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Simple Summary: We developed an efficient method for analyzing sparse mutation data based on
mutation co-occurrence to infer the underlying numbers of mutational signatures and sample clusters
that gave rise to the data.

Abstract: Mutational signature analysis promises to reveal the processes that shape cancer genomes
for applications in diagnosis and therapy. However, most current methods are geared toward rich
mutation data that has been extracted from whole-genome or whole-exome sequencing. Methods that
process sparse mutation data typically found in practice are only in the earliest stages of development.
In particular, we previously developed the Mix model that clusters samples to handle data sparsity.
However, the Mix model had two hyper-parameters, including the number of signatures and the
number of clusters, that were very costly to learn. Therefore, we devised a new method that
was several orders-of-magnitude more efficient for handling sparse data, was based on mutation
co-occurrences, and imitated word co-occurrence analyses of Twitter texts. We showed that the
model produced significantly improved hyper-parameter estimates that led to higher likelihoods of
discovering overlooked data and had better correspondence with known signatures.

Keywords: mutational signature; panel sequencing data; biterm topic model

1. Introduction

Statistical models for discovering and characterizing mutational signatures are crucial
for revealing biomarkers for practical applications. Mutational signatures reveal the muta-
tional processes that transform a “normal” genome into a cancerous genome. The activity
of these processes have provided insights into the development of tumorigenesis, and
they also have led to new and expanded potential applications for personalized data [1].
Consequently, as more and more cancer data become available, significant efforts have
been made to introduce statistical models that can accurately and effectively capture these
signatures.

Most models of mutational signatures of cancer represent each N patient with cancer as
having mutations that were generated from a linear combination of K mutational signatures.
Therefore, each signature is represented as a probability distribution over a set of mutational
categories, which are typically the 96 categories given by the 6 single base substitution types
and the 5’ and 3’ flanking bases [2]. Each patient’s mutations are represented as exposures
to the mutational signatures, in addition to some noise. Alexandrov et al. [2,3] were the
first to use non-negative matrix factorization (NMF) to perform a census of mutation
signatures across thousands of tumors. Subsequent methods have used different forms of
NMF [4–7], or have focused on inferring the exposures (also known as refitting) based on
the signatures and mutation counts [8–10]. More recent approaches have borrowed from
the world of topic modeling in order to provide a probabilistic model of the data so as
to maximize the model’s success [11–14]. The Catalogue of Somatic Mutations in Cancer
(COSMIC) now includes a census of dozens of validated mutational signatures [2,15,16],
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(https://cancer.sanger.ac.uk/signatures/ accessed on 1 January 2022), and there have been
many efforts to investigate using these signatures as biomarkers for diagnosis and known
cancer therapies (e.g., [17–19]).

Developing methods for analyzing mutational signatures in targeted sequencing
datasets have presented new opportunities in the research. To date, most efforts to model
mutational signatures have focused on data-rich scenarios, such as whole-exome or whole-
genome sequences, where there are from dozens to even thousands of mutations per
patient. The most popular targeted sequencing panels have only included several hundred
genes [20,21] and, in general, have had fewer than 10 mutations per patient [20,22]. The
standard topic modeling and non-negative matrix factorization frameworks are not capable
of generalizing according to such cases [19,23], even though targeted sequencing has been
more common in clinical practice. Methods that could accurately infer exposures from
targeted sequencing data were thus critical for demonstrating the potential of mutational
signatures-based precision medicine in real applications[1,17]. At the same time, the largest
targeted sequencing datasets have included data from many more samples (e.g., see [24]).
Therefore, along with scaling and sparsity challenges, there is also an opportunity for
discovering novel and rare signatures.

To partially address this challenge, SigMA [19] relied on whole-genome training
data to interpret sparse samples and predict their homologous recombination deficiency
status. However, SigMA still suffered from the fact that not all cancer types have available
whole-genome sequencing data. The Mix model [25] simultaneously clustered the samples
and learned the mutational landscape of each cluster, thereby overcoming the sparsity
problem. However, it still suffered from high computational costs when learning its hyper-
parameters.

Therefore, we developed a new topic model for sparse data that borrowed from similar
works in the natural language processing (NLP) domain. Specifically, the advent of Twitter
has produced an explosion of much shorter (sparser) documents that researchers have to
analyzed, where “documents” have a mean length of <35 characters [26]. One of the main
insights for handling sparse documents has been to model word co-occurrence directly [27],
under the assumption that words that co-occur frequently were likely from the same topic.
While computationally much more intensive than the standard topic model, co-occurrence
has shown greater sensitivity on sparse datasets.

Following the biterm topic model [27], we proposed modeling mutation co-occurrence
in a similar way. In detail, the generation of each mutation pair was modeled as a two-step
process. First, a signature was chosen from a global, cohort-level exposure vector θ, and
then a pair of mutations was drawn from that signature. The rationale was that, in the case
of mutational signatures, the “vocabulary” (mutational categories) was much smaller than
that of Twitter. In a targeted sequencing setting, only approximately 0.1% of a patient’s
mutations can be observed. Therefore, modeling the co-occurrence of mutations could
provide additional signals as the number of data points (i.e., mutation pairs) would be
quadratic for the number of mutations. Furthermore, because the number of mutational
categories was low, it would also be computationally feasible.

In the next section, we formally described the model and provided an expectation-
maximization (EM) framework for learning the model parameters and estimating the
number of signatures in the data. Then, we applied it to various simulated and real
targeted sequencing datasets and showed that the model was significantly more efficient
and outperformed other hyper-parameter estimation methods. This method was used as a
pre-processing step for the Mix method, which improved the training time by an order of
magnitude and led to higher likelihoods of discovering overlooked data and improving
the correspondence with known signatures.

https://cancer.sanger.ac.uk/signatures/
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2. Materials and Methods
2.1. Preliminaries

We followed previously published research and assumed that the somatic mutations
in cancer fell into M = 96 categories (denoting the mutation identity and its flanking bases).
These mutations were assumed to be the result of the activity of K (a hyper-parameter)
mutational processes, each of which was associated with a signature Si = (ei(1) . . . ei(M))
of probabilities to represent each of the mutation categories.For a given genome n, we
denoted its mutation categories as On = (on

1 . . . on
Tn
) and assumed that this sequence

was represented by the (hidden) signature sequence Zn = (zn
1 . . . zn

Tn
). We denoted the

exposures of the signatures across all patients as π = (π1, . . . , πK). Note that, as compared
to most previous works, this was a single “global” exposure vector, rather than a per-patient
vector.

2.2. Btm: A Biterm Topic Model

To enrich the input data, we adapted a method previously used to analyze short texts
in [27]. Instead of viewing mutations as individuals, we examined their co-occurrence
patterns with other mutations. Let a biterm be a pair of mutations that co-occur in the same
patient. The assumption in Btm was that each biterm was the product of a single mutational
process. Formally, patient n was determined by a sequence of biterms (bn

1 . . . bn
Tn
), where

bn
t = bn

t1
, bn

t2
and the corresponding mutations are represented by the hidden signature

sequence Zn = (zn
1 . . . zn

Tn
), as described in Figure 1.

ek

bt1

bt2

ztπ

T

K

Figure 1. A plate diagram for Btm.

Where Bn ∈ NM×M
≥0 is the biterm matrix for patient n and Bn

ij = {t1 6= t2|bt1 = i, bt2 = j}
is the number of times words i and j co-occur in the patient. Given the count vector Vn of a
patient, we constructed the biterm matrix as Bn = VT

n Vn − diag(Vn). Given a high number
of patients, we constructed the biterm matrix B as the summation of all the biterm matrices
together:

B =
N

∑
n=1

Bn =
N

∑
n=1

VT
n Vn − diag(Vn)

Note that building B, at worst, cost O(NM2), but it could also be calculated as O(|B|)
if that was more efficient.We could also perform any combinations as required by the
situation, i.e., for fewer patients with more than M mutations, we could use the matrix
multiplication option, and for the rest, we computed biterms, one by one. We searched for
π = (π1 . . . πK) and signatures e, as they could maximize the model’s success:

Pr[B|π, e] =
M

∏
i=1

M

∏
j=1

Pr[b = (i, j)|π, e]Bij

=
M

∏
i=1

M

∏
j=1

(
N

∑
k=1

Pr[b = (i, j), z = k|π, e]

)Bij

=
M

∏
i=1

M

∏
j=1

(
N

∑
k=1

πkek(i)ek(j)

)Bij



Cancers 2023, 15, 1601 4 of 11

We optimized the model using the following EM algorithm:
E-step: Compute for every i, j, k:

• pk|ij = Pr[z = k|b = (i, j), π, e] = πkek(i)ek(j)
K
∑

k′=1
πk′ ek′ (i)ek′ (j)

• Ek(i) =
M
∑

j=1
Bij pk|ji + Bji pk|ij

• Ak =
M
∑

i=1
Ek(i)

M-step: Compute for every i, k:

• πk =
Ak

K
∑

k′=1
Ak′

• ek(i) =
Ek(i)

M
∑

i′=1
Ek(i′)

Each EM iteration could be completed in O(KM2) time for K signatures and M
mutation categories. To avoid bad local minima, Btm was trained for 100 iterations from
10 random seeds, and then the best one was chosen and further trained for 500 additional
iterations.

2.3. Mix: A Mixture of MMMs

For completeness, we briefly present the Mix method, which was previously developed
in [25].

In order to handle sparse data, the Mix approach clustered the samples and learned
the exposures per cluster, rather than per sample. To this end, we proposed a mixture
model, which led to simultaneous optimizations of sample (soft) clustering, exposures, and
signatures (Figure 2). Given the hyper-parameter L, which indicated the number of clusters,
denoted by cn ∈ {1 . . . L}, the hidden variables representing the true cluster identity of
each sample. Our goal was to learn the cluster a priori probabilities w = (w1 . . . wL), cluster
exposures π = (π1 . . . πL), and shared signatures e, so as to maximize the model’s success:

Pr[V|w, π, e] =
N

∏
n=1

Pr[Vn|w, π, e] =
N

∏
n=1

L

∑
`=1

Pr[cn = `, Vn|w, π, e]

=
N

∏
n=1

L

∑
`=1

Pr[cn = `]Pr
[
Vn|π`, e

]
=

N

∏
n=1

L

∑
`=1

w`

M

∏
j=1

(
K

∑
i=1

πiei(j)

)Vj

Similarly to Btm, the Mix model was optimized with an EM algorithm. Each iteration
could be completed in O(NLKM). To avoid bad local minima, the Mix method was trained
for 100 iterations from 10 random seeds, then the best one was chosen and further trained
for 500 additional iterations.

ek

on
tzn

tcn

w π`

N Tn

KL

Figure 2. A plate diagram for Mix.

2.4. Btm2K-Learning the Number of Signatures in a Dataset Using Btm

We present below a method to learn the hyper-parameter K, which was the number
of signatures that underpinned a highly sparse dataset. Given a mutation matrix V, we
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applied a 2-fold cross-validation, training Btm with a varying number of signatures on
one-half and testing the overlooked log-likelihood on the other, and vice versa. We repeated
this process T times and chose the number of signatures with the best median overlooked
log-likelihoods.Following the previous work [28], we further applied a rollback mechanism
to choose the more concise solution in cases where the differences in log-likelihood were
not significant.

Because the number of biterms was quadratic in the number of mutations in a given
patient, small changes in the number of mutations could lead to larger changes in the
number of biterms. To avoid this balancing problem in the cross-validation, we defined
“big patients” as patients with more than 5 times the average number of biterms in the
data. On all the datasets we tested, there were 1–3% big patients, containing 75–85%
of the biterms. This phenomenon affected the cross-validation more than the number of
signatures, and thus, we applied the cross-validation to the other patients only and used the
big patients in addition to the training fold (i.e., they were used only for training alongside
the training fold). The algorithm is summarized below. The method was summarized in
the pseudo-code Algorithm 1.

Algorithm 1 Btm2K(V, Kmin, Kmax).

1: Input: V ∈ RN×M
≥0 , 1 ≤ Kmin < Kmax ≤ min{N, M}

2: Parameters: T = number of runs for each K
3: Vbig = Samples with more than 5 times the average biterms in V
4: V = The rest
5: for t = 1, . . . , T do
6: V1, V2 = split V randomly to two equal sized sets
7: for k = Kmin, . . . , Kmax do
8: btm = BTM(k, V1

⋃
Vbig)

9: S[k, t] = btm.log-likelihood(V2)
10: btm = BTM(k, V2

⋃
Vbig)

11: S[k, t] = S[k, t] + btm.log-likelihood(V1)

12: K̃ = arg min
k

(median(S[k, :]))

13: repeat
14: K∗ = K̃
15: K̃ = min{K < K∗|Wilcoxons-rank-sum(S[K, :], S[K∗, :]) > 0.05}
16: until K̃ < K∗

17: return K̃

2.5. Previous Hyper-Parameter Selection Algorithms

There were several previous algorithms for selecting the number of signatures in a
dataset. For rich data, one of the leading methods, CV2K [28], was based on testing the
ability of NMF to reconstruct overlooked data when varying its number of components
(which corresponded to signatures).

For sparse data, the only previous method that was used in Mix was based on the
Bayesian information criterion (BIC), which combines model likelihood with its number of
parameters. In the case of Mix, the BIC was applied to select the number of signatures as
well as the number of model clusters, thus requiring the model likelihood evaluation in
settings with many parameters.

2.6. Running-Time Estimation

For simplicity, we assumed that each model required the same number of iterations R
to converge and that BIC was iterated over all options for the number of clusters, from 1 to
Lmax. To train a model, we used 10 random seeds and improved them for 100 iterations, and
then chose the best one and trained it for 500 more iterations, so R = 1500. We also assumed
that Btm2K and CV2K were both processed T = 30 times. Last, we iterated through all
the options for K = 1 . . . Kmax signatures, denoted by N, M the number of samples and
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mutation categories (96), respectively. Then, the algorithms’ complexities were as follows
(Table 1):

1. Btm2K: For a given k, we needed to train Btm 2T times (T repetitions of 2 folds). To
train Btm, we needed to create biterms with NM2 time and RkM2 training time. In
total the cost for k was 2TNM2 + 2TRkM2. Note that we created biterms one time for
all k in each run, so in total, the run time was ∼ 2TNM2 + TRK2

maxM2.
2. BIC: For a given k, we considered all possible L = 1 . . . Lmax. For a given pair, we

trained Mix once for a cost of RNkLM. In total, for all Ls, we needed ∼ RkNML2
max/2.

Overall, ∼ RK2
maxL2

maxNM/4 was needed.
3. CV2K: For a given k, we needed to train NMF T times, and each iterations cost NkM

time, for a total of TRNkM time. In total, for all k, we spent TRNK2
maxM.

Note that for Btm2K and CV2K, the cost did not include learning the number of clusters;
thus, if we want to train Mix, we needed to use BIC and find the number of clusters. This
added ∼ RKmaxNML2

max/2 more time to the process. Figure 3 shows that Btm2K was order
of magnitudes faster than the other methods.

Table 1. Summary of time complexity for BIC, Btm2K, and CV2K. Here, R, N, and M denotes number
of iterations to train a model (1500), samples, and categories (96). T denotes the number of repetitions
of Btm2K and CV2K (30), and Kmax Lmax denotes the maximum number of signatures and clusters
used when the methods iterated.

Method ∼Learning Number of
Signatures Complexity

∼Learning Number of
Clusters Complexity (BIC)

BIC RK2
maxL2

maxNM/4

Btm2K 2TNM2 + TRK2
maxM2 RKmaxNML2

max/2

CV2K TRNK2
maxM RKmaxNML2

max/2

0 20000 40000 60000 80000 100000
samples

26

27

28

29

30

31

32

lo
g 

tim
e

BTM2K
BIC(L_max=10)
BIC(L_max=15)
CV2K

Figure 3. Log running time estimation for Btm2Kand BIC with a maximum of 10–15 clusters and
CV2K as a function of the number of samples. Here, Kmax = 10 was used. For CV2K and Btm2K,
Lmax = 15 was used.

2.7. Data

We present below both real panel datasets, as well as down-sampled and simulated
datasets on which we tested our model.

1. MSK-IMPACT [20,22] Pan-Cancer. We downloaded mutations for a cohort of patients
from Memorial Sloan Kettering Integrated Mutation Profiling of Actionable Cancer
Targets (MSK-IMPACT), which was targeted sequencing data from https://www.
cbioportal.org/ (accesed on 1 January 2022). The MSK-IMPACT dataset contained
11,369 pan-cancer patients’ sequencing samples across 410 target genes. We restricted

https://www.cbioportal.org/
https://www.cbioportal.org/
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our analysis to 18 cancer types with more than 100 samples, which resulted in a
dataset of 5931 samples and about 7 mutations per sample.

2. Whole genome/exome (WGS/WXS) data. We combined mutations from different sources
and cancer types of whole-genome-sequencing and whole-exome-sequencing
(WGS/WXS): ovarian cancer (OV), chronic lymphocytic leukemia (CLL), malignant
lymphoma (MALY), and colon adenocarcinoma (COAD). We downloaded the OV
samples from the Cancer Genome Atlas [29]. For CLL and MALY, we used ICGC
release 27, analyzed the sample with the most mutations per patient, and restricted
those to samples annotated as “study = PCAWG” [24]. For evaluation purposes,
we down-sampled the data to target regions of MSK-IMPACT [20,22]. The data
characteristics are summarized in Table 2.

3. Simulated data. The simulated data were generated and described in detail in [16] to
evaluate SigProfiler (SP) and SignatureAnalyzer (SA). Here, for each of the 12 datasets,
we evaluated our method on two sets of realistic synthetic data: SP-realistic, based
on SP’s reference signatures and attributes, and SA-realistic, based on SA’s reference
signatures and attributes. For each of the (i)–(x) tests, the synthetic datasets were
generated based on observed statistics for each signature of each cancer type. Different
datasets could differ by the number of signatures, the number of active signatures
per samples (sparsity), the number of mutations per sample (whole exome/genome
sequencing), whether they reflected a single cancer type or multiple types, and the
similarity between signatures. All these factors affected the difficulty of determining
the number of components. For each simulated sample, we sampled an MSK-IMPACT
patient and down-sampled the simulated sample, so it had the same number of
mutations. We removed datasets with missing mutation categories.

Table 2. Summary of WGS/WXS down-sampled datasets.

Cancer #Samples #Mutations #Panel Mutations

OV 411 46,299 1812

Maly 100 1,220,526 1770

CLL 100 270,870 278

COAD 44 52,827 1789

Combined 653 1,590,520 5604

2.8. Implementation Details

Btm was implemented in Python 3 using numpy [30]. For NMF, we used the scikit-learn
implementation [31]. The code for Mix was available at https://github.com/itaysason/
Mix-MMM (accesed on 1 January 2022), and the code for CV2K was sourced from https:
//github.com/GalGilad/CV2K/ (accesed on 1 January 2022).

3. Results
3.1. Evaluating the Number of Signatures from Simulated Data

We applied Btm2K to a range of datasets to test its performance and compare the results
to current methods. In our first set of results, we used a down-sampled version of the simu-
lated data from [16]. While each dataset was generated by a known set of signatures, due
to the down-sampling, this true number may not be reflected in the remaining mutations,
which was potentially a result of having only a subset of the true signatures. To mitigate
this difficulty, we matched each mutation to a signature with maximum a priori probability
(using the known exposures and known signatures).Next, we counted the occurrences
of each signature in the down-sampled sample and summed all samples in the dataset.
We reported the number of signatures that appeared in more than 5% of the mutations
in the down-sampled data. We omitted datasets where all the methods inferred a single

https://github.com/itaysason/Mix-MMM
https://github.com/itaysason/Mix-MMM
https://github.com/GalGilad/CV2K/
https://github.com/GalGilad/CV2K/
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signature. The results are summarized in Table 3 and show the superiority of Btm2K over
the other approaches.

3.2. Evaluating the Number of Signatures from MSK-IMPACT Data

Next, we applied Btm to analyze 5931 samples from the MSK-IMPACT dataset. In
Figure 4, the performances of the three estimation methods on this dataset are shown. BIC,
Btm2K, and CV2K estimated 6, 7, and 3 signatures, respectively. BIC took around 100 hours
to learn both parameters while Btm2K took 1 hour to learn the number of signatures (BIC
required 8 additional hours to learn the number of clusters). Complexity-wise, Btm2K was
10–100-fold faster than BIC. To evaluate the quality of their estimations, we trained Mix, Btm,
and NMF models on 3, 6, and 7 signatures, respectively, and then we assessed the quality
of signatures and log-likelihood of the resulting model on unseen data. We presented the
results in the range of 3–9 signatures.

To evaluate the quality of the learned signatures, we compared them to the COSMIC
signatures. We matched each learned signature to the most similar COSMIC signatures
(cosine similarity). We used 0.7 and 0.8 thresholds to determine if a signature was similar
to a COSMIC signature. If two signatures were similar to the same COSMIC signature, we
determined that the signature with the lower similarity was a duplicate. The results are
summarized in Figure 5 and showed that for both thresholds, the maximum number of
high quality signatures that had been learned was 7, supporting the estimate of Btm2K and
suggesting the other methods underestimated the true number. A more detailed view of
the learned signatures appears in Figure 6. Evidently, Btm learned high-quality signatures
at a fraction of the time Mix used, supporting its improvements.

Table 3. Estimation of number of signatures in simulated data. For Btm2K and CV2K, the numbers of
the best run and the numbers after rollback are shown. In the last column, the number of signatures
were present in more than 5% of the mutations as an estimate for the true solution. In bold are the
methods that performed best with regard to this estimate.

Data Set BIC Btm2K CV2K # Signatures with >=5%
Down-sampled Mutations

ii-sa 3 4->4 4->2 8

ii-sp 3 10->7 4->2 6

v-sa 2 3->3 3->2 6

v-sp 2 3->2 6->2 5

vii.a(pri.)-sp 1 2->2 3->1 2

vii.b(sec.)-sa 1 1->1 5->2 3

viii-sp 1 2->2 5->1 7

ix-sa 2 4->4 4->2 8

ix-sp 4 6->6 4->3 6

x-sa 1 3->3 5->1 8

x-sp 1 6->6 5->4 6



Cancers 2023, 15, 1601 9 of 11

clusters

2 4 6 8 10 12 14
sig

na
tu

re
s

2
4

6
8

10

B
IC

 s
co

re

315000

320000

325000

330000

335000

1 2 3 4 5 6 7 8 9 10 11 12
signatures

2.6954

2.6956

2.6958

2.6960

2.6962

2.6964

2.6966

lo
g(

-lo
g 

lik
el

ih
oo

d)

Validation median (best: 8)

1 2 3 4 5 6 7 8 9 10 11 12
signatures

4.1

4.0

3.9

3.8

3.7

3.6

lo
g(

Im
pu

ta
tio

n 
Er

ro
r)

Validation median (best: 3)

Figure 4. Performance evaluation on MSK-IMPACT data for varying number of signatures. Left: BIC
scores of Mix with varying parameters. Middle: Btm2K log of minus log-likelihoods. Right: CV2K
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plot) for Mix, Btm, and NMF, across a range of number of signatures (6, 7 corresponding to (left) and
(right), respectively). Repeating signatures of the same model are not shown.

To further show the advantage of the Btm-inspired method Btm2K, we used Mix to
compute the likelihood of yet unseen down-sampled WGS/WXS data, with the different
numbers of signatures. For each number of signatures chosen, we used BIC to learn the
best number of clusters. The results appear in Figure 7 (left panel) and show that seven
signatures, as suggested by Btm2K outperformed the other choices. Of interest, eight
signatures performed worse than seven signatures, supporting the use of the rollback
mechanism in Btm2Kto avoid over-fitting.

Last, we used the three methods to estimate the number of signatures on the down-
sampled data. The methods estimated 2 (BIC) and 3 (Btm2K and CV2K) signatures. We
trained Mix with these parameters and estimated the performance on the full WXS/WGS
mutation catalogs. As shown in Figure 7 (right panel), although the five signatures per-
formed better than three, the latter outperformed the BIC choice of two signatures.
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Figure 7. Log-likelihood of Mix on unseen data as a function of the number of signatures. Left: Mix
was trained on MSK-IMPACT data and tested on the down-sampled WGS/WXS data. Right: Mix
was trained on down-sampled WGS/WXS data and tested on the original data.

4. Conclusions

We adapted Btm, which was developed for the task of handling short texts, and showed
it to be useful on panel mutation data. We then developed Btm2K, a method that used Btm
to select the number of components on sparse data, such as panel mutations. Our method
performed well on several real and simulated datasets, with considerable computational
benefits, as compared to current methods. A particularly interesting use case for this
method was as a pre-processing step for Mix serving as a better and faster way to choose
hyper-parameters. Future work should harness this approach to learn improved topic
models for sparse mutation data.
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