinositol-4,5-bisphosphate 3-kinase (PIK3CA) mutations, abnormalities in the
PI3K-AKT pathway, and a crucial gene implicated in cancer initiation and development are
shared between human breast cancer and canine mammary tumors [3,4].

Currently, many medications used to treat breast cancer in clinical treatment have
varying degrees of severe side effects [5]. Recently, bioactive compounds extracted from tra-
ditional Chinese medicine have shown potential anti-cancer abilities. Sodium new houttuy-
fonate (SNH) is the chemical synthesis of houttuynia, and it has anti-inflammatory [6], anti-
fungal [7,8] and anti-cancer properties [9,10]. Studies have suggested that SNH can exert
anti-inflammatory effects by promoting the generation of reactive oxygen species (ROS) [6],
which are considered as a product of oxygen consumption and cell metabolism. Endoge-
nous ROS include superoxide anions, hydrogen peroxide, and hydroxyl radicals [11,12].
Excessive ROS may disrupt mitochondrial functions, mainly manifesting as mitochondrial
membrane potential decrease, mitochondrial transcription factor A decrease, mitochon-
drial mass increase, and mitochondrial DNA fragmentation increase [13,14]. In general,
endogenous ROS are maintained within a normal range. ROS levels outside the normal
range will lead to the occurrence of disease [15]. Therefore, ROS can be considered as a
potential target for cancer therapy.

Studies have shown that abnormal activation of the PI3K-AKT pathway plays a critical
role in the occurrence, metastasis, and drug resistance of breast cancer, and it is closely re-
lated to the prognosis of breast cancer, all of which make it a potential therapeutic target for
breast cancer [16,17]. The biological function of the PI3K-AKT pathway can be modulated
by ROS. The combination of polydatin and 2-deoxy-d-glucose promotes apoptosis in breast
cancer by eliminating endogenous ROS production [11], as does hyperoside [18]. Moreover,
total secondary saponin from the rhizome of Anemone raddeana showed anti-proliferation
and pro-apoptotic activities on MCF-7 cells through the ROS-mediated mitochondrial
apoptosis pathway [19]. Genistein can lead to mitochondrial dysfunction through ROS
accumulation, induce the inactivation of PI3K-AKT, and synergistically promote the anti-
tumor effect of Centchroman [20]. GSK3β is a downstream target of AKT. The serine
9 phosphorylation of GSK3β is negatively correlated with the activity of GSK3β, which is
adversely associated with the viability of breast cancer cells [21].

Thus, this study investigated whether SNH could induce mitochondrial dysfunction
through ROS overgeneration and inactive the PDK1-AKT pathway to induce apoptosis of
breast cancer cells in vitro and in vivo.

2. Materials and Methods
2.1. Bioinformatics Analysis

Two expression profiles related to breast cancer (GSE139038 and GSE109169) were
screened from GEO DateSets (https://www.ncbi.nlm.nih.gov/gds/?term=, accessed on
15 August 2022. The differentially expressed genes (DEGs) and the common DEGs shared
between the two datasets were shown using a Venn diagram (http://bioinformatics.psb.
ugent.be/webtools/Venn/, accessed on 15 August 2022). The Gene Ontology resource (GO,
http://geneontology.org/, accessed on 16 September 2022) and the Kyoto Encyclopedia
of Genes and Genomes (KEGG, https://www.kegg.jp/, accessed on 16 September 2022)
were used to analyze the enrichment of GO and KEGG involved in these common DEGs,
and bubble charts of GO and KEGG enrichment analysis were plotted using bioinformatics
(https://www.bioinformatics.com.cn, accessed on 16 September 2022), an online platform
for data analysis and visualization. An interaction network of these common DEGs was
constructed, and the protein interaction network of some important genes was emphatically
analyzed using Cytoscape software.

The molecular structure of SNH was assessed using PubChem (https://pubchem.
ncbi.nlm.nih.gov/, accessed on 16 August 2022). The potential target genes of SNH were
predicted through SwissTargetPrediction (http://www.swisstargetprediction.ch/, accessed
on 16 August 2022). The expression analysis and prognosis analysis of target genes were
conducted individually using GEPIA (http://gepia.cancer-pku.cn/detail.php, accessed on
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17 September 2022) and Kaplan–Meier Plotter (https://kmplot.com/analysis/index.php?
p=service, accessed on 17 September 2022).

2.2. Reagents and Antibodies

The reagents used were as follows: sodium new houttuyfonate (Yuanye, Shang-
hai, China, CAS: 112714-99-5); docetaxel (Yuanye, Shanghai, China); hydroxypropyl-β-
cyclodextrin (HP-β-CD; Solarbio, Beijing, China); N-acetyl-cysteine (NAC; Macklin, Shang-
hai, China); matrix adhesive (Biozellen, Frontier, NE, USA); Opti-MEM I medium (Gibco,
Billings, MA, USA); and crystal violet (BioSharp, Hefei, China).

The kits used were as follows: Cell Counting Kit-8 (Hycezmbio, Wuhan, China), ROS
Detection Kit (Hycezmbio, Wuhan, China), BCA Protein Quantification Kit (Hycezmbio,
Wuhan, China), Apoptosis Detection Kit (Hycezmbio, Wuhan, China); and Transwell
chamber (Corning, NY, USA).

According to the protocol recommended by the manufacturer, the following antibodies
were used for Western blot or immunofluorescence: Anti-BAX (Wanleibio, WL01637), Anti-p-
GSK3β (Wanleibio, WL03683), Anti-β-actin (ABclonal, AC038), Anti-Bcl-2 (ABclonal, A19693),
Anti-cleaved PARP p25 (ABclonal, A19612), Anti-caspase-9 (ABclonal, A0281), Anti-PDK1
(ABclonal, A0834), Anti-p-PDK1 (ABclonal, AP0426), Anti-AKT (ABclonal, A20799), Anti-p-
AKT (ABclonal, WLP001), Anti-GSK3β (ABclonal, A11731), Anti-MMP1 (ABclonal, A22080),
HRP Goat Anti-Rabbit IgG (ABclonal, AS014), Alexa Flour 594-Goat Anti-Rabbit IgG (ABbox,
AD9279), and Cy3 Goat Anti-Rabbit IgG (H + L) (ABclonal, AS007).

2.3. Cell Culture

Human breast cancer cell line MCF-7 (kindly donated by Zhiqiang Dong Laboratory
at Huazhong Agricultural University) and canine mammary cancer cell line CMT-1211
(kindly provided by the Degui Lin Laboratory at the China Agricultural University) were
used in this study. Both cell lines were cultured in DMEM (Gibco) medium containing 10%
fetal bovine serum (Hycezmbio, Wuhan, China) and 2% penicillin-streptomycin solution
(Gibco) at 37 ◦C with 5% CO2.

2.4. Cell Viability Assay

Cells at a density of 1 × 104 cells/well were seeded into 96-well plates. When the
density reached 50–60%, different concentrations of SNH were added. After treatment for
24 h, 10 µL (5 mg/mL)/well of Cell Counting Kit-8 (CCK-8, Hycezmbio, Wuhan, China) was
added and incubated with cells at 37 ◦C for 30 min. Cell viability was measured through
absorbance (optical density) with a microplate reader (Bio-Rad Instruments, Hercules, CA,
USA) at 450 nm.

Another set of experiments was also conducted. The cells were cultured in 96-well
plates with different concentrations of SNH for different time (0, 12, 24, 36, 48, and 60 h). The
cell culture medium containing the drugs was changed once every 12 h. Other operations
remained unchanged unless otherwise indicated.

2.5. Cell Migration Assay

Cell migration was detected using a wound-healing migration assay. The cells were
inoculated into 6-well plates with 1 × 105 cells/well. When the cells reached 80–85%
confluence, a 200 µL plastic sucker scraped the cell layer once, and the exfoliated cells were
washed with sterile phosphate buffered saline (PBS). The cells were cultured with serum-
reduced Opti-MEM I medium (Gibco, Billings, MA, USA). The wounds were photographed
when the scrape wound was introduced (0 h) and at a designated time (24 h) using an
inverted microscope.

https://kmplot.com/analysis/index.php?p=service
https://kmplot.com/analysis/index.php?p=service
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2.6. Cell Invasion Assay

This step was conducted according to the reagent instructions (Biozellen, Frontier, NE,
USA). Matrigel A (2×) at a concentration of 1/15 was added into 8 µm transwell chambers.
Then, the matrigel in chambers was refrigerated at 4 ◦C for 3 h, and 7.5 × 104 cells/well
which have been treated with SNH for 24 h were suspended in 100 µL culture solution
and added to the upper compartment of the chamber. DMEM medium containing 10%
fetal bovine serum was added to the lower compartment of the chamber. The cells were
cultured in an incubator at 37 ◦C for 24 h. Next, the cells in the chambers were fixed with
methanol and stained with crystal violet. The images were photographed using an optical
microscope (Olympus, Tokyo, Japan).

2.7. Apoptosis Assay

Apoptosis was detected using Annexin V-FITC (fluorescein isothiocyanate) and PI
(propidium iodide) double staining. The staining procedures and detection method were
conducted according to the Apoptosis Detection Kit’s instructions (Hycezmbio, Wuhan,
China). The cell density was adjusted to 1 × 106/mL and suspended at 250 µL binding
buffer. The cells were gently vortexed and incubated with 5 µL of Annexin V-FITC and
10 µL of PI at room temperature for 10 min against exposure to light. The apoptosis
rates were detected using flow cytometry (CytoFLEX, Beckman, State Key Laboratory of
Agricultural Microbiology at Huazhong Agricultural University).

2.8. Intracellular ROS Assay

ROS generation was detected using the fluorescent probe DCFH-DA. The cells were
collected after being treated with drugs. The staining procedures and detection method for
the cells were conducted according to the ROS Detection Kit’s instructions (Hycezmbio,
Wuhan, China). The cell density was adjusted to 1 × 106/mL. The cells were stained
with 1:1000 diluted probe at 37 ◦C for 30 min against exposure to light and washed twice
with PBS. The reactive oxygen positive control reagent was Rosup, provided by the ROS
Detection Kit, with a concentration of 50 mg/mL. Rosup was diluted in serum-free DMEM
medium at 1:1000 and incubated cells at room temperature for 30 min. The DCFH-DA probe
was loaded in accordance with the above procedures. The ROS levels were detected using
flow cytometry (CytoFLEX, Beckman, State Key Laboratory of Agricultural Microbiology
at Huazhong Agricultural University).

2.9. Transmission Electron Microscopy

Cells were seeded into 6-well plates at a density of 1 × 105 cells/well. When the
confluence rate of the cells reached 60–70%, the cells were treated with varying concentrations
of SNH for 24 h. Samples were processed successively: fixed, dehydrated, and permeated.
Resin blocks containing samples were cut into ultrathin sections (80 nm thick) with a Leica
UC6 ultrathin microtome. Ultrathin sections were observed using a transmission electron
microscope (TEM) (H7650, Hitachi, Japan) at 100 kV after being stained with uranium acetate.

2.10. Western Blot Analysis

Protein immunoblotting was performed according to previous methods [22]. The
total cellar proteins were harvested with RIPA containing 1% PMSF and 1% phosphatase
inhibitors. The proteins’ concentrations for each treatment group were determined using a
BCA Kit. Proteins were separated with electrophoresis using 10% sodium dodecyl sulfate
(SDS)-polyacrylamide gel and then transferred to polyvinylidene fluoride (PVDF). The
embranees were successively incubated with antibodies and secondary antibodies. Anti-β-
actin was considered an internal reference protein. Protein expression was detected with
the French Vilber Lourmat FX7 detection system.
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2.11. Cellular Immunofluorescence Staining

Cells were seeded into 24-well plates at a density of 1 × 104 cells/well. SNH at
different concentrations or other drugs were added and remained for 24 h. After treatment,
the cells were fixed with 4% (v/v) paraformaldehyde for 30 min and permeated with 0.5%
(v/v) Triton X-100 in PBS for 20 min. Subsequently, the cells were blocked with 5% (v/v)
goat serum for 2 h and incubated with primary antibodies overnight at 4 ◦C. The cells
were incubated with Alexa Flour 594-Goat Anti-Rabbit IgG or Cy3 Goat Anti-Rabbit IgG
(H + L) in the dark for 1 h and stained with 4,6-diamidino-2-phenylindole (DAPI, Beyotime,
Shanghai, China) for 10 min. In this experiment, the cells were washed three times with PBS
between each treatment. Images were observed using a fluorescence microscope (Olympus,
Tokyo, Japan).

2.12. In Vivo Experiment

Five week-old Balb/C female mice were purchased from the Experimental Animal
Center of Huazhong Agricultural University (Wuhan, China) one week prior to the exper-
iment. When the mice were six weeks old, 1 × 106 cells/mouse were inoculated at the
4th accessory mammary pad. After 10 days of injection, they were randomly divided into
5 groups: blank control group, negative control group (HP-β-CD, 0.1 mL (30% w/v)/mouse,
i.p.), docetaxel group (8 mg/kg, i.p.), low-dose SNH group (20 mg/kg, i.p.), high-dose
SNH group (40 mg/kg, i.p.),and mock group, which were administered by intraperitoneal
injection once every 2 days for 22 days. During the treatment, the mice were weighed,
and the tumor volume was measured every 2 days. After that, the mice were euthanized
according to the ethical requirements of experimental animals of Huazhong Agricultural
University (HZAUMO-2022-0125) and the United States National Institutes of Health.
Tumor tissues and lung, heart, liver, spleen, kidney, and other tissues of the mice were
harvested and fixed in 4% paraformaldehyde. Tumor volume (V) = 0.5 × length × width2.

2.13. Mouse Tissue Section Staining

Subsequently, the tumor and organs were dehydrated after being fixed in formalde-
hyde for 48 h and embedded in paraffin, which were cut into 5 µm thick sections for
hematoxylin and eosin (H&E) staining. An optical microscope (Olympus, Tokyo, Japan)
was used for image acquisition.

Tumor sections were also used for immunofluorescence staining. After being dewaxed
to water with xylene and gradient ethanol, tumor sections were soaked in citric acid
antigen repair buffer (pH 6.0) and heated in a microwave oven for antigen repair. The
following procedures were similar to those of cellar immunofluorescence staining. Finally,
the glass sheet needed to be sealed with an anti-fluorescent quenching agent. A fluorescence
microscope (Olympus, Tokyo, Japan) was used for image collection.

2.14. Statistical Analysis

The dates were obtained as mean ± SD of at least three independent experiments.
Differences between groups were calculated using one-way ANOVA or nonlinear regression
(GraphPad Prism 8). A level of * p < 0.05 was considered significant, ** p < 0.01, *** p < 0.001,
or **** p < 0.0001 were considered extremely significant, and p > 0.05 (ns) was considered
not significant.

3. Results
3.1. DEGs’ Analysis of Breast Cancer Based on the GEO Database

Given that the occurrence and development of breast cancer involves expression
changes of multiple genes, we analyzed the expression profiles related to breast cancer in
the GEO database (GSE139038 and GSE109169). In these two GEO datasets, GEO2R was
applied to analyze these DEGs [23,24]. The intersection of the two datasets was calculated
by drawing Venn diagrams on the online tool, as shown in Figure 1a. The results show
that there are 137 DEGs. These DEGs were further analyzed based on Gene Ontology (GO)
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annotations and KEGG pathways. We found that the 137 DEGs were involved in biological
processes, including the regulation of PI3K signaling, cell proliferation, etc. (Figure 1b). The
cellular components involved included the extracellular region, the extracellular matrix,
etc. (Figure 1c). The molecular functions of these DEGs were heparin binding, integrin
binding, CXCR3 chemokine receptor binding, etc. (Figure 1d). KEGG analysis showed that
these DEGs were mainly involved in the PPAR signaling pathway, the PI3K-AKT signaling
pathway, etc. (Figure 1e).
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Figure 1. DEGs’ analysis associated with breast cancer in the GEO database. (a) The common
DEGs between GSE139038 and GSE109169 are shown with a Venn diagram. (b–e) Bubble charts
were used to show the GO and KEGG enrichment analyses for these DEGs. (f) Interaction network
analysis of the common DEGs was performed using Cytoscape software. (g) Emphasizing the
interaction network analysis of DEGs related to MMP1. All results are expressed as mean ± SD of
three independent experiments.
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To further study the interactions of these DEGs, we constructed an interaction network
diagram of these DEGs using Cytoscape, highlighting the interaction relationships of some
important DEGs, as shown in Figure 1f,g.

3.2. Network Pharmacological Analysis of SNH

First, we recognized the molecular structure of SNH in PubChem (Figure 2a) and
predicted the potential target genes of SNH using SwissTargetPrediction (Figure 2b,c).
After further analysis, we found that two potential target genes of SNH were consistent
with 137 DEGs, namely MMP13 and MMP1 (Figure 2d). The expression of MMP1 between
breast cancer tissues and normal tissues was significantly different. The invasiveness of
breast cancer is tightly linked to MMP1, and high expression of MMP1 usually predicts a
poor prognosis in breast cancer (Figure 2e,f).
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Figure 2. Network pharmacology analysis of SNH. (a) The chemical structural formula of SNH.
(b) Category statistics of potential targets of SNH. (c) The potential targets of SNH were predicted
using SwissTargetPrediction. (d) The common target genes of SNH and these two profiles (GSE139038
and GSE109169). (e) Differential expression of MMP1 in breast cancer. (f) Relationship between
MMP1 and prognosis in breast cancer. All results are expressed as mean ± SD of three independent
experiments. * p < 0.05.

3.3. SNH Inhibited the Proliferation and Invasiveness of Breast Cancer Cells

Studies have shown that SNH exhibits a marked anti-proliferation effect on tumors.
In order to explore the effect of SNH on breast cancer proliferation, MCF-7 and CMT-
1211 cells were selected and treated with different concentrations of SNH. We found that
SNH significantly decreased the cell viability of breast cancer cells, with a concentration-
dependent decline. The IC50s of MCF-7 and CMT-1211 were 91.38 µM and 84.48 µM,
respectively (Figure 3a). Compared to the control group, the MCF-7 mortality rate reached
approximately 90 percent at a concentration of 180 µM, and the CMT-1211 mortality rate
reached approximately 80 percent at a concentration of 140 µM (Figure 3a). In addition,
compared with the control group, SNH had a more significant inhibitory effect on the
proliferation of tumor cells as medication time increased (Figure 3b). The medicinal effects
of administration over time were more recognizable.
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Figure 3. SNH inhibited the invasive and proliferative abilities of MCF-7 and CMT-1211 and promoted
apoptosis. (a) Cell Counting Kit-8 kits were used to detect the activity of MCF-7 and CMT-1211 after
treatment with different concentrations of SNH for 24 h. (b) Cell Counting Kit-8 kits were used to
assess the cell activity of MCF-7 and CMT-1211 cells treated with different concentrations of SNH
at 0, 12, 24, 36, 48, and 60 h. (c,d) Wound-healing assays were used to measure the cell migration
capacity after SNH treatment for 24 h. Scale bar: 1000 µM. (e,f) Transwell chambers precoated with
matrigel were used to examine the cell invasion ability of MCF-7 and CMT-1211 cells after SNH
treatment for 24 h. Scale bar: 200 µM. (g,h) Western blot was used to detect the expression levels of
MMP1 in MCF-7 and CMT-1211 cells treated with SNH for 24 h. (i,j) Flow cytometry was used to
examine the effect of SNH on apoptosis. (k,l) Western blot was used to detect the expression levels of
apoptosis-related proteins BAX, Bcl-2, cleaved caspase-9, and cleaved PARP in MCF-7 and CMT-1211
after being treated with SNH for 24 h. The western blot original images in the Figure S1. All results
are expressed as mean ± SD of three independent experiments. * p < 0.05, ** p < 0.01, *** p < 0.001,
**** p < 0.0001, ns = not significant.

Scratch assay and transwell assay were used to evaluate the migration and invasive-
ness ability of MCF-7 and CMT-1211 cells after treatment with SNH. The results showed
that SNH could inhibit cell migration and invasiveness (Figure 3c–f). In addition, the
Western blot results showed that the protein expression of MMP1 decreased as the concen-
tration of SNH increased (Figure 3g,h). Additionally, apoptosis is an important process
in maintaining the homeostasis of the cellular environment. The flow cytometry results
showed that the apoptosis rate of SNH group was significantly higher than that of the
control group through Annexin V/PI staining (Figure 3i,j). The Western blot results showed
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that the expression of cleaved caspase-9 and cleaved PARP and the ratio of BAX/Bcl-2
increased after SNH treatment (Figure 3k,l), which indicated apoptosis occurred in MCF-7
and CMT-1211. Combining the above results, we found that SNH could inhibit the mi-
gration capacity and invasiveness of breast cancer cells, promote cell apoptosis, and have
conspicuous anti-tumor activity in vitro.

3.4. SNH Induced Cell Apoptosis by Increasing Intracellular ROS Level

An appropriate amount of ROS can promote the occurrence and development of
cancer, but excessive production of ROS will show an anti-tumor effect. DCFH-DA probe
was applied to detect the content of ROS in the cells. The flow cytometry results showed
that, compared with the control group, the level of intracellular ROS in the SNH group was
significantly higher (Figure 4a,b). Additionally, transmission electron microscopy images
of MCF-7 and CMT-1211 revealed extensive damage to mitochondria after treatment with
SNH, as follows: mitochondrial swelling, disrupted mitochondrial cristae (most disap-
peared), partial mitochondrial lysis, and heterogeneous mitochondrial matrix (Figure 4c,d).
NAC is an ROS scavenger that can effectively reduce the generation of ROS. Compared
with the SNH group, the ROS level of the combined NAC and SNH group was significantly
lower (Figure 4e,f). At the same time, the Western blot results showed that the expres-
sion levels of MMP1 and Bcl-2 in the combined NAC and SNH group were partially re-
stored, while the expression levels of BAX, cleaved caspase-9, and cleaved PARP decreased
(Figure 4g–j). These results suggest that the overgeneration of ROS induced by SNH may
be an important factor for apoptosis in MCF-7 and CMT-1211.

3.5. SNH Induced Apoptosis by Suppressing the Activation of the PDK1-AKT-GSK3β Pathway
via ROS

At present, it is unclear whether SNH inhibits the activation of PI3K-AKT in MCF-7
and CMT-1211 cells through excessive production of ROS. The Western blot results showed
that, compared with the control group, the phosphorylation levels of PDK1 and AKT
were lower in the SNH group, as shown in Figure 5a,b. However, compared with SNH
group, the expression levels of p-PDK1 and p-AKT were partially restored in the NAC
and SNH combined group (Figure 5c,d), and immunofluorescence tests showed consistent
results (Figure 5e–h). In addition, we detected the activity of GSK3β, a downstream target
of AKT. GSK3β is a negative regulator in breast cancer. The results showed that as the
SNH concentration increased, the expression level of GSK3β did not change significantly,
but the phosphorylation level of GSK3β (ser9) showed a downward trend (Figure 5a,b).
Correspondingly, the expression of p-GSK3β (ser9) was partially restored in the NAC
and SNH combined group (Figure 5c,d). These results suggest that SNH could promote
increased activity of the GSK3β protein. In conclusion, SNH inhibited the activation of
PDK1-AKT-GSK3β by promoting the overgeneration of intracellular ROS.

3.6. SNH Inhibited the Growth of Breast Tumor

To further evaluate the effect of SNH on tumor growth in vivo, a subcutaneous homo-
transplant mouse model was established using CMT-1211 (Figure 6a). In order to better
evaluate the effect of SNH, docetaxel (DOC) was added as a positive control group in
the treatment of Balb/C mice. There was no significant difference in the changes in body
weight among all treatment groups (Figure 6b). As shown in Figure 6c, treatment with
DOC was the most effective among all the experimental groups, while the HP-β-CD group
(control group, a solvent for SNH) had the fastest rate of tumor growth. Compared with the
control group, both low-dose and high-dose SNH had significant inhibitory effects on breast
tumors, and the therapeutic effect became more significant as the concentration increased
(Figure 6c–e). The heart, spleen, and kidney pathological test results of each treatment
group showed that there were no distinct abnormalities in the pathological sections. At
the same time, histological testing showed that, in the control group, there were apparent
tumor metastases in the liver (black line boxes) and lung, and the boundary between red
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pulp and white pulp in the spleen was obscure. In the treatment group, SNH resulted in
elevated nuclear fragmentation of tumor tissue and reduced tumor metastases in the liver
and lung as the SNH concentration increased (Figure 6f).

1 
 

 
Figure 4. SNH induced apoptosis of MCF-7 and CMT-12111 by promoting the excessive accumulation
of ROS. (a,b) Flow cytometry was used to detect the level of ROS in MCF-7 and CMT-1211 after
treatment with different concentrations of SNH. (c,d) TEM was used to observe the mitochondria
of MCF-7 and CMT-1211 after treatment with different concentrations of SNH. Red boxes and red
arrows pointed to mitochondria. 6000× Bar: 2 µM; 60,000× Bar: 200 nm. (e,f) After treatment with
0 mM, NAC (10 mM), SNH (60 µM in MCF-7, 50 µM in CMT-1211), and NAC combined with SNH,
flow cytometry was used to detect the level of ROS in MCF-7 and CMT-1211. (g,h) After treatment
with 0 µM, NAC (10 mM), SNH (60 µM in MCF-7, 50 µM in CMT-1211), and NAC combined with
SNH, the expression levels of MMP1 were analyzed using Western blot. The western blot original
images in the Figure S1. (i,j) After treatment with 0 µM, NAC (10 mM), SNH (60 µM in MCF-7, 50 µM
in CMT-1211), and NAC combined with SNH, Western blot was applied to analyze the expression
levels of apoptosis-related proteins BAX, Bcl-2, cleaved caspase-9, and cleaved PARP in MCF-7 and
CMT-1211. All results are expressed as mean ± SD of three independent experiments. * p < 0.05,
** p < 0.01, *** p < 0.001, **** p < 0.0001, ns = not significant.
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Figure 5. SNH acted by inhibiting the activation of the PDK1-AKT-GSK3β pathway. (a,b) After
treatment with the different concentrations of SNH for 24 h, the expression levels of PDK1, p-PDK1,
AKT, p-AKT (ser473), GSK3β, and p-GSK3β (ser9) were analyzed using Western blot. (c,d) After
treatment with 0 µM, NAC (10 mM), SNH (60 µM in MCF-7, 50 µM in CMT-1211), and NAC combined
with SNH, the expression levels of PDK1, p-PDK1, AKT, p-AKT (ser473), GSK3β, and p-GSK3β
(ser9) were analyzed using Western blot. The western blot original images in the Figure S1. (e,f)
After treatment with the different concentrations of SNH for 24 h, the expression level of p-AKT
(ser473) was assessed using immunofluorescence staining. Scale bar: 200 µM. (g,h) After treatment
with 0 µM, NAC (10 mM), SNH (60 µM in MCF-7, 50 µM in CMT-1211), and NAC combined with
SNH, the expression level of p-AKT (ser473) was assessed using immunofluorescence staining. Scale
bar: 200 µM. All results are expressed as mean ± SD of three independent experiments. * p < 0.05,
** p < 0.01, *** p < 0.001, **** p < 0.0001, ns = not significant.
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Figure 6. SNH was previously able to inhibit tumor growth in vivo. (a) Schematic diagram of
establishing the mouse model of tumor and treatment regimen. (b) Changes in the body weight
of mice in each group during treatment. (c) Changes in tumor volume during treatment in each
group of mice. (d,e) The tumors of the mice were collected and weighed after the mice were eutha-
nized. (f) H&E staining of mouse organs (lung, liver, spleen, heart, and kidney) and tumor tissues.
(g,h) Immunofluorescence staining of p-AKT in tumors. Scale bar: 200 µM. (i,j) The expression of
MMP1 in tumor tissues was analyzed using Western blot. (k,l) The expression of cleaved PARP in
tumor tissues was analyzed using Western blot. The western blot original images in the Figure S1.
All results are expressed as mean ± SD of three independent experiments. * p < 0.05, ** p < 0.01,
*** p < 0.001, **** p < 0.0001, ns = not significant.
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In addition, the phosphorylation levels of p-AKT and BAX in tumor tissues were
detected using an immunofluorescence assay. The results showed that, compared with the
control group, the expression level of p-AKT was significantly lower in the SNH treatment
group, while the expression level of BAX was significantly higher (Figure 6g,h). The
expression levels of MMP1 and cleaved PARP were measured using Western blot. Similar
to the in vitro results, SNH significantly inhibited the expression of MMP1 compared with
the control group (Figure 6i,j). Cleaved PARP is one of the main indicators of apoptosis,
and the expression level of cleaved PARP in the SNH treatment group was significantly
higher than that in the control group (Figure 6k,l). Collectively, these results indicated that
SNH has a significant anti-tumor effect in vivo.

4. Discussion

It has been reported that gene mutations (breast cancer genes BRCA 1 and BRCA 2,
etc. [25]) can result in the emergence of breast cancer and promote the survival and metas-
tasis of cancer cells [26]. Through statistical analysis of the GEO database, we found certain
breast cancer-related DEGs that had a strong relationship with the invasiveness and apopto-
sis of breast cancer and cancer-related pathways. Breast cancer is one of the tumors with a
high mortality rate, and its heterogeneity and drug resistance make the clinical treatment of
breast cancer very challenging [27]. However, the active ingredients in traditional Chinese
medicines and their derivatives have attracted people’s attention because of their great
therapeutic potential. Therefore, it is meaningful to find active ingredients of traditional
Chinese medicine that can treat breast cancer effectively.

SNH, a derivative of houttuynium, has been used in the clinical treatment of pelvic
inflammatory disease. SNH has also been found to have anti-tumor activity [9,10]. Never-
theless, few studies have investigated the influence of SNH on breast cancer. In this study, a
mouse mammary tumor model was successfully established, and SNH was found to exhibit
significant anti-breast cancer activity both in vivo and in vitro. We found that SNH could
induce the overgeneration of ROS and result in mitochondrial dysfunction in MCF-7 and
CMT-1211 cells. The overgeneration of ROS inactivated the PI3K-AKT pathway, thereby
increasing GSK3β activity, increasing the expression level of BAX, cleaved caspase-9, and
cleaved PARP, and finally causing DNA damage in MCF-7 and CMT-1211 cells.

Previous studies have shown that SNH has an important effect on the proliferation
and invasiveness of non-small cell lung cancer [10]. In light of the similarity between
canine breast cancer and human breast cancer [28] and the tumor-forming ability of canine
mammary tumor cell CMT-1211 in Balb/C mice [29], two cell lines (CMT-1211 and MCF-7)
were selected. The results showed that SNH could significantly inhibit the growth of
breast tumors in vivo. Meanwhile, we also found that SNH inhibited the proliferation
and migration of breast cancer cells in vitro, as evidenced by the wound healing rates.
In addition, the flow cytometry results showed that the apoptosis rates of MCF-7 and
CMT-1211 increased, which was also demonstrated using Western blot analysis. All the
results aligned with previous reports [10,30]. When cells receive apoptotic signals, BAX
and Bcl-2 are recruited to the outer mitochondrial membrane to interact and activate, which
will induce mitochondrial damage [31–33]. In this research, it was found that the ratio of
BAX/Bcl-2 increased. This suggests that the pro-apoptotic effect of SNH may be relevant
to mitochondrial function.

As a commonly used anti-inflammatory drug in clinical practice, SNH has been proven
to exert anti-inflammatory effects by increasing the level of ROS [6]. Studies have shown
that ROS has a close relationship with cancer and that the excessive accumulation of ROS
can cause mitochondrial membrane potential reduction, thereby inducing mitochondrial
dysfunction, bioenergy failure, and apoptosis [13,34,35]. In our study, we found that SNH
could promote intracellular ROS overgeneration using flow cytometry, which enhanced
along with the increase in SNH concentration, and this phenomenon was partially inhibited
by NAC. In addition, the Western blot results showed that compared with the SNH group,
the expressions of BAX, cleaved caspase-9, and cleaved PARP in MCF-7 and CMT-1211
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cells were lower in the combined NAC and SNH group, and the expression of Bcl-2 was
higher than that in SNH group. These results suggest that SNH may cause mitochondrial
dysfunction and initiate cell apoptosis by promoting the production of ROS.

As a by-product of cell metabolism, ROS participates in the regulation of the PI3K-AKT
pathway [36]. Low or moderate levels of ROS can activate the PI3K-AKT pathway and in-
hibit apoptosis [37], while excessive ROS can be a negative regulator of this pathway [38,39].
As a direct downstream target of AKT, GSK3β acts as a tumor suppressor in breast cancer,
mediating the expression of cyclin D1 to regulate the cell cycle and increase chemosensi-
tivity [40,41]. Phosphorylation of serine 9 of GSK3β reduces the activity of GSK3β, while
phosphorylation of tyrosine 216 of GSK3β enhances the activity of GSK3β [21]. GSK3β can
be present in the cytoplasm and nucleus, but the activity of nuclear GSK3β is higher than
that of cytosolic GSK3β. In the process of apoptosis signaling, nuclear GSK3β regulates
a large number of transcription factors and encodes apoptotic regulatory proteins that
target mitochondria. For example, GSK3β can form a complex with p53 to induce the
expression of BAX [42]. The polymerized BAX outside of mitochondria facilitates the
release of apoptotic proteins from mitochondria into the cytoplasm, where these proteins
(such as cytochrome c, apoptotic protease activating factor-1, ATP/dATP, and caspase-9)
assemble apoptotic bodies, triggering the caspase cascade [43]. In this study, the Western
blot results showed that the expressions of p-PDK1, p-AKT1, and p-GSK3β (ser9) decreased,
which represented a concentration gradient-dependent pattern, suggesting that SNH could
inactivate the PI3K-AKT pathway, increase the activity of the GSK3β protein, and inhibit
the cell viability of MCF-7 and CMT-1211. Abnormal activation of the PI3K pathway is
one of the most common phenomena in the development of breast cancer. Therefore,
inhibitors targeting the PI3K signaling pathway are promising drugs for treating breast
cancer. Currently, there are several drugs that target the PI3K pathway: pan-PI3K inhibitor,
PI3K isoform-specific inhibitors, AKT inhibitor, rapamycin analogue or mTOR inhibitors,
etc. [44]. Studies have shown that PI3K-AKT signaling activates estrogen receptor α in an
estrogen-independent manner, and AKT overexpression protects breast cancer cells from
tamoxifen-induced apoptosis [45]. This indicates that inhibition of PI3K can enhance the
therapeutic effect on ER+ breast cancer cells. In addition, some drugs developed according
to the molecular structure and function of natural products have been shown to be able to
treat breast cancer by inhibiting the overactivation of the PI3K pathway. For example, it has
been proven that quercetin suppressed the activation of PI3K and AKT, which increased
the ratio of BAX/Bcl-2 to induce apoptosis of breast cancer cells, as well as significantly
inhibiting the growth and metastasis of CD44+/CD24 breast cancer stem cells in vivo [46].
In a study of ginsenoside treating MDA-MB-231 cells and HUVEC cells, it was found
that ginsenoside could reduce intracellular AKT/mTOR/p70S6K and hypoxia inducible
factor-1-α. The activation of vascular endothelial growth factor receptor 2 in HUVECs
induced by vascular endothelial growth factor was eliminated [47]. In this study, it was
found that SNH induced mitochondrial dysfunction by promoting excessive generation of
ROS and inactivated the PDK1-AKT signaling pathway, which activated GSK3β activity.
Activated GSK3β entered the nucleus, and regulated the expression of BAX in the nucleus
and polymerization of BAX in the mitochondrial outer membrane, triggering the mito-
chondrial apoptotic pathway, including an increased BAX/Bcl-2 ratio and caspase cascade.
On the basis of the above-mentioned results, it is suggested that SNH potentially has a
therapeutic effect on breast cancer.

5. Conclusions

In conclusion, the occurrence of breast cancer is involved in a large number of DEGs
that participate in cancer-related pathways. SNH can promote the excessive accumulation
of ROS in MCF-7 and CMT-1211 cells, target the PI3K-AKT-GSK3β pathway to induce cell
apoptosis in vitro, and significantly inhibit the growth of breast tumors in vivo. Thus, SNH
may be a potential drug for breast cancer treatment.
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