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Simple Summary: A common issue in glioblastoma stem cells (GSCs) studies is the need to efficiently
and precisely target GSCs using reliable biomedical markers. Using single-cell RNA sequencing
datasets, we quantitatively evaluated an extensive number of GSCs markers with multiple parameters
that dictate the feasibility of various laboratory and therapeutic applications. We present promising
marker candidates with their scores on the corresponding parameters and apply sequential selection
based on these parameters. Both previously approved and novel markers are proposed according to
the evaluation. We demonstrate the possibility of choosing a biomedical marker in a nonarbitrary
way and provide quantitative references for potential GSCs markers.

Abstract: Targeting glioblastoma (GBM) stem-like cells (GSCs) is a common interest in both the
laboratory investigation and clinical treatment of GBM. Most of the currently applied GBM stem-like
markers lack validation and comparison with common standards regarding their efficiency and
feasibility in various targeting methods. Using single-cell RNA sequencing datasets from 37 GBM
patients, we obtained a large pool of 2173 GBM stem-like marker candidates. To evaluate and
select these candidates quantitatively, we characterized the efficiency of the candidate markers in
targeting the GBM stem-like cells by their frequencies and significance of being the stem-like cluster
markers. This was followed by further selection based on either their differential expression in GBM
stem-like cells compared with normal brain cells or their relative expression level compared with
other expressed genes. The cellular location of the translated protein was also considered. Different
combinations of selection criteria highlight different markers for different application scenarios. By
comparing the commonly used GSCs marker CD133 (PROM1) with markers selected by our method
regarding their universality, significance, and abundance, we revealed the limitations of CD133 as a
GBM stem-like marker. Overall, we propose BCAN, PTPRZ1, SOX4, etc. for laboratory-based assays
with samples free of normal cells. For in vivo targeting applications that require high efficiency in
targeting the stem-like subtype, the ability to distinguish GSCs from normal brain cells, and a high
expression level, we recommend the intracellular marker TUBB3 and the surface markers PTPRS
and GPR56.

Keywords: glioblastoma stem cells; GBM stem-like markers; quantitative evaluation; single-cell RNA
sequencing; CD133; SOX2; CD24; CD15

1. Introduction

Glioblastoma multiforme (GBM) is the most common aggressive brain cancer, with a
poor prognosis, a median survival of 14 months, and only one in 20 patients being alive
after five years [1,2]. Since the current Standard of Care (SoC) was introduced in 2005 [3]
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with macroradical surgery, external radiation therapy, and temozolomide therapy, there
have been no major changes in the therapy or in the poor prognosis [4,5]. One of the major
challenges to avoiding tumor recurrence is stem-like cells. These are cells in the GBM bulk
tumor that possess the capacity for self-renewal and tumorigenesis [6,7]. After the surgical
removal of the bulk tumor and treatment with chemo- or radiotherapy, any potentially
stem-like cell residues left are likely to develop into a recurrent tumor [8–10]. Recent studies
based on single-cell RNA sequencing (scRNA-seq) technology uncovered the GBM “stem-
like” cells through gene set enrichment analysis featuring enrichment terms including
“nervous system development” and “gliogenesis” [11], similar to the biological features of
neural-progenitor cells. This resemblance is due to the fact that the GBM stem-like cells
share many marker genes with somatic neural progenitor cells.

Before the era of scRNA-seq, much effort was devoted to discovering GBM stem-like
cells and their biomedical markers in order to therapeutically target these cells. Sev-
eral markers have become recognized over the years, such as CD133 (PROM1) [12,13],
SOX2 [14,15], CD24 [16], and CD15 [17]. Among these markers, CD133 has obtained the
most attention so far. CD133 was initially identified as a protein bound to CD34 hematopoi-
etic stem and progenitor cells [18]. The tumorigenic capability of CD133 positive cells was
confirmed by both in vitro sphere formation [12,19,20] and in vivo xenograft assays [20,21].
However, some other studies claimed that there was a lack of robustness when using CD133
as a cancer stem cell marker [22,23].

Generally, there is a lack of direct comparison between the proposed stem-like markers
for GBM, as most studies are independent and investigate only one or a few markers using
different methods. scRNA-seq allows the identification of all the possible markers for the
GBM stem-like subtype [11,24,25], avoiding the process of “trial and error”. However, the
markers discovered by this approach are too many and indistinguishable to be applied in
targeted assays that only allow a limited number of markers. In addition, in clinical settings,
only a few markers can be applied at a time. Therefore, it is crucial to develop a pipeline to
find the best markers among the many marker genes identified by scRNA-seq data.

The aim of this study is to quantitatively evaluate GBM stem-like markers identified
by publicly available scRNA-seq data through multiple reality-relevant parameters: the
universality and significance of GBM stem-like markers, the ability to distinguish GBM
stem-like cells from normal brain cells, the expression level, and the cellular location of the
translated protein. Different combinations of parameters are applied to reduce the number
of candidates for different application requirements. With stringent standards, we propose
the intracellular marker TUBB3 and the cell-surface markers PTPRS and GPR56 due to their
excellent score for all parameters.

2. Materials and Methods
2.1. Data Acquisition

This study involves 37 GBM samples from three SMART-seq2 [26] based studies.
All the data were obtained from the Gene Expression Omnibus (GEO) database. In to-
tal, there are 1091 cells from Darmanis et al. (GSE84465) [25], 7930 cells from Neftel et
al. (GSE131928) [11], and 875 cells from Patel et al. (GSE57872) [24]. In addition, there
are 982 normal brain cells including oligodendrocyte progenitor cells (OPCs), oligoden-
drocytes, vascular cells, neurons, astrocytes, and microglia from two studies (GSE67835,
GSE84465) [25,27].

2.2. Preprocessing

The GBM cells from Darmanis et al. [25] and Patel et al. [24], and normal brain cells
from Darmanis et al. [25,27], were processed from FASTQ files, going through FastQC
quality control [28], Trimmomatic processing [29], and cell filtration with adaptive criteria
that filter out cells with a low sum of reads and detected features (genes) and cells with
excessive mitochondrial gene reads [30]. The cell filtration was conducted using the
“isOutlier” function from Scater [30]. After filtration, 913, 557 GBM cells and 863 normal
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brain cells were left. These datasets were normalized using “library-size-normalization’ [30].
The data obtained from Neftel et al. [11] are in the form of a normalized count matrix in
Transcript Per Million (TPM); all the steps before the cell filtration were already conducted
by the author, therefore, only the cell filtration was applied to these data, with 7781 GBM
cells passing the criteria. For all the datasets, genes that have total reads, summed up
from all the cells, of less than 100 and mitochondria genes starting with “MT-” in their
names were discarded. The preprocessed data were integrated with the corresponding cell
metadata in the SingleCellExperiment object for further analysis [31].

2.3. Clustering and Enrichment Analysis

Clustering was conducted for each sample using the Leiden method from igraph [32],
and the markers of each cluster were identified using Scanpy [33]. The marker genes for
each cluster were first selected according to the criteria: logFC (log fold change) > 2 and
p-value < 0.05, followed by extraction of the top 200 genes ranked by their p-value. The
top marker genes were used for enrichment analysis using g:Profiler [34]. A cluster was
considered “stem-like” if it possessed similar enrichment results to those of the “neural-
progenitor-cell-like 1 (NPC-like 1)” or “neural-progenitor-cell-like 2 (NPC-like 2)” from the
study by Neftel et al. [11].

2.4. Calculation of Abundance and Percentage-Rank

The abundance of a certain gene was defined as the percentage of cells expressing this
gene in the same sample, indicating the abundance of cells that express the gene across
the sample (Equation (1)). In order to correctly integrate data from different studies, we
adopted a rank-based method to overcome batch effect. The percentage-rank of a gene was
defined to indicate its expression level relative to other genes within a cell, calculated by the
following steps: all the genes with non-zero reads in a cell were ranked in ascending order;
the rank of the investigated gene was normalized by the number of genes with non-zero
reads in the same cell and multiplied by 100% (Equation (2)). The exclusion of all the zero
reads from the ranking was performed to avoid a biased ranking caused by cell number
differences between samples, as samples with more cells would also cause the inclusion of
more genes. The inclusion of more genes would result in a higher proportion of zero reads
in each cell, in turn increasing the rank value for all non-zero reads.

Abundance xa =
No. o f cells that express gene x × 100%

No. o f cells f rom sample a
(1)

Percentage − rank xi =
rank(gene x in cell i)× 100%
No. o f non-zero genes in cell i

(2)

2.5. Data Visualization

All the scatter plots, box plots, and bar plots were generated using ggplot2 [35].
The volcano plots were made using EnhancedVolcano [36]. The TSNE plots were gener-
ated using plotReducedDim from Scater [30]. The brain illustration was created using
BioRender.com.

3. Results
3.1. GBM Stem-like Cluster Identification

Through clustering and enrichment analysis, we identified 28 stem-like clusters out of
the total 92 clusters across the 37 GBM samples. The typical enrichment results of NPC-like
1 and NPC-like 2 are presented in Tables S2 and S3. The attributes of the NPC-like 1 and 2
subtypes indicated by the enrichment results are typical for neural stem cells. All of the
enrichment analyses were based on the top 200 marker genes ranked by p-value after the
preselection with the criteria: log fold change (logFC) > 2 and p-value < 0.05.
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3.2. PROM1 Is the Marker Gene for Eight out of 28 Total Stem-like Clusters with
Moderate Significance

In the following sections, we will be using the gene name PROM1 for CD133. PROM1
serves as a marker gene for eight clusters out of the 28 total stem-like clusters, and the eight
clusters belong to eight different samples (Figure 1). In summary, PROM1 was found to be
significantly overexpressed in 28.6% of the stem-like clusters. According to the volcano
plot (Figure 1), PROM1 ranks in the top 9.4%, 20.6%, 25.7%, 35.3%, 51.8%, 58.2%, 82.2%,
and 93.2% (by p-value) among all the overexpressed markers (the selected zone on the
right of the volcano plot Figure 1 by the criteria: logFC > 2 and p-value < 0.05) for the eight
clusters, respectively. Overall, the significance of PROM1 as a marker gene is not the most
outstanding among all the markers of the eight clusters.

0

50

100

0-25 25

N11_2

PROM1

150

0

20

40

60

0-20 20

N17_1

PROM1

0-20 20
0

5

10

15

20

N12_2

PROM1

N10_2

0

10

20

30

40

0

0-20 20

PROM1

0

10

20

30

40

0-20 20

N20_3

PROM1

0-20 20

20

40

N21_1

PROM1

0-20 20
0

50

100

N22_2

PROM1

0

50

100

150

0-20 20

N27_2

PROM1

Log2 fold change

-L
o
g

1
0

 P

Figure 1. Volcano plot of the 8 clusters marked by PROM1. The number following the underscore
of each title is the cluster ID. See Table S1 for the original names of the samples. The stippled lines
represent the marker genes criteria: p-value < 0.05, and logFC > 2. Selected marker genes are the
yellow dots on the right side of the volcano plot. For clusters N10_2, N11_2, N12_2, N17_1, N20_3,
N21_1, N22_2, and N27_2, PROM1 ranks 66/702 (top 9.4%), 5499/5901 (top 93.2%), 236/917 (top
25.7%), 1269/2181 (top 58.2%), 628/764 (top 82.2%), 315/891 (35.3%), 152/739 (top 20.6%), and
1524/2943 (top 51.8%), respectively.

3.3. Proposing Multiple Standards for Choosing the Optimal GBM Stem-like Markers According to
the Application

Through previous studies and our own investigations, it is believed that PROM1
features the stem-like subtype in GBM [37,38]. However, the fact that only eight out of the
total 28 stem-like clusters are marked by PROM1 and its relatively low significance among
all the markers led us to search in a wider range for other options that might target the
GBM stem-like subtype better.

Our study featured 2173 unique stem-like marker candidates combined from the top
200 marker genes of the 28 stem-like clusters (Figure 2a). The principal filtration step is to
select markers with high specificity to the stem-like subtype, indicated by the frequency of a
gene being a marker gene (for the 28 stem-like clusters) and its significance (represented by
median ranked p-value) (Figure 2b). The remaining markers could be further narrowed down
with two optional approaches. One is to select markers that are significantly overexpressed
in GBM stem-like cells compared with normal brain cells. The other is to select markers that
exhibit higher expression levels relative to other genes expressed by the same cell (quantified
by percentage-rank), and meanwhile are overexpressed compared with non-stem-like GBM
clusters (quantified by logFC). The second approach finds markers suitable for assays that
require a high expression level for their efficiency. Finally, the location of the expressed
markers was also considered as it relates to the feasibility of certain applications (examples
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provided in the discussion section). The following section presents the markers selected by
the principal selection step in combination with different optional criteria.

241 genes (excluding C8orf46, FAM115A, GPR56, HMP19,
LPPR1, MAGED4B, MLLT4, NGFRAP1, PTCHD2, SEPT7)

37 GBM samples

92 identified clusters

28 stem-like clusters (Including 23 
NPC1 clusters and 5 NPC2 clusters)

2173 stem-like cluster markers 
(combined from top 200 p-value 
ranked markers of all stem-like clusters)

a
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genes
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Figure 2. The procedure for the selection of stem-like markers of GBM that excel in both identifying
stem-like subtypes within the tumor and being cancer-specific. (a) The process of selecting GBM stem-
like subtype marker candidates. (b) The stem-like subtype marker candidates were evaluated based
on their frequency of being a stem-like cluster marker and the corresponding significance shown by
the median p-value across the represented clusters. The dots represent the 2173 unique stem-like
marker candidates combined from the top 200 marker genes of the 28 stem-like clusters. (c) The
expression level comparison between normal brain cells and GBM stem-like cells of 241 markers from
the previous frequency–significance selection. The criteria for the orange genes are logFC > 1 and
p-value < 0.01, and the criteria for the brown genes are 0.5 < logFC < 1 and p-value < 0.01. Both colors
were considered significant in the comparison. (d) The genes selected to distinguish normal brain
cells from GBM stem-like cells marked on the frequency–significance selection shown in Figure 2b.
(e) Examples of the GBM stem-like markers that are cancer-specific and those that are not. BCAN,
PTPRZ1, MAP2, OLIG1, ASCL1, etc. are non-cancer-specific. (f) Expression of BCAN and PROM1 in
the GBM stem-like subtype. This example is from sample N20.
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3.4. Selecting Frequent and Significant GBM Stem-like Markers

The frequency for each of the 2173 candidates to be a marker gene for a stem-like
cluster was normalized by the total number of stem-like clusters and multiplied by 100%.
The p-values of the marker genes were ranked ascendingly within each stem-like cluster,
normalized by the number of marker genes for the cluster, and multiplied by 100%. The
smaller the median p-value rank, the more significant the marker (indicated by the x-axis
in Figure 2a. The median was taken across the 28 stem-like clusters). A higher value on
the y-axis indicates a higher frequency of the gene being the marker gene for a stem-like
cluster (Figure 2b). Based on these two parameters, the markers in the upper left corner
of (Figure 2b) are optimal for specifying the stem-like subtype from other GBM cells. We
applied the criteria: frequency > 14% and median p-value rank < 50% to obtain markers in
this zone. This filtration step was passed by 251 marker genes. These 251 marker genes
were used for further selection with the two optional approaches, as described previously.

In search for the most significant and frequently shared markers by the GBM stem-like
clusters, BCAN, SOX4, PTPRZ1, GPM6A SOX11, MAP2, TUBB2B, NREP, PTPRS, TUBB3,
TUBA1A, DBN1, OLIG1, FXYD6, PMP2, SEMA5A,MLLT11, ASCL1, S100B, and MAGED1
are among the best candidates (Figure 2b). They are each found to be the marker for
between 46% and 64% of the 28 stem-like clusters, and appear in a high significance range.
Considering both parameters, they are superior to 99% of the total 2173 preselected stem-
like markers. The markers in the lower right corner of Figure 2b are less representative of
the GBM stem-like clusters. The most prominent markers selected by this method, such as
BCAN, are expressed universally by the GBM stem-like cells. In comparison, PROM1 is
expressed sparsely by the same group of cells (Figure 2f).

3.5. Selecting Stem-like Markers Overexpressed by GSCs Relative to Normal Cells

The expression levels of the 251 selected marker genes were compared between GBM
stem-like cells and normal brain cells. The median percentage-rank of each marker for all
the GBM stem-like cells and for all the normal brain cells was used to calculate p-value
and logFC, as shown in Figure 2c. The p-values were obtained by applying the Wilcoxon
rank-sum test to the GBM stem-like cells and the normal cells group.

Among the 251 candidates, C8orf46, FAM115A, GPR56, HMP19, LPPR1, MAGED4B,
MLLT4, NGFRAP1, PTCHD2, and SEPT7 (red crosses in Figure 2d) were not expressed by
the normal cells, indicating specificity to GBM stem-like cells compared with normal brain
cells. Among these candidates, GPR56 outperforms the others in the frequency–significance
selection (Figure 2d). Because zero reads were excluded from rankings and did not enter
the ranking-based comparison, they are not shown in Figure 2c.

Most of the remaining 241 markers present considerably low p-values in the compari-
son. The p-value criteria shown in (Figure 2c) is at 0.01, and all the highlighted markers
still have p values far below it. PTPRS and TUBB3 were found to remarkably distinguish
GBM stem-like cells from normal brain cells while remaining favorable in the frequency–
significance selection (Figure 2d; they are both orange genes and also appear in the upper
left corner of the frequency–significance selection). The cancer-specificity of TUBB3 is
explicitly shown in Figure 3d, in comparison with the general progenitor cell marker BCAN.
In fact, all the markers colored orange or brown in Figure 2c can be considered to distin-
guish GBM stem-like cells from normal brain cells. The advantageous markers from the
cancer–normal comparison are also marked on the frequency–significance figure, to show
the options that excel in both selections (Figure 2d).
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Figure 3. The expression of a general progenitor cell marker and cancer-specific stem-like marker for
GBM. (a) Both GBM tumors and normal tissue possess progenitor cells. This illustration was created
using BioRender.com. (b) TSNE for normal brain cells. (c) TSNE for the GBM cells from sample
N20. (d) Comparing the expression of a general progenitor cell marker, BCAN, and a cancer-specific
progenitor marker, TUBB3, between normal brain cells and GBM cells. The color bar with numbers
represents the log-normalized counts of the gene.

3.6. Selection of GBM Stem-like Markers Based on Their Expression Level

The expression level of a marker can be of crucial importance for some targeting as-
says [39]. Therefore, we present the relative expression level represented by percentage-rank
and logFC (from the differential expression analysis among GBM clusters), for the 251 genes
that passed the frequency–significance selection (Figure 4). The median percentage-rank
across all GBM stem-like cells and the median logFC over all the GBM stem-like clusters
were plotted together. Markers that are expressed at a high level compared with other
genes in the same cells and meanwhile overexpressed by the stem-like clusters within GBM
are shown (Figure 4). The markers that can distinguish GBM stem-like cells from normal
cells are also marked in the same figure (Figure 4) to show the combined results.

Among the 20 markers selected by the frequency–significance plot, BCAN, PTPRZ1,
PMP2, GPM6B, TUBB3, and S100B outperform the others in the expression-level selection
(Figure S1).

TUBB3 excels in all three selections (frequency–significance selection (Figure 2b), the
distinction to normal cells (Figure 2c), and expression level selection (Figure 4). This means
that TUBB3 is highly specific to the stem-like subtype within GBM and commonly found
for the stem-like subtype, distinguishes cells from healthy brain cells, and is expressed at
a sufficiently high level for ligand binding. Because all the markers used in this selection
have a logFC greater than 2, which is considered significant in biological comparisons,
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the requirement shown by the y-axis of Figure 4 could have been lowered if more choices
were needed.
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Figure 4. Selection of markers based on expression and overexpression in the stem-like subtype. The
expression level of the gene is represented by the median percentage-rank, and the overexpression
is shown by logFC obtained from the analysis of cluster markers. All the markers selected by
comparison with normal brain cells are also marked using the same colors and shapes as in Figure 2c.
The median was taken across all the cells in the stem-like clusters.

3.7. The Location of a Marker Protein Should Be Considered to Achieve Successful Targeting

As well as the criteria involved in the selection steps described above, the cellular
location of the protein translated from the corresponding marker gene is also crucial for
the feasibility of using the marker in various applications [40]. Generally, it is easier to
target markers located in the cell membrane than intracellular markers. Among the 251
selected marker candidates from the frequency–significance selection, about half of them
are expressed on the cell membrane (marked as blue dots in Figure 2b, marker names
given in Figure S2). Of all the markers that distinguish the GBM stem-like subtype from
normal cells (orange, brown dots, and red crosses in Figure 2d), PTPRS, ATP1A3, MAGED4,
NNAT, ASIC4, ITGA7, GPR56, HMP19, LPPR1, MAGED4B, and PTCHD2 are cell membrane
markers. If we apply more stringent criteria with all the previously mentioned parameters,
then PTPRS and GPR56 stand out as highly representative stem-like, cancer-specific, highly
expressed surface markers. They only have a relatively lower logFC compared with TUBB3
(Figure 4). Information regarding the location of the proteins encoded by the markers was
identified in the Human Protein Atlas database [41] (refer to proteinatlas.org).

3.8. The Abundance and Expression Level of Selected GSCs Markers across the Samples

For some of the promising markers selected above, we examined their “abundance”
(the proportion of cells that express non-zero values of the gene within a sample) and their
percentage-rank across samples. The median abundance of PROM1 across samples is 18%.
In comparison, BCAN, PTPRZ1, SOX4, and GPM6A, as representative markers from the
frequency–significance selection, exhibit median abundances of 75%, 97%, 84%, and 88%,
respectively. As a marker of prominent cancer-specificity, LDHB has a median abundance
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of 97%. The three recommended markers, TUBB3, PTPRS, and GPR56, by all standards
exhibit a median abundance of 68%, 94%, and 86% (Figure 5).

The percentage-rank of each selected marker was also shown across the samples.
Among all the cells that express the marker genes: BCAN, PTPRZ1, SOX4, GPM6A, LDHB,
TUBB3, PTPRS, and GPR56, the percentage-rank is over 50% for 92%, 96%, 74%, 96%, 86%,
90%, 75%, and 87% of the cells, respectively, all higher than the 60% for PROM1 (Figure 5).
The median percentage-rank within each sample is higher than 50% for 100%, 97%, 73%,
100%, 81%, 88%, 77%, and 96% for the markers mentioned above. For PROM1, this value is
59% (Figure 5).

PROM1

0

20

40

60

80

100

N
7
P
5
P
2

N
15
N
23
N
12 N
5

N
20
N
14
N
21 N
4
D
3
N
2
D
2
P
4

N
22 D
4

N
18
N
27
N
25
N
24
N
17
N
16 P
3

N
10 D
1

N
11 P
1

N
28 N
8

N
26 N
6

N
19
N
13 N
3
N
9
N
1

0

25

50

75

100

N
7
P
2
P
5
P
4

N
23 N
5

N
15 P
3
D
3

N
28
N
12 P
1
N
2
D
4
D
1
N
3
N
8

N
24 N
4
N
6

N
18
N
21
N
14
N
26
N
13
N
16
N
11 N
9
D
2

N
22
N
25
N
20
N
17 N
1

N
27
N
19
N
10

0

20

40

60

80

100

N
7

N
14
N
12
N
20
N
27
N
15
N
21
N
22
N
17
N
23
N
16
N
18 D
2
D
3
N
2
N
5

N
11
N
25
N
24
N
28 N
6
P
5

N
26 N
9
D
4

N
10 P
1
N
3
N
4

N
19
N
13 D
1
N
1
N
8
P
2
P
3
P
4

0

25

50

75

100

N
7

N
23 N
6
N
9

N
12 N
4

N
28
N
21
N
20 D
1

N
18 P
5

N
25 N
5

N
11 N
2
D
3
N
3
N
1

N
16
N
26
N
17
N
14
N
15
N
24 N
8
D
2
D
4

N
22
N
19
N
13 P
3

N
27
N
10 P
1
P
2
P
4

0

20

40

60

80

100

N
7

N
15
N
14
N
17
N
18 D
3

N
11 D
1

N
27 P
5

N
12 P
2

N
24 D
2
P
1

N
20
N
21
N
16
N
10
N
23 D
4

N
13
N
22 N
2

N
19 N
8
P
4

N
26 N
4
N
5
N
9
P
3

N
28
N
25 N
3
N
1
N
6

0

25

50

75

100

N
17 D
1
N
7

N
15 D
2

N
18 D
4

N
13
N
10 D
3

N
14 N
4
P
2

N
19
N
26 N
8

N
27
N
11 N
5

N
24 P
4
P
5

N
23 N
2
P
1

N
16 P
3

N
25 N
1
N
3

N
28
N
21
N
22 N
9

N
20
N
12 N
6

0

20

40

60

80

100

D
4
D
3
N
7
D
2
P
5

N
11
N
15
N
14 P
1

N
22
N
20 N
6

N
12 D
1

N
21
N
24
N
26
N
17 P
2

N
10 N
2

N
18 N
5

N
13
N
23 P
4
N
9

N
27 P
3

N
16
N
25
N
19
N
28 N
1
N
3
N
4
N
8

0

25

50

75

100

D
4
D
3
D
2
D
1
P
5
P
2
P
1
P
4
P
3
N
7

N
14
N
15
N
12
N
22
N
11 N
6

N
24
N
27
N
21 N
5

N
18
N
20
N
26 N
4
N
8
N
2

N
17
N
13
N
25
N
19
N
10
N
23 N
1
N
9

N
16 N
3

N
28

0

20

40

60

80

N
7
P
1
D
4
D
2
P
2

N
11
N
14
N
18 N
4

N
15 N
9
N
8

N
10
N
27
N
24
N
12
N
23
N
22
N
19
N
17
N
20
N
26
N
16 N
2

N
21
N
13 N
5

N
28
N
25 N
3
N
1
N
6

0

25

50

75

100

D
2
D
4
P
1
P
2
N
7

N
18 N
4

N
11 N
9

N
27
N
14 N
8

N
10
N
26
N
19
N
24
N
15
N
13 N
3
N
2

N
23
N
28
N
16
N
17
N
25
N
22 N
1
N
5

N
20 N
6

N
12
N
21

0

20

40

60

80

100

N
7
D
1
D
2
D
3
P
4
P
1
P
5
D
4

N
14
N
15
N
12
N
20
N
17
N
21
N
22
N
27 N
5

N
18
N
23
N
10
N
13
N
16
N
28
N
11 N
2

N
24 N
8
N
4

N
25
N
26 N
3
N
1

N
19 N
6
N
9

0

25

50

75

100

P
4
D
3
P
5
P
1
D
4
D
2
D
1

N
13
N
15
N
14 N
7

N
26
N
18 N
5

N
16
N
28
N
23
N
27
N
17
N
19 N
3

N
24 N
8

N
11 N
2

N
10 N
6

N
25
N
20
N
22
N
21
N
12 N
4
N
1
N
9

A
b
u
n
d
a
n

ce
 (

%
)

Pe
rc

e
n
ta

g
e
-

ra
n
k
 (

%
)

BCAN PTPRZ1

SOX4 GPM6A LDHB

TUBB3 PTPRS

0

20

40

60

80

100

N
7

N
20
N
15
N
14 N
4
N
5

N
27 N
2

N
18
N
11
N
16
N
12 N
9

N
23
N
25
N
17
N
10
N
24
N
22
N
19 N
8

N
21
N
26
N
28
N
13 N
3
N
1
N
6

0

25

50

75

100

N
7
N
5
N
9

N
25
N
20
N
12
N
21
N
11
N
15
N
28
N
14
N
22
N
23 N
8

N
26
N
19 N
2
N
6

N
24 N
4

N
16 N
3

N
18
N
13 N
1

N
10
N
17
N
27

GPR56

A
b
u
n
d
a
n

ce
 (

%
)

Pe
rc

e
n
ta

g
e
-

ra
n
k
 (

%
)

A
b
u
n
d
a
n

ce
 (

%
)

Pe
rc

e
n
ta

g
e
-

ra
n
k
 (

%
)

Sample ID

0

20

40

60

80

N
4
D
2
N
7

N
24
N
18
N
15
N
23
N
14 N
9
N
8

N
26
N
11
N
12 D
1
D
3

N
20
N
27 D
4
N
5
P
4
P
2

N
21
N
17 P
1

N
19
N
22 N
6

N
13 N
2

N
25
N
16 P
3

N
10 P
5

N
28 N
3
N
1

0

25

50

75

100

N
18 N
4
P
2

N
23
N
24 N
7
P
4

N
15
N
26
N
27
N
21
N
22 N
8
N
6

N
14 P
3
P
1

N
28 N
5

N
16
N
11 P
5

N
12
N
25
N
20 D
3

N
13 N
2

N
17 D
2
N
9

N
19 D
4

N
10 N
3
D
1
N
1

0

20

40

60

80

100

N
7

N
14
N
20
N
12
N
15 D
3
D
2

N
18
N
27
N
17
N
16 D
1

N
19
N
22
N
11 P
5
N
2

N
21
N
23 P
1

N
24
N
28 N
5

N
10 N
9
N
3
N
4

N
13
N
26 N
8
D
4
N
1

N
25 N
6
P
2
P
3
P
4

0

25

50

75

100

N
7
D
3
D
2
D
1

N
28
N
19
N
11 P
5
N
3
N
2

N
26
N
15 N
4
N
9

N
23
N
18
N
13
N
24 N
5

N
20 N
6

N
14
N
16 N
8

N
22 N
1
P
1

N
27 P
2
D
4
P
3
P
4

N
10
N
25
N
17
N
12
N
21

Figure 5. Abundance and percentage-rank of selected markers and PROM1 across samples. The
letters “N”, “P” and “D” in the sample ID represent samples from the studies of Neftel et al. [11],
Patel et al. [24], and Darmanis et al. [25], respectively.

4. Discussion

The core strategy of this study is the use of nonparametric values such as frequency,
percentage-rank, and p-value-rank in order to be able to integrate data from different studies.
It allows us to quantitatively evaluate different aspects of a marker based on various
patients from different studies [42–44]. Gene-expression data from different studies cannot
be directly combined to draw comparative or statistical conclusions without eliminating
the batch effects between them. However, most batch-correction tools either presume the
data distribution or subtyping and inevitably introduce biases to the original data [45].
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Therefore, we adopted the straightforward and robust rank-based method to integrate
datasets [46,47]. Furthermore, the percentage-rank defined in this study has an advantage
from its definition compared with gene counts. In a more explicit manner, it represents the
expression level of a gene in comparison with all the other genes of the cell. Conversely, a
normalized gene count does not provide much information in itself without conducting
differential expression analysis. We believe that the rank-based data are more reliable and
more relevant for a biomarker evaluation study. Furthermore, we believe that the most
optimal way to validate their robustness is by presenting their universality among patients
from different scRNA-seq-based datasets, together with their statistical significance. This is
because bulk RNA sequencing data (such as TCGA sequencing data), which presents an
average expression of each gene from all the cells in the sample, cannot be used for GSC
marker identification validations.

Our identification of the NPC-like 1 and 2 subtypes can be verified by comparing our
enrichment result (Tables S2 and S3) with the enrichment provided by Neftel et al. [11].
Both NPC-like 1 and 2 subtypes exhibit typical neural progenitor cell features. As a
validation for our results, many other studies identified the same marker genes for GSC as
we highlighted in Figure 2b; see Table 1 for a list of methods and references.

Table 1. Validation of stemness for highlighted markers.

Markers Cell
Subtype Properties Methods Used for Validation References

SOX4 GSC

Stemness regulator,
GSC signature marker,
transcription factor (TF)
highly expressed in embryonic,
neural, or tumor stem cells

Transcriptome profiling,
tumorigenesis in vivo [37,38,48–50]

SOX11 GSC GSC signature marker,
stemness regulator Transcriptome profiling [37,51]

ASCL1 GSC GSC signature marker

Transcriptome profiling,
tumorigenesis in vivo
and in vitro,
genetic knock-down

[37,38,52,53]

PTPRZ1 GSC

Tumor initiating GSC marker,
invasive GSC marker,
overexpressed in stem-like
phenotype of GBM spheroid

Tumorigenesis in vivo,
genetic knock-down,
invasion assays,
tumorigenesis in vitro,
transcriptome profiling

[54–56]

BCAN pGSC

pGSC (proneural)
signature marker,
overexpressed in stem-like
phenotype of GBM spheroid

Tumorigenesis in vitro,
transcriptome profiling [52,55,57]

OLIG1 GSC Stemness regulator,
GSC signature marker

Transcriptome profiling,
tumorigenesis in vitro [38,58,59]

GPR56 GSC

overexpressed in stem-like
phenotype of GBM spheroid,
neural stem cell marker,
cancer stem cell (CSC) marker

Tumorigenesis in vitro,
transcriptome profiling [55,60,61]

MAP2 GSC overexpressed in stem-like
phenotype of GBM spheroid

Tumorigenesis in vitro,
transcriptome profiling [55]

GPM6A GSC GSC signature marker,
invasive GSC marker Tumorigenesis in vitro [62]
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It was revealed that some cells identified as stem-like by their transcriptome profiles do
not express PROM1 (Figure 5). This provides an explanation for the tumorigenesis ability
of CD133 negative cells reported by multiple studies [22,63]. Bhaduri et al. also discovered
the “sparse” expression of PROM1 [54]. We concluded that being CD133 positive is a
sufficient but not necessary condition for being a GBM stem-like cell.

In favor of our findings of the normal brain-cell-distinctive GBM stem-like markers,
seven out of eight total orange markers were reported to be overexpressed in different
cancers (Figure 2c). RCN1 was shown to be overexpressed in GBM stem-like cells compared
with normal tissue [64]. METTL7B and MAGED4 were discovered to be overexpressed prog-
nostic markers in various gliomas [65–69]. LDHB, PTPRS, UHRF1, and TUBB3 were pro-
posed as universal prognostic and malignancy markers across many cancer types [70–79].
Studies regarding the differential expression of ATP1A3 in cancer tissue have not been
found. The overexpression of multiple “red cross” markers (Figure 2d) was also reported
in various cancer types by previous studies [61,80,81]. It should be clarified that most
currently applied GBM stem-like markers are not normal-cell-distinctive, as they are also
expressed by neural progenitor cells. For instance, previous studies suggested that CD133
can be used to separate stem cells from not only cancerous but also normal tissue [22,23,82],
including brain [83]. Likewise, SOX2, CD15, and CD24 have also been identified as neural
stem-cell markers [84,85]. Indeed, the denotation “stemness” refers to a particular biologi-
cal feature of preserved multi-potency and self-renewal ability [86], which is not relevant
to malignancy. To address this concern, we recommend focusing on the orange-, brown-,
and red-cross-marked GBM stem-like markers in Figure 3d, to distinguish normal brain
cells from GBM stem-like cells in clinical targeting.

We quantified the “stemness” of the total 2173 preselected GBM stem-like markers
based on their universality (frequency) and significance as a basic step, to maximize the
efficiency of the markers in targeting GBM stem-like subtypes within tumors and among
patients. This was followed by two alternative selections to further obtain the options
that can either (1) exclude normal cells during targeting, or (2) markers that are expressed
at a high level by the targeted subtype, or both. Furthermore, the location of proteins
encoded by the selected markers was also considered. Some targeting technologies prefer
markers found in the cell membrane to intracellular markers, due to the difficulty of
crossing membranes of live cells with targeting agents, such as targeted protein drugs [40].
In the end, we confirmed that the representative markers selected by our methods exhibit
relatively higher abundance and expression levels across samples compared with PROM1.

TUBB3 outperforms the other candidates with the combination of the first three
selections but is expressed intracellularly. PTPRS and GPR56 are cell-surface markers that
stand out in the first two selections with slightly lower, but sufficient, expression levels. The
stemness of these three markers is supported by the Neftel et al. study that identified them
as marker genes for NPC1 or NPC2 subtypes [11]. Their cancer-specificity is supported
by studies that reported their overexpression in various cancer types [61,71–73,77–79].
Although we started with a high number of candidates, only a few markers excelled at all
the selections. Therefore, it is recommended to use only relevant parameters after the basic
frequency–significance selection. For instance, efficient in vivo radionuclide-conjugated
antibody targeting requires high expression of the biomarker in the targeted subtype [39],
and the capability to exclude normal cells if the targeting agent is distributed ubiquitously in
the brain. Surface markers are not compulsory in this case [39]. The optimal marker for this
application is TUBB3, which is also found to be a marker for high-grade gliomas [87]. For
in vitro isolation of glioblastoma stem cells from a bulk tumor, representative (determined
by frequency–significance selection), and highly expressed surface markers are preferred,
in which case cancer-specificity can be compromised. PTPRZ1 is the most suitable marker
in this scenario. Immunohistochemistry (IHC) assays require sufficiently expressed, highly
representative stem-like markers, while the other two criteria are not as crucial. Preferable
markers for IHC assays include BCAN, PTPRZ1, PMP2, GPM6B, TUBB3, and S100B. The
choice of markers should be customized with relevant parameters according to the specific
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needs of the study in question. More application scenarios with suggested GSC markers
are summarized in Table S4.

5. Conclusions

Targeting glioblastoma multiforme (GBM) stem-like cells (GSCs) is the major motive
of this study. Using parameters that quantify the universality, significance, expression level,
and cancer-specificity of the candidate markers, we successfully compared 2,173 candidate
GBM stem-like markers using single-cell RNA sequencing data. Our analyses suggest
20 markers, BCAN, SOX4, PTPRZ1, GPM6A, SOX11, MAP2, TUBB2B, NREP, PTPRS,
TUBB3, TUBA1A, DBN1, OLIG1, FXYD6, PMP2, SEMA5A, MLLT11, ASCL1, S100B, and
MAGED1, as the most universal and significant GSC markers across patients. Among these
20 stem-like markers, BCAN, PTPRZ1, PMP2, GPM6B, TUBB3, and S100B are expressed at
high levels.

Comparing GSCs with normal brain cells, we found the markers LDHB, RCN1, PTPRS,
METTL7B, UHRF1, MAGED4, ATP1A3, and TUBB3 to have outstanding cancer-specificity.
Thus, they are recommended for developing GSCs targeting agents for patient applications.

In conclusion, taking all the parameters and markers into account, TUBB3, PTPRS,
and GPR56 outperform the other candidates. We propose them as markers for the future
targeting of GSCs in a wide variety of clinical applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers15051557/s1, Figure S1: Selection of markers based on
the expression and the overexpression in stem-like subtype; Figure S2: Marker genes whose encoded
proteins are located at membrane; Table S1: GBM samples and their corresponding names; Table S2:
GBM stem-like subtype—NPC1 cluster enrichment example (N20, cluster); Table S3: GBM stem-like
subtype—NPC2 cluster enrichment example (N10, cluster 2); Table S4: Overview of data analysis
results, markers and their applications.
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